MicroRNA Expression Profile and DNA Damage Response in Cultured Human Fibroblasts in Space

Honglu Wu
NASA Johnson Space Center

ASGSR Annual Meeting
Pasadena, California October, 25, 2014
Questions to be Addressed

Does spaceflight influence RNA and miRNA expressions in non-dividing cultured cells?

Does microgravity affect cellular responses in living organisms to space radiation exposure?

Does microgravity and other spaceflight factors affect cellular responses to DNA damages?
Gene expression changes in space

Hammond et al. Nature Medicine 1999
The direct interaction analysis showed several projected networks with c-Rel, ETS1 and Ubiquitin C as key factors. Several genes showed direct interactions with miRNAs that were found to be altered in simulated microgravity environment. Seven genes cyclin E2, HMG2, EGR2, ZNF145, Ubiquitin C, ETS1 and c-Rel were subjected to validation analysis using Quantitative Real-time PCR.
Chromosome aberration frequencies in pre- and post-flight astronaut lymphocytes irradiated in vitro with low-LET radiation (Wu et al. Phys. Med. 2001)

Mission: STS-103

Duration: 8 days

Blood draw schedule: L-10, R+0 and R+14

Irradiation: Whole blood was collected from the astronaut and irradiated with gamma rays

Chromosome analysis: Chromosomes #1 and #5 were painted.

Conclusion: No differences in radiosensitivity were found.

- Cosmonaut’s blood samples were collected 3 days after landing
- Samples were exposed to X-rays

Significant difference was found in the dose response curve between the pre- and post-flight samples.
MICRO-7 FLIGHT EXPERIMENT

- Investigate changes of RNA and miRNA expressions in G1 human fibroblast cells in space
- Investigate the cellular response to bleomycin-induced DNA damages in Ge human fibroblast cells in space
Our Micro-7 experiment was launched in April, 2014

Damage in human fibroblasts will be measured by the phosphorylation of a histone protein H2AX after bleomycin treatment.
gH2Ax Staining pattern

- Placebo
- Bleomycin

Ground

- Placebo
- Bleomycin

Flight

Legend:
- Type III
- Type II
- Type I
Average # of γH2Ax Foci (Type III)

P = 0.06
Average # of gH2Ax Foci (Type III)

P = 0.06
Quantification of DNA Damages with 53BP1 Immunofluorescence Staining Patterns and Foci Counts

Type III for 53BP1 and Type I for γH2Ax

Type VI for 53BP1

53BP1
γH2Ax

[Graph showing gH2Ax Staining pattern (All, 53BP1 slide)]

[Graph showing 53BP1 Staining pattern]

[Bleomycin], μg/ml
53BP1 Average # of Foci (Type III)
Distribution of γH2Ax Foci Count per Nucleus

- Ground D3
- Ground D14
- Flight D3
- Flight D14
Percent of Ki-67 Positive staining cells.

P=0.002
Cell proliferation marker – Ki67
CONCLUSIONS

• Human fibroblast cells in the G1 phase of the cell cycle were flown on ISS for 3 and 14 days. Microarray analysis of gene expressions did not show a significant difference between the flight and the ground samples for either of the days.

• The gene expression patterns were significantly different between the 3 and 14 day samples, due potentially to the slow growth of the cells.

• On Day 3 after reaching the orbit, the cells were exposed to bleomycin to induce DNA damages. The degree of damages, as measured with immunohistochemistry staining for the induction of gamma-H2AX and 53BP1, did not show a significant difference in the response between the flight and ground samples.
Acknowledgement

NASA Johnson Space Center
Ye Zhang
Tao Lu

NASA Ames Research Center
Fathi Karouia
Kevin Sato

BioServe Space Technologies
Louis Stodieck
Stefanie Countryman
Jonathan Beno

UT Southwestern Medical Center
Michael Story