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Fuel Cells at NASA

• Gemini,	Apollo,	and	Space	Shuttle	used	fuel	cells	as	main	power	source	
for	vehicle	and	water	source	for	life	support	and	thermal

PEM	(Gemini)	and	Alkaline	(Apollo,	Shuttle)	fuel	cells	were	used

Ideal	for	short	(less	than	3	weeks)	missions	when	the	required	O2	and	
H2	can	be	launched	with	the	vehicle

• New	missions	that	might	require	long‐duration	stays	in	orbit	or	at	a	
habitat,	cannot	rely	on	the	availability	of	pure reactants	and	should	aim	
to	be	sun‐independent	– a	problem	for	which	Solid	Oxide	Fuel	Cells	
might	be	the	answer
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Solid Oxide Fuel Cells for LOX/CH4 Landers

• Recently,	NASA	has	investigated	&	developed	LOX/CH4‐propelled	
landers	(Altair,	MORPHEUS).	In	order	to	preserve	mission	flexibility,	
fuel	cells	are	being	studied	as	a	potential	power	source.

• Much	of	NASA’s	fuel	cell	development	has	been	focused	on	creating	
dead‐headed,	non‐flow	through	PEM	fuel	cells,	which	would	weigh	less	
and	be	more	reliable	than	the	existing	Alkaline	and	PEM	technology;	
however,		LOX/CH4	as	a	propellant	introduces	SOFCs	as	a	power	option	
due	to	their	ability	to	accept	“dirty”	reactants	without	much	reforming.	
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LOX/LH2 Lander vs. LOX/CH4 Lander

• Previous	work	at	JSC	has	identified	the	volumetric	and	mass	
benefits	of	LOX/CH4 propelled	vehicles	vs LH2/LO2
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Advantages of O2/CH4 Propulsion

• Improved	space	storability

• Greatly	reduced	spacecraft	volume

• Utilizes	propellants	that	can	be	produced	In‐Situ	on	the	Martian	surface	
(i.e.	ISRU)

O2 Only:  Solid Oxide Carbon Dioxide [CO2] Electrolysis  (SOCE)
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• Depending	on	various	mission	profiles,	
different	power	sources	will	be	
desirable.	

• For	continuous	loads	of	multiple	
kilowatts	for	more	than	a	day,	fuel	cells	
trade	well,	particularly	with	batteries.	

• Fuel	cells	can	decrease	overall	system	
complexity	by	tying	into	ECLSS	and	
Active	Thermal	systems

• In	order	to	preserve	mission	flexibility,	
provide	multiple	kilowatts	of	power,	
and	be	sun‐independent,	fuel	cells	
should	be	considered	as	a	power	
source	for	manned‐spacecraft.	
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SOFCs at NASA JSC

• NUWC	has	shown	viability	of	air‐independent	
SOFCs	using	oxygen	and	a	methane‐rich	fuel	
source	via	PROX‐reforming,	which	uses	25%	
more	of	the	O2 required	for	power	production

• Testing	and	characterizing	a	steam	reformer	
output	flow	is	first	step	to	creating	a	more	O2
efficient	and	dead‐headed	SOFC	system
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SOFCs at NASA JSC

Gas concentrations (after water has been dropped out)
48% H2
27% CH4
22% CO
3% CO2
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Initial Results
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Initial Results

Initial	testing	shows	that:

• Catalyst	is	not	sufficiently	reduced

↔

• Need	to	increase	thermal	mass	to	heat	up	fluids	to	design	temperatures

• Need	to	minimize	hotspots	that	promote	carbon	deposition
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Switching Catalysts: Metal Foam

Heat Transfer Mass Transfer

Higher thermal conductivity minimizes
temperature gradients & hot spots

Porous structure provides more 
tortuous path for gas molecules

Helps favor the reactions we want and 
prevent those we don’t

Better dispersion of the active metals 
coated on the metal foam structure

CH4 conversion vs. temperature for different catalysts [5] Catalyst activity for SMR as a function of wt% active 
metal [1]

More	active	noble	metals	for	better	conversion	efficiency:

Ordered	Pd/Rh	coated	
SIC	metal	foam	catalyst,	
machined	to	SMR	
physical	dimensions	
with	through‐hole	for	
high	temp	temperature	
probe
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Future Work: SOFCs at NASA


