
National Aeronautics and
Space Administration

www.nasa.gov

Estimating Flight
Software Risk for a

Space Launch Vehicle

International Association for the
Advancement of Space Safety
October 21, 2014

S. Novack1, S.Hatfield1, M. Al Hassan1,J.Bales2,
P. Britton2, F.Hark1, J.Stott2

1Bastion Technologies, Inc.
2NASA Marshall Space Flight Center

Why is Understanding Software Risk
Important to NASA?

“Software had a critical role in a large share (~ 60% in quantitative
terms) of the failures suffered by NASA in high-stakes missions
during the 1998 – 2007 decade.” (NASA PRA Procedures Guide, 2010)

 1962 - Mariner 1 (incorrect formula coded)
 1988 - Phobos (deactivated thrusters)
 1996 - Ariane 5 (reused Ariane 4 software)
 1999 - Mars Polar Lander (mistook turbulence for landing)
 1999 - Mars Climate Orbiter (unit conversion)
 2004 - Spirit (flash memory full)
 2005 - CryoSat-1 (missing shutdown command)
 2006 - Mars Global Surveyor (assumption of motor failure)
 2011 - Express-AM4 (faulty parameter)

Software versus Hardware Characteristics

 Failure cause
 Wear-out
 Repairable system concept
 Environmental factors
 Reliability prediction

 Redundancy
 Interfaces
 Failure rate motivators
 Standard components

The NASA definition of software failure is “Flight Computer Software
(FSW) performs the wrong action, fails to perform the intended action, or

performs the intended action at the wrong time.” NASA Shuttle
Probabilistic Risk Assessment (PRA), SSA-08-11 rev B

Potential Methods
Used to Obtain Software Risk

 Mathematical model using Space Launch Vehicle software data
from flights
 Best possible data (assuming large data sets)
 Unavailable for first flight

 Mathematical model using historical data on a “like” system
 Low/moderate uncertainty
 May require modifications to fit Space Launch Vehicle
 Will provide a path to incorporate Space Launch Vehicle specific

software data (test and flight)
 Heuristic method using generic statistical data

 Moderate uncertainty
 Different approaches, different results

 Context-based Software Risk Model (CSRM)
 Off-nominal scenarios
 Can be based on specific failure modes

 SOFTREL
 Ann Marie Neufelder

 Expert judgment
 Highest uncertainty

Software Reliability Metrics

 Product
 Code complexity, which is directly related to reliability

 Project Management
 Organizational and management influence on the code
outcome and reliability

 Process
 Function of upgrades and software improvements to reach
some steady state

 Fault and Failure
 Reliability trending estimated from software fault and failure
data

Software Probabilistic Risk Assessment
(PRA) Characteristics

 Vetted approach
 Quantitative and Complete
 Tractable
Easily understood and traceable
Assumptions

 Sensitive to environmental (context) failures
 Uses available test results and operational experience
 Quantifies uncertainty
 Can account for Common Cause Failures

“PRA is a systematic and comprehensive methodology to evaluate
risks associated with every life-cycle aspect of a complex engineered
technological entity (e.g., facility, spacecraft, or power plant) from
concept definition, through design, construction and operation, and up
to removal from service.”- NASA Office of Safety and Mission
Assurance

Considerations for Applying a Historical
Data Approach

 Software Process
 Coding practices
 Testing schemes

 Programming Language and Operating system
 Comparable language or equivalent basis

 Flight time
 Mission versus Ascent or Reentry

 Software errors during different phases of flight
 Accounting
 Source Lines of code (SLOC)

 Computer system structure
 Redundancy
 Independence or backup systems

Different Categories of Software Failures

 Coding errors
 Errors introduced into the code by human design or error
 Are not detected during testing prior to first flight
 Have the potential to manifest during nominal mission conditions

 Context Latent Errors (LEs)
 Errors manifest during off-nominal conditions

 May need very specific conditions to manifest
 Would typically not be caught during testing
 “A segment of code that fulfills its requirements except under certain off-

nominal and probably unanticipated conditions.”
 Operating system errors

 Includes response to application errors
 Memory allocation problems
 Background processes

3 software
failure types

Latent
Context

Error

Coding
Error

Operating
System
Errors

Approach for Coding and Latent Errors

 Identify selected scenarios for off-nominal conditions
 Ex: Spacecraft navigation errors

 Determine how software contributes to selected scenarios (i.e.,
the software failure mode)
 Software causes a hardover

 Determine what portion of the code could cause the software
error (e.g., modules, partitions, functions)


 Calculate Total Source Line of Codes (SLOCs) for each failure

mode

 Adjust reliability if needed to match historical data

 Estimate risk for each software failure mode based on Total SLOC
per software failure mode

9

Example of Historical Reliability Data

 Uncertainty increases with higher
levels of testing

 Quantify historic system differences
(redundancy)

 Operational errors making it
through testing onto flight

 Establishes a reliability constant
for SLOC that can be corrected for
new system

Example of Software Failure Modes by
Code Segments

Software Failure Mode Associated Software

Conversion/corruption data
on navigation

Data
Conversion

Engine
Code

Last Good Data on BUS
(Stale Data)

Input Data
Exchange

OutPut Data
Exchange

Application
Code

Data
Conversion Data In Infrastructure Command

Code

Loss of Computer
Communication

Communicat
ion Code

System
Code

Booster hardover (left) Booster
Code

Booster hardover (right) Booster
Code

Navigation Whole Vehicle
Hardover

Navigation
Code

Booster
Code

No Booster Sep Command Application
Code

System
Code

Command Early or Late System
Code

Inadvertent Command Data
Conversion

Application
Code

No Command Application
Code

A Nominal Software Risk Example and
Ranges

 Reliability growth curves
can provide ranges

 Uncertainty may be
affected by extrapolation
of historical data

Special Considerations

 Treatment of Software Common Cause Failures (CCFs)
Software CCF basic events can parallel hardware events (NUREG CR-6268)

 Uncertainty
 Historical or statistical based failure rates can have associated
distributions
 Variability can be propagated via the distributions in the PRA model
and standard uncertainty analysis methods
 Software basic events can be correlated for Monte Carlo routines

 Software support
 Provide prioritized for software testing due to risk-informed data
 Model estimates can be provided for software reliability requirements
per system
 Focus on software testing schemes

 Firmware
 Many of the major systems contain independently developed firmware
or software (e.g., Navigation system, engine)
 Similar approach coupled with hardware reliability data can be used to
estimate firmware reliability

Summary and Conclusions

 Software reliability is very difficult to predict and standard
hardware reliability methods may be inappropriate

 Software groupings (e.g., modules, functions) can be used with a
base unit of complexity (SLOC) to determine reliability

 This approach allows testing information to be rolled into a
module failure scheme at the functional level

 May be directly linked to physical partitions and processes

 Can be broken down into a component level to support software
development needs

 Provides a meaningful resolution in the PRA (how and why a
system fails)

 May have a direct correlation with vehicle specifications and
requirements

Questions?

POC: Steven Novack, Bastion Technologies, Inc.
steven.d.novack@nasa.gov
1-256-544-2739

