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This paper presents a model-based architecture for performance trend monitoring and 

gas path fault diagnostics designed for analyzing streaming transient aircraft engine 

measurement data. The technique analyzes residuals between sensed engine outputs and 

model predicted outputs for fault detection and isolation purposes. Diagnostic results from 

the application of the approach to test data acquired from an aircraft turbofan engine are 

presented. The approach is found to avoid false alarms when presented nominal fault-free 

data. Additionally, the approach is found to successfully detect and isolate gas path seeded-

faults under steady-state operating scenarios although some fault misclassifications are 

noted during engine transients. Recommendations for follow-on maturation and evaluation 

of the technique are also presented.        

Nomenclature 

C-MAPSS40k  =  commercial modular aero-propulsion system simulation 40k lbf thrust 

H   = fault influence matrix 

HPC   = high pressure compressor 

HPT   = high pressure turbine 

LPC   = low pressure compressor 

LPT   = low pressure turbine 

 m   = fault magnitude 

m̂    = estimated fault magnitude 

PBM   = performance baseline model 

RTSTM   = real time self-tuning model 

R   = sensor measurement covariance matrix 

u   = command vector 

VIPR   = vehicle integrated propulsion research 

WSSEE   = weighted sum of squared estimation errors 

WSSR   = weighted sum of squared residuals 

 y   = sensor vector 

y~   = sensor residual vector 

ŷ    = estimated sensor vector 

ŷ~    = estimated sensor residual vector 

I. Introduction 

ONVENTIONAL aircraft engine gas path diagnostic approaches are designed for ground-based post-flight 

processing of “snapshot” measurement data collected at a limited quantity of operating points each flight.
1,2,3

 

However, advances in onboard processing and flight data acquisition capabilities are providing access to increased 

quantities of flight data and enabling new diagnostic approaches. Analyzing full-flight streaming measurement data, 
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either onboard in real-time or post-flight, can help reduce diagnostic latency and improve overall engine safety and 

reliability. In response to this, several research efforts conducted within the aviation community focused on the 

analysis of streaming engine measurement data. Merrington et al applied analytical redundancy methods to process 

aircraft gas turbine engine transient measurement data
4
, and Kerr et al

5
, Dewallef et al

6
, and Borguet et al

7
  have 

each proposed Kalman filter-based approaches for the on-line processing of aircraft engine measurement data for 

diagnostic purposes. However, these approaches have primarily focused on either performance estimation or fault 

diagnostics as opposed to performing both tasks concurrently. Additionally, the approaches that have focused on 

joint performance estimation and fault diagnostics have only considered turbo machinery faults, not actuator or 

sensor faults. Recently, NASA has developed a model-based performance trend monitoring and gas path diagnostic 

architecture designed to process streaming full-flight aircraft engine measurement data.
8,9,10

 This architecture 

provides the dual functionality of estimating and trending engine performance parameters and diagnosing the 

occurrence of gas path system faults and isolating the faults including turbo machinery, actuator or sensor faults. 

The fault isolation is completed under the assumption that only one gas path system fault will be present at a given 

time. Simulation studies have shown that this architecture holds promise for analyzing full-flight engine data.
9
 This 

paper will present results from the application of this architecture on engine test data, including both nominal and 

faulty engine operating scenarios. The remainder of this paper proceeds as follows. First, the introduction of the 

architecture and the various components comprising it are explained. Next, the application of the architecture for 

processing engine test data is discussed and the associated results are presented. This is followed by a discussion of 

the results, planned future work, and conclusions. 

II. Architecture Description 

A block diagram schematic of the NASA-developed model-based performance trend monitoring and gas path 

fault diagnostic architecture is shown in Figure 1.
10

 It contains three main components. These include: 1) a Real-

Time Self Tuning Model (RTSTM); 2) a Performance Baseline Model (PBM); and 3) a Fault Diagnostics module. 

Each component is further discussed in the subsections below.  

A. Real-Time Self Tuning Model 

The RTSTM is a piecewise linear model that is self-tuned by a Kalman tracking-filter. The Kalman filter 

estimates model state variables and a set of model tuning parameters reflecting performance deterioration within the 

engine. Through these Kalman filter estimates, the RTSTM accounts for changes in engine dynamics and changes 

from the gradual performance deterioration that aircraft gas turbine engines naturally experience as they wear over 

time from standard use. The RTSTM was designed to provide accurate continuous real-time estimates of engine 

performance parameters over the lifetime of the engine.  

 

 

Figure 1. Performance Trend Monitoring and Gas Path Fault Diagnostic Architecture  
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B. Performance Baseline Model 

The PBM is built from the same piecewise linear model as used in construction of the RTSTM. However, in the 

case of the PBM, no Kalman filter tracking input is applied. The PBM continuously receives actuator commands and 

sensed fan speed measurements as inputs. The PBM also receives tuning parameter updates periodically from the 

RTSTM. These periodic tuner updates enable the PBM to adapt to gradual long-term engine performance 

deterioration. However, unlike the RTSTM, which continuously receives updates via a Kalman filter, the periodic 

tuner updates provided to the PBM prevents engine performance changes, potentially due to a fault, from being 

instantaneously absorbed into the model. In this form, the PBM serves as a baseline for describing recent engine 

performance because it is updated at a slower rate than the RTSTM. By comparing sensed engine outputs to PBM 

estimated outputs, an abrupt performance change, which may be indicative of a fault, can be detected. 

C. Fault Diagnostics 

The overall fault diagnostics logic is a two-step process consisting of fault detection and then fault isolation. 

Fault detection is performed by monitoring a vector of measurement residuals, y~, between sensed engine outputs, y, 

and the PBM estimated outputs, ŷ , defined by Eq. (1).  

 

yyy ˆ~ −=                (1) 

 

If a gas path fault impacting engine performance occurs, the sensed engine and PBM outputs are expected to 

diverge resulting in an increase in the residuals. Fault detection is accomplished by calculating a weighted sum of 

squared residuals (WSSR) value based on the measurement residual vector and comparing this calculated value 

against a threshold value. The WSSR is calculated as 

 

yRyWSSR
T ~~ 1−=              (2) 

 

where R is the sensor measurement covariance matrix. Each time step, a new WSSR value is calculated based on the 

most recent sample of measurement data. Then the WSSR value is compared against a defined anomaly detection 

threshold. Logic for recognizing a fault initiates when the WSSR value exceeds the threshold. The fault recognition 

logic requires the high WSSR value to persist for a period to filter out anomalous spikes. After this persistence metric 

is met, then fault isolation logic is engaged to identify the root cause for the fault. For the first portion of a test, the 

WSSR calculation is not compared against the threshold. This is a WSSR blackout period to prevent engine start up 

dynamics from triggering a false alarm. The length of the engine start up dynamics defines the duration of the WSSR 

blackout period. 

Fault isolation is accomplished through a linear least-squares estimation approach implemented with the 

assumption that at a given time only one fault may be present. This assumption is reasonable based on the high 

reliability of gas turbine engines and the low probability that any fault will be present. The isolation process 

compares the residual vector against a matrix of coefficients that were pre-calculated at different points throughout 

the engine operating envelope. This pre-calculated matrix is referred to as the Fault Influence Matrix, H, and it is a 

collection of single matrices assembled to allow interpolation calculations. The Fault Influence Matrix is populated 

with data collected while running the PBM under nominal and faulty operating scenarios. The resulting residuals 

between the nominal and the faulty PBM outputs, normalized by the magnitude of the fault, m, form a column of the 

H matrix. Each of the H matrix columns pertains to a specific fault at a particular operating condition. Equation (3) 

defines the calculation of a single element of the fault influence matrix, Hi,j, where i is the index of engine sensor in 

the residual vector and j is the index of fault type. 
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Upon fault detection, the observed measurement residual vector, y~, is further processed to isolate the most likely 

root cause for the fault based on the type of faults contained in the H matrix. To do so an estimated magnitude for 

each possible fault is first calculated as follows     
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Table 1. Gas Path Sensor Measurements  

Symbol Description 

N1 Fan speed 

N2 Core speed 

T25* Low pressure compressor exit temperature 

T35 High pressure compressor exit temperature  

T5  Low pressure turbine exit temperature  

P25* Low pressure compressor exit pressure 

Ps3 High pressure compressor exit pressure 

P5 Low pressure turbine exit pressure  

*- Research sensors unique to VIPR II engine data 

These estimated fault magnitudes are used to produce an estimated vector of sensor residuals for each fault type 

as shown in Eq. (5) 

 

jjj
mHy ˆ~̂ =                (5) 

 

Finally, fault isolation is performed by identifying the fault type that produces the estimated sensor residual 

vector that most closely approximates the observed measurement residual vector in a weighted least squares sense. 

A vector of values pertaining to the weighted sum of squared estimation errors (WSSEE) is calculated using Eq. (6) 

for each potential fault type. The fault type yielding the smallest WSSEE, indicating the closest match to the 

provided fault types contained in H, is classified as the fault.  

 

( ) ( )j

T

jj yyRyyWSSEE ~̂~~̂~ −−= −1
             (6) 

III. Application 

This section will cover the application of this performance trend monitoring and gas path fault diagnostic 

architecture using data obtained from the NASA Vehicle Integrated Propulsion Research (VIPR) engine tests.
12

 The 

VIPR program is a series of ground-based engine tests conducted to mature aircraft engine health management 

technologies. To date, two VIPR tests (denoted as VIPR I and VIPR II) have been conducted, with a third test, VIPR 

III, scheduled to occur in 2015. These tests are ongoing at the NASA Armstrong Flight Research Center, formerly 

the Dryden Flight Research Center/Edwards Air Force Base, on a C-17 aircraft equipped with Pratt & Whitney F117 

turbofan engines. The VIPR tests include baseline runs where the test engine is operating normally without faults as 

well as runs with faults applied that are non-damaging to the engines. These fault cases are created by operating the 

engine with mis-scheduled 14
th

 stage bleed valve and station 2.5 bleed valve actuators. These faults provide a good 

test case because operating the actuators differently than their normal scheduled operation will result in observable 

gas path variations. 

The diagnostic architecture applied for analyzing the available VIPR data was implemented using a NASA-

developed 40,000 lbf thrust class engine simulation called Commercial Modular Aero-Propulsion System 

Simulation 40k (C-MAPSS40k).
11

 Exercising the C-MAPSS40k simulation produced a data set that was reduced to 

the piecewise linear model used to construct the RTSTM and the PBM shown in Fig. 1. The models generated from 

C-MAPSS40k displayed notable differences in 

performance compared to the nominal steady-state 

performance data recorded from the normal operation 

of the F117 turbofan engines used in the VIPR tests. 

To account for these model to engine differences a 

method was developed and applied to modify, or re-

trim, the piecewise linear models based on nominal 

steady-state performance data obtained in the VIPR 

tests.
10

 This enabled better model to engine 

performance agreement and helped to improve overall 

diagnostic results. Table 1 contains the vector of eight 

gas path sensor measurements and Table 2 contains the 

four actuator commands. The two sensors in Table 1 

denoted by an asterisk, T25 and P25, were only 

included during VIPR II testing.  

The asterisk next to the BLD14 symbol in Table 2 

indicates the 14
th

 stage bleed valve was not one of the 

actuator commands included in the C-MAPSS40k 

model used to generate the piecewise linear models. 

As a result, the standard model-based method for 

calculating the column of the Fault Influence Matrix 

corresponding to the 14
th

 stage bleed valve fault is not 

possible. Instead, 14
th

 stage bleed valve measurement 

residual vectors were calculated based on actual VIPR 

data collected during the 14
th

 stage bleed valve fault 

Table 2. Actuator Commands 

Symbol  Description 

Wf Fuel flow  

VSV Variable stator vane 

BLD25 Station 2.5 bleed valve 

BLD14* 14
th

 stage bleed valve 

*- Valve not modeled in C-MAPSS40k 
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Table 3. Fault Influence Matrix Fault Types 

Fault Index Fault Types 

1 Fan  

2 Low Pressure Compressor 

3 High Pressure Compressor  

4 High Pressure Turbine 

5 Low Pressure Turbine 

6 Station 2.5 Bleed Valve 

7 Variable Stator Vane 

8 14
th

 Stage Bleed Valve 

testing. Data collected at given steady-state power setting conditions were averaged and referenced against PBM 

estimated outputs to provide residuals analogous to those simulated for other fault types. This method allowed 

creation of Fault Influence Matrices that included the 14
th

 stage bleed valve fault.  

Prior to analyzing VIPR data with the performance trend monitoring and fault diagnostic architecture, Eq. (4) 

was used to construct a Fault Influence Matrices, and the WSSR anomaly detection thresholds were defined. The 

Fault Influence Matrices were constructed assuming eight possible single fault types, as identified in Table 3. While 

the only faults evaluated during the VIPR testing were a station 2.5 bleed fault and a 14
th

 stage bleed valve fault, the 

six additional fault types were included as possible fault scenarios to provide a more representative and challenging 

fault isolation problem. The anomaly detection threshold and persistency values were established through a manual 

process of running non-faulted VIPR data through the architecture and selecting threshold and persistency values 

that did not produce false alarms. In conducting this 

process, the WSSR signal and the measurement residual 

vector, y~, were filtered using a median filter to help 

reduce signal noise, and removed outliers in an effort to 

improve overall diagnostic results. The WSSR anomaly 

detection threshold and persistency values applied for 

analyzing the VIPR I and VIPR II data are not identical. 

This variation is because the test engine used in the VIPR 

II test contained two additional sensors, P25 and T25, 

that the VIPR I test engine did not. The increase in the 

number of sensors produced a larger WSSR while no fault 

was present. This required a slight increase in the 

anomaly detection threshold for VIPR II tests.  

IV. Results 

The following is a sample of the results obtained from processing VIPR I and VIPR II data through the 

performance trend monitoring and fault diagnostic architecture. The illustration in Fig. 2 describes a typical engine 

test. As illustrated in Fig. 2, the tests were segmented into two parts, a steady-state portion followed by a transient 

power sweep portion. The steady-state portion involved stepping up and stepping down the engine fan speed. The 

steady-state testing held the engine fan speed at a constant value for a short period, and then the fan speed was 

changed to a new level. The transient portion included two transient operations. The first transient slowly ramped 

the fan speed up and down; whereas, the second transient was faster. All of the test cases presented below, except 

for the VIPR II baseline test, which did not include the transient power sweeps, followed the test format as depicted 

in Fig. 2. The test cases containing faults have the fault inserted for the entire test unless otherwise noted. 

 

 

 

 

 
 

Figure 2. Representative VIPR Event Test Sequence 
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Results from the VIPR I and VIPR II baseline runs where the engine was operating nominally without any faults 

are shown in Figs. 3 and 4 respectively. In these figures, and all remaining figures of the document, parameter 

names and engineering units have been omitted due to the proprietary nature of the data. The top subplots of each 

figure show an unspecified gas path parameter plotted against time. For these subplots, the blue line represents the 

sensed engine measurement, the red line represents the PBM produced estimate, and the green line represents the 

RTSTM estimate. For both Figs. 3 and 4 the green line is not visible due to the close agreement between the 

RTSTM estimate and the sensed engine measurement. The sensed and PBM estimated values also match very well. 

No faults were present during the tests conducted to acquire the data displayed in Figs. 3 and 4, so the close 

agreement in the sensed and PBM estimated values was expected and desired. The middle subplots displays the 

WSSR values plotted against time in blue and the selected anomaly detection threshold are represented with a dash-

red trace. For these two cases, the WSSR signal remained below the established anomaly detection threshold 

throughout the entire run. Since the WSSR signal never exceeded the threshold, the fault isolation logic never 

engaged and “No Fault” is reported over the duration of these test cases. The bottom subplots of Figs. 3 and 4 show 

the fault classification plotted against time, which in the baseline cases was “No Fault”. 

 

 

 

 
Figure 3. Baseline VIPR I Results 
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Figures 5 and 6 contain results from VIPR I and VIPR II test cases when the station 2.5 bleed valve was 

intentionally failed open for the entire test case. The gas path parameter depicted in the top subplots of Figs. 5 and 6 

show very close agreement between the sensed measurement and the PBM estimate for the majority of this test. This 

is expected as the station 2.5 bleed valve is normally scheduled open during lower power settings and modulates 

closed as the engine increases in power setting. During lower power settings, the sensed engine parameter 

measurements and PBM produced estimates show close agreement, because the failed open valve position is the 

same as the normally scheduled position. Once the engine is operating at higher power settings, sensed engine 

measurements and PBM estimates begin to diverge and the presence of the fault becomes apparent. This is evident 

in the WSSR signal shown in the middle subplots of Figs. 5 and 6. In the middle subplots, the WSSR signal can be 

seen to increase as the engine increases to higher power settings and eventually surpassing the anomaly detection 

threshold. The fault isolation logic engages after the WSSR has exceeded the anomaly detection threshold and it 

remains above the threshold for a period that satisfies the persistency requirement. Comparing the middle subplots 

of Figs. 5 and 6, there is a noticeable difference in the duration that the WSSR signal exceeds the threshold. The 

VIPR II test in Fig. 6 shows a wider range of power settings in which an anomaly was detected compared against the 

VIPR I test in Fig. 5. In addition, the bottom subplot of Fig. 6 shows that faults are detected for both transients near 

the end of the test while in Fig. 5 a fault is only briefly detected during the second transient. The improved fault 

detection displayed in VIPR II data can be attributed to the additional P25 and T25 sensors added for this test. The 

faults that were misclassified can be attributed to dynamic modeling inaccuracies contained in the PBM. The 

misclassifications in Fig. 5 occurred during the second transient sweep. For the results illustrated in Fig. 6, 

misclassifications occurred in both the steady-state and transient portions of the test. The misclassification during 

the steady-state portion occurred while the engine speed was transitioning to a new power setting.  Therefore, this 

error was not a steady-state operation misclassification. The other misclassifications in Fig. 6 were during the 

transient sweep portions of the test. However, both test results illustrated in Figs. 5 and 6 correctly classify the fault 

as a station 2.5 bleed valve fault during steady-state operation. As evident in the data from these experiments, 

accurate diagnostics during large rapid transient engine operation proved to be challenging for both VIPR I and 

VIPR II tests. The analysis shows faults were occasionally incorrectly classified during these tests; however, they 

were both correct while analyzing the steady-state data.  

 
Figure 4. Baseline VIPR II Results 
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Figure 6. Station 2.5 Bleed Valve Fault VIPR II Results 
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Figure 5. Station 2.5 Bleed Valve Fault VIPR I Results  
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Figures 7 and 8 contain VIPR I and VIPR II results for a 14
th

 stage bleed valve fault case. The top subplots in 

Figs. 7 and 8 show divergence between the sensed measurement and the PBM estimate for most of the test case. In 

Fig. 7 the divergence is present from the beginning of the test until 2600 seconds when the fault is removed. The top 

subplot of Fig. 8 begins with the sensed measurement and PBM estimate in relative agreement for the first 300 

seconds, then the fault was inserted. After fault insertion, the PBM estimate diverges from the sensed measurement. 

The middle subplots in Figs. 7 and 8 show that the calculated WSSR value has exceeded the anomaly threshold, 

which indicates a fault. Figure 7 shows the WSSR signal surpassing the threshold for the entire test until the fault is 

removed. Figure 8 illustrates that the WSSR signal was above the threshold once the fault was inserted around 300 

seconds; however, the WSSR signal did drop below the threshold at 2150 seconds and at 2600 seconds. These drops 

in WSSR signal below the threshold occurred at low power settings. This point indicates that the sensed 

measurements and the PBM estimates show relatively close agreement, even though the fault is still present during 

this time. The bottom subplots of both VIPR I and II tests show accurate fault classification during most of the 

steady-state portions of the test. At the very beginning of the VIPR I test, “No Fault” is reported even though the 

middle subplot of Fig. 7 indicated an anomaly is present. This is due to the detection logic suppressing any faults for 

the first 40 seconds of data to insure engine start up dynamics do not trigger a false alarm. The bottom subplot of 

Fig. 7 shows a few instances where the fault is identified as something other than the 14
th

 stage bleed valve fault. 

These are very brief instances, and they occurred while the engine was transitioning between power settings. The 

bottom subplot of Fig. 8 displays a few incorrect fault classifications when the WSSR signal dropped below the 

threshold and reported there was “No Fault” detected. In addition, this subplot illustrates a brief misclassification 

when reporting a LPC fault during an engine transient. The incorrect classifications show that there are areas for 

improvement with the method. However, despite these inaccuracies the method proves to be very accurate for 

steady-state engine operation.  

  

  

 
Figure 7. 14
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V. Discussion 

Analysis of the VIPR engine test data marks the first time the model-based performance trend monitoring and 

gas path fault diagnostic architecture was applied for processing real engine data. Overall, the results are 

encouraging. The first step of fault diagnostics, fault detection, was shown to avoid false alarms when presented 

nominal data and to correctly detect anomalies when presented faulty data. Furthermore, the second step of the fault 

diagnostics, fault isolation, was found to correctly identify the fault type during steady-state engine operating 

conditions. However, this process did experience fault misclassifications during engine transients. This suggests that 

the PBM provides good steady-state agreement with the engine, but it exhibits some issues when working with 

dynamic transient behavior. More work is needed to investigate potential enhancements to help improve the PBM 

transient accuracy and the architecture diagnostic during transient performance. The ultimate goal would be to 

improve the architecture and model to a point where real-time processing of engine data could occur with 

confidence in the fault detection and isolation capabilities during transients. However, the first step is to implement 

this method as a ground based post-processing tool. In this scenario, the architecture could be easily modified to 

disengage during transients and only convey the fault most frequently diagnosed throughout the entire flight. The 

results shown above suggest that the architecture could successfully provide that type of analysis.  

While the architecture is capable of combined performance trend monitoring and gas path fault diagnostics, this 

paper only reports on an assessment of the fault diagnostic results. The performance trend monitoring aspect of the 

architecture, provided by the RTSTM Kalman filter, was not able to be fully evaluated based on the available VIPR 

I and VIPR II data because the engines underwent little to no performance variations during these tests. However, 

the VIPR III test to be conducted in 2015 will intentionally degrade the engine through volcanic ash ingestion 

testing. As such, the VIPR III test data is expected to provide the opportunity to assess the performance deterioration 

trend monitoring functionality of the architecture.  

  
Figure 8. 14
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VI. Conclusion 

The model-based approach to gas path fault detection and isolation presented in this paper is a promising 

architecture for the processing of streaming engine sensor data. During steady-state operating periods, the 

architecture was able to avoid false alarms and was consistently able to correctly identify and classify the two bleed 

valve faults introduced in the VIPR test cases presented in this paper. The approach did experience fault 

misclassifications during engine transients. Inaccuracies between the model dynamics and the engine dynamics are 

believed to be the cause of these misclassifications, and further work is needed to focus on improving the model 

dynamic accuracy. The continuation of the VIPR test series includes an upcoming third test where engine 

performance will be degraded via volcanic ash ingestion testing. This test will provide data for evaluating the 

effectiveness of the performance trend monitoring estimation capability of the architecture.  

Acknowledgments 

This work was conducted under the NASA Aviation Safety Program, Vehicle Systems Safety Technologies Project. 

References 

 
1E-32 Aerospace Propulsion System Health Management, “A Guide to the Development of a Ground Station for Engine 

Condition Monitoring,” SAE Standard AIR4175 Revision A, February 2005. 
2Volponi, A., and Wood, B., “Engine Health Management for Aircraft Propulsion Systems,” First International Forum on 

Integrated System Health Engineering and Management (ISHEM) in Aerospace, Napa CA, November 7-10, 2005. 
3Doel, D. L., “TEMPER – A Gas Path Analysis Tool for Commercial Jet Engines,” Journal of Engineering for Gas Turbines 

and Power, Vol. 116, No. 1, January 1994., pp. 82-89 
4Merrington, G., Kwon, O. K., , Goodwin, G., and Carlsson, B., “Fault Detection and Diagnosis in Gas Turbines,” ASME 

Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 2, April 1991, pp. 276-282. 
5Kerr, L. J., Nemec, T. S., and Gallops, G. W., “Real-Time Estimation of Gas Turbine Engine Damage Using a Control-

Based Kalman Filter Algorithm,” 91-GT-216, International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, 

June 3-6, 1991. 
6Dewallef, P., Léonard, O., and Mathioudakis, K., “On-Line Aircraft Engine Diagnostic Using a Soft Constrained Kalman 

Filter,” Proceedings of the ASME Turbo Expo 2004, GT2004-53539, Vienna, Austria, June 14-17, 2004, pp. 585-594. 
7Borguet, S., Dewallef, P., and Léonard, O., “On-Line Transient Engine Diagnostics in a Kalman Filtering Framework,” 

Proceedings of the ASME Turbo Expo 2005, GT2005-68013, Reno NV, June 6-9, 2005, pp. 473-481. 
8Simon, D. L., “An Integrated Architecture for Onboard Aircraft Engine Performance Trend Monitoring and Gas Path Fault 

Diagnostics,” NASA TM-2010-216358, May 2010. 
9Armstrong, J. B., and Simon, D. L., “Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture,” 

47th AIAA Joint Propulsion Conference & Exhibit, AIAA-2011-5859, San Diego CA, August 2011.  
10Simon, D. L., Rinehart, A. W. “A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine 

Measurement Data,” Proceedings of the ASME Turbo Expo 2014, ASME-GT2014-27172, Düsseldorf, Germany, June 16-19, 

2014.  
11May, R. D., Csank, J., Lavelle, T. M., Litt, J. S., and Guo, T. H., “A High-Fidelity Simulation of a Generic Commercial 

Aircraft Engine and Controller,” 46th AIAA Joint Propulsion Conference and Exhibit, AIAA-2010-6630, Nashville, TN, July 25-

28, 2010. 
12Hunter, G. W., Lekki, J. D., Simon, D. L., “Development and Testing of Propulsion Health Management,” Workshop on 

Integrated Vehicle Health Management and Aviation Safety, Bangalore India, Jan. 9-12, 2012. 

 


