
National Aeronautics and
Space Administration

www.nasa.gov

Estimating Flight 
Software Risk for a 

Space Launch Vehicle

International  Association  for the 
Advancement of Space Safety 
October 21, 2014

S. Novack1, S.Hatfield1, M. Al Hassan1,J.Bales2, 
P. Britton2, F.Hark1, J.Stott2

1Bastion Technologies, Inc.
2NASA Marshall Space Flight Center



Why is Understanding Software Risk
Important to NASA?

“Software had a critical role in a large share (~ 60% in quantitative 
terms) of the failures suffered by NASA in high-stakes missions 
during the 1998 – 2007 decade.” (NASA PRA Procedures Guide, 2010)

 1962 - Mariner 1 (incorrect formula coded)
 1988 - Phobos (deactivated thrusters)
 1996 - Ariane 5 (reused Ariane 4 software)
 1999 - Mars Polar Lander (mistook turbulence for landing)
 1999 - Mars Climate Orbiter (unit conversion)
 2004 - Spirit (flash memory full)
 2005 - CryoSat-1 (missing shutdown command)
 2006 - Mars Global Surveyor (assumption of motor failure)
 2011 - Express-AM4 (faulty parameter)



Software versus Hardware Characteristics

 Failure cause
 Wear-out
 Repairable system concept
 Environmental factors
 Reliability prediction

 Redundancy
 Interfaces
 Failure rate motivators
 Standard components

The NASA definition of software failure is “Flight Computer Software 
(FSW) performs the wrong action, fails to perform the intended action, or 

performs the intended action at the wrong time.” NASA Shuttle 
Probabilistic Risk Assessment (PRA), SSA-08-11 rev B



Potential Methods
Used to Obtain Software Risk

 Mathematical model using Space Launch Vehicle software data 
from flights 
 Best possible data (assuming large data sets)
 Unavailable for first flight

 Mathematical model using historical data on a “like” system
 Low/moderate uncertainty
 May require modifications to fit Space Launch Vehicle
 Will provide a path to incorporate Space Launch Vehicle specific 

software data (test and flight)
 Heuristic method using generic statistical data

 Moderate uncertainty
 Different approaches, different results

 Context-based Software Risk Model (CSRM)
 Off-nominal scenarios
 Can be based on specific failure modes

 SOFTREL
 Ann Marie Neufelder

 Expert judgment
 Highest uncertainty



Software Reliability Metrics

 Product
 Code complexity, which is directly related to reliability

 Project Management  
 Organizational and management influence on the code 
outcome and reliability

 Process 
 Function of upgrades and software improvements to reach 
some steady state 

 Fault and Failure 
 Reliability trending estimated from software fault and failure 
data



Software Probabilistic Risk Assessment 
(PRA) Characteristics

 Vetted approach
 Quantitative and Complete
 Tractable 
Easily understood and traceable
Assumptions

 Sensitive to environmental (context) failures
 Uses available test results and operational experience
 Quantifies uncertainty
 Can account for Common Cause Failures

“PRA is a systematic and comprehensive methodology to evaluate 
risks associated with every life-cycle aspect of a complex engineered 
technological entity (e.g., facility, spacecraft, or power plant) from 
concept definition, through design, construction and operation, and up 
to removal from service.”- NASA Office of Safety and Mission 
Assurance



Considerations for Applying a Historical 
Data Approach

 Software Process
 Coding practices
 Testing schemes

 Programming Language and Operating system 
 Comparable language or equivalent basis

 Flight time 
 Mission versus Ascent or Reentry

 Software errors during different phases of flight
 Accounting 
 Source Lines of code (SLOC)

 Computer system structure
 Redundancy
 Independence or backup systems



Different Categories of Software Failures

 Coding errors
 Errors introduced into the code by human design or error 
 Are not detected during testing prior to first flight
 Have the potential to manifest during nominal mission conditions

 Context Latent Errors (LEs)
 Errors manifest during off-nominal conditions

 May need very specific conditions to manifest
 Would typically not be caught during testing
 “A segment of code that fulfills its requirements except under certain off-

nominal and probably unanticipated conditions.”
 Operating system errors

 Includes response to application errors
 Memory allocation problems
 Background processes

3 software
failure types

Latent 
Context 

Error

Coding 
Error

Operating
System 
Errors



Approach for Coding and Latent Errors

 Identify selected scenarios for off-nominal conditions
 Ex: Spacecraft navigation errors

 Determine how software contributes to selected scenarios (i.e., 
the software failure mode)
 Software causes a hardover

 Determine what portion of the code could cause the software 
error (e.g., modules, partitions, functions)


 Calculate Total Source Line of Codes (SLOCs) for each failure 

mode 

 Adjust reliability if needed to match historical data

 Estimate risk for each software failure mode based on Total SLOC 
per software failure mode

9



Example of Historical Reliability Data

 Uncertainty increases with higher 
levels of testing

 Quantify historic system differences 
(redundancy)

 Operational errors making it 
through testing onto flight

 Establishes a reliability constant  
for SLOC that can be corrected for 
new system



Example of Software Failure Modes by 
Code Segments

Software Failure Mode Associated Software

Conversion/corruption data 
on navigation

Data 
Conversion 

Engine 
Code

Last Good Data on BUS 
(Stale Data)

Input Data 
Exchange

OutPut Data 
Exchange

Application 
Code

Data 
Conversion Data In Infrastructure Command 

Code

Loss of Computer 
Communication

Communicat
ion Code

System 
Code

Booster hardover (left) Booster 
Code

Booster hardover (right) Booster 
Code

Navigation Whole Vehicle 
Hardover

Navigation 
Code

Booster 
Code

No Booster Sep Command Application 
Code 

System 
Code 

Command Early or Late System 
Code

Inadvertent Command Data 
Conversion

Application 
Code

No Command Application 
Code



A Nominal Software Risk Example and 
Ranges

 Reliability growth curves 
can provide ranges

 Uncertainty may be 
affected by extrapolation 
of historical data



Special Considerations

 Treatment of Software Common Cause Failures (CCFs)
Software CCF basic events can parallel hardware events (NUREG CR-6268)

 Uncertainty
 Historical or statistical based failure rates can have associated 
distributions
 Variability can be propagated via the distributions in the PRA model 
and standard uncertainty analysis methods 
 Software basic events can be correlated for Monte Carlo routines

 Software support
 Provide prioritized for software testing due to risk-informed data
 Model estimates can be provided for software reliability requirements 
per system
 Focus on software testing schemes

 Firmware
 Many of the major systems contain independently developed firmware 
or software (e.g., Navigation system, engine)
 Similar approach coupled with hardware reliability data can be used to 
estimate firmware reliability



Summary and Conclusions

 Software reliability is very difficult to predict and standard 
hardware reliability methods may be inappropriate

 Software groupings (e.g., modules, functions) can be used with a 
base unit of complexity (SLOC) to determine reliability 

 This approach allows testing information to be rolled into a 
module failure scheme at the functional level

 May be directly linked to physical partitions and processes

 Can be broken down into a component level to support software 
development needs

 Provides a meaningful resolution in the PRA (how and why a 
system fails)

 May have a direct correlation with vehicle specifications and 
requirements



Questions?

POC: Steven Novack, Bastion Technologies, Inc.
steven.d.novack@nasa.gov
1-256-544-2739


