Microscopic and Spectroscopic Characterization of Gear Tooth Damage from a Loss-of-Lubrication Event

Dr. Stephen Berkebile, U.S. Army Research Laboratory
Dr. Robert F. Handschuh, NASA Glenn Research Center
MAJ Edwin A. Churchill II, U.S. Army Research Laboratory
20 May 2014
Acknowledgements

Funding and support:

- U.S. Army
 - Coordinated through Oak Ridge Associated Universities (ORAU)
 - Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-12-2-0019. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

- NASA Rotary Wing

Special thanks to …

- Space Power Branch (NASA Glenn)
- Dorothy Lukco, Sigurds Lauge, Roger Tuck (NASA Glenn)
- Swagelok Center for Surface Analysis of Materials (CWRU)
Oil starvation
- Can occur due to …
 - Loss of lubrication
 - Higher speeds and loads
- Results in …
 - Film breakdown / Contact
 - High friction
 - Heat generation
 - Wear
 - Failure

Autorotation to landing not always an option (location, seizure)

U.S. Army rotorcraft qualification requires operation for 30 minutes after loss of primary lubrication system (ADS-50-PRF)

Future challenge
- Move beyond auxiliary and emergency lube systems
- Develop materials and lubricants to meet and extend oil-starved lifetime
- Understand chemical and physical processes during oil starvation!!!
• NASA Spur Gear Test Rig

• Post-analysis of gear teeth
 - Geometry and Morphology (Optical microscope, Profilometry, SEM)
 - Chemical analysis (SEM/EDS, XPS, Raman)
 - Depth profiling (AES, FIB-SEM)

• Conclusions
NASA Glenn Contact Fatigue Test Facility

- Oswald, F., NASA/TM—2004-212722;

10,000 rpm

<table>
<thead>
<tr>
<th></th>
<th>28 tooth gear</th>
<th>42 tooth gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametral pitch (1/in.)</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Pressure angle (deg.)</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Pitch diameter (in.)</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Addendum (in.)</td>
<td>0.125</td>
<td>0.083</td>
</tr>
<tr>
<td>Whole depth (in.)</td>
<td>0.281</td>
<td>0.196</td>
</tr>
<tr>
<td>Chordal tooth thickness (in.)</td>
<td>0.191</td>
<td>0.128</td>
</tr>
<tr>
<td>Face width (in.)</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Handschnuh et al., NASA/TM—2011-217106
Typical run

- Break-in at lower load
- Run at full load to steady state (about two hours)
- Turn off oil supply
NASA Spur Gear Test Rig

Post-analysis of gear teeth
- Geometry and Morphology (Optical microscope, Profilometry, SEM)
- Chemical analysis (SEM/EDS, XPS, Raman)
- Depth profiling (AES, FIB-SEM)

Conclusions
Materials and Experiment

- **M50 steel gears** (typical bearing steel)
 - TEM micrograph of untreated M50 steel
 - Fe | C | Cr | Mo | V | Si
 - balance 0.8% 4% 4% 1% 0.2%

- **5 cSt turbine oil** (DOD-L-85734)
 - Typically polyol ester base
 - Chemical additives (amines, chloralkyl phosphonate, etc.)
 - Antiwear
 - Detergent
 - Corrosion inhibitors
 - Antifoaming
 - Extreme pressure

- **Stop experiment before destruction**
 - Typically will reach >550 °C
 - Stopped here at estimated 500 °C gear surface average temperature

Thermocouple temperatures
- Gear surfaces are higher
- Oil In
- Oil Out
- Left Gear
- Right Gear
- Out of Mesh

- **Stop - rotation**
- **lubrication off**
- **(runaway imminent)**

Thermocouple positions and rotation
Teeth for analysis

- Two teeth from different gear positions
 - Crowned
 - Representative of all teeth
- Loss of 5 – 10 µm along center line

Tooth from opposite gear facing #2 (not to proportion)

Handschoh et al., NASA/TM—2011-217106

Tooth #1

Profile - Center

Lead - Tip

Tooth #2

Profile - Center

Lead - Center

Approved for Public Release/Distribution Unlimited
Scanning Electron Microscopy

Tooth #1

1. Edge of scuff
2. End of scuff
3. Inside scuff
4. Outside scuff
What’s on the surface?

- **SEM with Energy Dispersive Spectroscopy**
 - Depth resolution/sensitivity ~3 µm

Tooth #1

Color density indicates concentration

steel components and oxidation

- Fe
- O
- Cr
- V
- Mo/S
- C

additive components

- P
- Na
- Ca

Approved for Public Release/Distribution Unlimited
What's on the surface?

- **SEM with Energy Dispersive Spectroscopy**
 - Depth resolution/sensitivity ~3 µm

- **Tooth #2**

![SEM images with elemental mapping](image)

- Fe
- O
- Mo
- C
Two areas, four general features

- Edge outside scuff
 - Additive-modified surface
 - Only on edges and fillet
- Inside scuff
 - Fresh steel
 - Elongated in direction of motion
 - Oxide scales
 - Especially at tip, but spread inwards
 - Carbon
 - Especially at pitch line, but also elsewhere
X-ray Photoemission Spectroscopy
- First few nm of material
- 0.1 at. % sensitivity, ~1 % accuracy

Tooth #2

<table>
<thead>
<tr>
<th>Atomic %</th>
<th>Oxide scale (1)</th>
<th>Fresh steel (2)</th>
<th>Carbon (3)</th>
<th>Edge outside scuff (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>38.4</td>
<td>35.4</td>
<td>6.7</td>
<td>2.1</td>
</tr>
<tr>
<td>O</td>
<td>59.2</td>
<td>56.8</td>
<td>11.5</td>
<td>43.0</td>
</tr>
<tr>
<td>C</td>
<td>2.4</td>
<td>7.2</td>
<td>80.3</td>
<td>29.8</td>
</tr>
<tr>
<td>Mo</td>
<td>0.3</td>
<td>0.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>0.2</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Zn, Mg, Cd</td>
<td></td>
<td></td>
<td><1.0</td>
<td></td>
</tr>
</tbody>
</table>
X-ray Photoemission Spectroscopy

Tooth #2
- No carbide

What is really on the surface? (a closer look)

- Oxide scale
- Steel
- Carbon

Intensity (arb. un.)

Binding Energy (eV)

C1s

Intensity (arb. un.)

Binding Energy (eV)

O1s

Intensity (arb. un.)

Binding Energy (eV)

Fe2p

Intensity (arb. un.)

Binding Energy (eV)

Approved for Public Release/Distribution Unlimited
What is really on the surface? (a closer look)

- X-ray Photoemission Spectroscopy
- Tooth #2
 - No carbide

Raman spectroscopy of Carbon Area 3:
- Not oil, but graphitic

Intensity (arb. un.)

Binding Energy (eV)

Normalized intensity, arb. un.

Raman shift, cm⁻¹

Carbon, λ=532 nm
Ref. oil, λ=532 nm
Carbon, λ=780 nm
Ref. oil, λ=780 nm

D & G bands

C-H

Approved for Public Release/Distribution Unlimited
How deep does it go?

Scanning Auger Electron Spectroscopy Depth Profiling

- Edge outside of scuff

![Graph showing depth profiling](image1)

![Graph showing depth profiling](image2)

Tooth #1

Tooth #2
Scanning Auger Electron Spectroscopy Depth Profiling

- Central scuff

Graphs showing atomic concentration vs. depth for different elements in Tooth #1 and Tooth #2.

Tooth #1

Tooth #2

O Fe C

O1 Fe3 C1 Ca1

S1 Na1 P1 Mo1

V1 Si1

Depth (nm)

Depth (nm)
Focused Ion Beam sectioning with SEM

Tooth #2

Oxide scale in scuff

Top view (optical microscope)

Cross-section

How much deeper?
Focused Ion Beam sectioning with SEM

Tooth #1

Near edge

Center of scuff

additive species + oxide (3-5 µm thick)
steel

steel and oxide mixing
NASA Spur Gear Test Rig

Post-analysis of gear teeth
- Geometry and Morphology (Optical microscope, Profilometry, SEM)
- Chemical analysis (SEM/EDS, XPS, Raman)
- Depth profiling (AES, FIB-SEM)

Conclusions
What have we learned?

- **At this point during gear failure ...**
 - Additive species diffuse into unscuffed surface
 - Not much Fe at surface
 - No oil left
 - Ca, (O, C), P, S, Na, up to 0.5 µm
 - Something in additives slows oxidation at elevated temperatures
 - Removed by scuffing
 - Oxide scales form within scuff
 - About 1 – 5 µm thick
 - Preferentially under high sliding
 - Some spall off
 - Some mix with the steel (plastic displacement)
 - Abrasion?

- **Oxidation and additive chemistry are actively affecting surface of steel during run away stage of gear failure**
Where do we go from here?

- More points along the temperature/failure curve
 - Fuller understanding of failure mechanisms
 - Identify first failure modes
 - Identify continuing failure modes

- Start considering solutions
 - Oxidation inhibitors
 - Additives
 - As main component in emergency systems
 - Subsurface reservoirs
 - What else?

- Feed information into controlled tribological simulations
Support Material
Exploration of gas evolution

Quadrupole Mass Spectrometer sampling gear box air
- Possibly interesting action is happening

- Needs better equipment
 - Speed
 - Synchronization
 - Sensitivity

- Issues with affecting tests

- Potential uses
 - Detect looming failure
 - Insight into chemistry occurring