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Section 1 
Introduction to registration, integration 

and fusion of remotely sensed data 



Section 1a 
Overview of issues and challenges 



Image Registration  
          in the Context of Space Missions 



Image Registration  
          in the Context of Space Missions 

Global and repetitive 
measurements from a wide 
variety of satellite remote 

sensing systems 



Example of Various Spatial and Spectral Characteristics 

Image Registration  
         in the Context of Earth Remote Sensing 



•  Definition 
“Exact pixel-to-pixel matching of two different 

images or matching of one image to a map” 
•  Navigation or Model-Based Systematic Correction 

–  Orbital, Attitude, Platform/Sensor Geometric Relationship, Sensor 
Characteristics, Earth Model, etc. 

•  Image Registration/Feature-Based Precision 
Correction  
–  Navigation within a Few Pixels Accuracy 
–  Image Registration Using Selected Features (or Control Points) to 

Refine Geo-Location Accuracy 

•  Image Registration as a Post-Processing or as a 
Feedback to Navigation Model 

What is Image Registration … 



•  Definition “Data Integration” 
“Data integration means combining data coming from 

different sources and providing users with a unified view of 
these data” 
–  It usually does not refer to the extraction of relevant information, 

but rather to combination and/or concatenation of data (e.g. for a 
GIS or data assimilation or within a model) 

•  Definition “Data Fusion” 
“Data fusion is a formal framework in which are expressed 

the means and tools for the alliance of data originating 
from different sources. Data fusion aims at obtaining 
information of greater quality; the exact definition of 
'greater quality' will depend upon the application.” (Wald, 
1999) 

What is Data Integration and Fusion … 



The Role of Image Registration and Fusion 
    in the Processing of Remotely Sensed Data 

•  Essential for spatial and radiometric calibration of 
multitemporal measurements for creating long-term 
phenomenon tracking data 

•  Used for accurate change detection and land cover/ 
land use assessment 

•  Basis for extrapolating data throughout several scales 
for multi-scale phenomena (distinguish between 
natural and human-induced) 

 



Impact of Misregistration 

•  (Towsnhend et al, 1992) and (Dai & Khorram, 1998): small error in registration 
may have a large impact on global change measurements accuracy 

•  e.g., 1 pixel misregistration error => 50% error in Vegetation Index (NDVI) 
computation (using 250m MODIS data) 

•  Influence of image registration on products validation 
•  Impact of misregistration on legal, economic and sociopolitical (e.g., resource 

management), etc.  

Human-induced land cover changes observed by Landsat-5 in Bolivia in 1984 and 1998  
(Courtesy: Compton J. Tucker and the Landsat Project, NASA Goddard Space Flight Center) 



Image Registration and Fusion Applications 

•  Multimodal registration and fusion, for integrating 
complementary information from multiple sensors 
•  Example: LIDAR and optical data for precision landing 

•  Multitemporal registration and integration, for change 
detection and Earth resource surveying 
•  Example: Landsat Program, Landsat-4/5, Landsat-7 and Landsat-8 

•  Viewpoint registration and fusion, for landmark navigation, 
formation flying (sensor web) and planet exploration 
•  Example: Landsat-7, EO-1 and MODIS for disaster management 

•  Template registration and integration, for content-based 
searching or map updating 
•  Example: Finding flux towers in MODIS or EO-1 data 



•  Remote Sensing vs. Medical or Other Imagery (“Big Data”) 
–  Variety in the types of sensor data and the conditions of data acquisition 
–  Size of the data 
–  Lack of a known image model 
–  Lack of well-distributed “fiducial points” 

•  Navigation Error (or varying “Initial Conditions”) 
–  Historical satellites (e.g., Landsat-5 compared to Landsat-7) 
–  Following a maneuver (e.g., star tracking) 

•  Needs:  
–  Sub-pixel accuracy 
–  Robustness to recurring use 
–  Speed and High-Level of Autonomy (Near- or Near-real time applications, 

e.g., disaster management) 
–  On-the-ground or On-Board Processing 

Challenges in Image Registration  
                 for Remote Sensing 



•  Same challenges than registration: 
–  Various spectral and spatial resolutions 
–  Acquired at different times, under different conditions 
–  For example: Time series over a large number of years involving multiple 

programs and/or instruments  

•  Misregistration error 

•  Difficulty in quality assessment because of the lack of reference 
against which one may compare properties of the fused image; 
validation often done by the end-application not at the time of the 
fusion 
–  Objective function often missing 
–  Measures such as correlation, entropy, etc. 

Challenges in Image Integration and Fusion  
   for Remote Sensing 



Challenges with 
   Atmospheric and Cloud Interactions 

Baja Peninsula, California; 4 different times of the day (GOES-8) 



Challenges with 
   Multitemporal Effects 
Mississippi and Ohio Rivers before & after Flood of Spring 2002 (Terra/MODIS) 



Challenges with 
   Relief Effect 

SAR and Landsat-TM Data of Lopé Area, Gabon, Africa 



Use Digital Terrain Models (DEMs) => Taking terrain 
into account in matching 
 

Challenges with 
   Relief Effect (2) 



Theoretical vs. Operational Approaches  
 for Image Registration 

•  Many promising theoretical approaches with good results on 
specific datasets, but no gold standard algorithm for 
operational use 

•  Every instrument has a working operational approach, often 
solved the same way (e.g., with Normalized Cross Correlation) 

•  Operational Team Requirements: 
–  Know models of sensor/platform/etc. 
–  Have access to complete data set 
–  Have continuing demands/responsibility 
–  Are registering same plots of land again and again – can invest effort in 

data preparation 
–  Can’t take big risks on not fully proven methods 

•  Do not need one magic method – need toolbox of many 
approaches 



•  Different communities/literature/requirements 
–  Photogrammetry 
–  Computer vision/image processing 
–  Operational teams 
–  Remote sensing/Earth scientists/end users 

•  Demanding/varying mission requirements 
–  Caution in system design, new methods 

•  Difficulty to share data or models between instruments 
•  Understanding the requirements 

–  Know what data is used for 
–  Have to fuse many data sets 
–  Have access to ancillary data 
–  Know cultural and historical data 

Challenges with 
   Institutional Challenges 



Precision Correction in Operational Systems 
Some Examples - Highlights 

 
•  AVHRR: AUTONAV algorithm computes attitude corrections using Maximum Cross-

Correlation (MCC) method between sequential images 

•  GOES/METEOSAT: CPs and NOAA Shoreline database (GSHHS) used to match edges 
extracted from meteorological images 

•  LANDSAT: CP image chips (1m orthorectified) using Gaussian pyramid, automatic Moravec 
window extraction and NCC or Mutual Information 

•  MISR: Database of 120 GCPs (each a collection of nine geolocated image patches of a well-
defined and easily identifiable ground features, from Landsat, terrain-corrected, data) &ray 
casting simulation software

•  MODIS: Biases and trends in the sensor orientation determined from automated control point 
(CP) matching and removed by updating models of the spacecraft and instrument orientation; 
finer CGPs from Landsat TM and ETM aggregated using PSFs and correlated with NCC  

•  SEAWIFS: Reference catalog of islands GCPs and matching using spectral classification and 
clustering of data, “nearest neighbor” and pattern matching techniques  

•  SPOT:  Reference3DTM using DEM ortho-rectified simulated reference image in focal plane 
geometry, matching of input image to simulated using NCC and resampling into a cartographic 
reference frame 

•  VEGETATION: Database of CPs from SPOT for VEGETATION1 and VEGETATION1 for 
VEGETATION2; Matching by NCC 



Precision Correction in Operational Systems (2) 

•  Operational Environment 
-  Platform/sensor models integrated 
-  Historical data available for statistics/modeling 
-  Robustness and consistency over time is a requirement 

 

•  General Characteristics 
-  Use database of Ground Control Points (GCP) or Chips 
-  Normalized Cross-Correlation (NCC) is the most common similarity measure 
-  Digital Elevation Model (DEM) is rarely integrated in the registration process 
-  Cloud masking usually integrated 
-  Errors in the [0.15-0.5] range 

•  Various approaches. No gold standard approach: 
-  Create framework to validate new image registration components and 

algorithms 
-  For each algorithm, define “region of convergence” and “region of 

divergence” 
-  Provide guidance/recommendations for utilization of algorithms and their 

components 
-  Provide fast algorithms for real-time/near-real-time and on-board applications 



Section 1b 
Brief survey of registration, integration and 

fusion methods 



Brief Image Registration Survey 



•  Mathematical Framework 
–  I1(x,y) and I2(x,y): images or image/map 

–  find the mapping (f,g) which transforms I1 into I2: 
 I2(x,y) = g(I1(fx(x,y),fy(x,y)) + n(x,y) 
»  f : spatial mapping 
»  g: radiometric mapping 
»  n: sensor and other imaging noise 

–  Spatial Transformations “f” 
–  Translation, Rigid, Affine, Projective, Perspective, Polynomial, … 

–  Radiometric Transformations “g” (Resampling) 
– Nearest Neighbor, Bilinear, Cubic Convolution, … 

•  Algorithmic Framework (Brown, 1992) 
1.  Feature Extraction 
2.  Feature Matching (Similarity Metrics & Matching Strategy) 
3.  Image Resampling (if needed) 

Image Registration Frameworks 



Image Registration Components 
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General Approaches to Registration 

1. Manual Registration 

2. Correlation-Based Methods 

3. Fourier-Domain and Other-Transform Based 
Approaches 

4. Mutual Information and Distribution-Based 
Approaches 

5. Feature-Point Methods 

6. Contour- and Region-Based Approaches 



•  Gray levels 

•  Salient points 

–  Edge-like, wavelet coefficients (Simoncelli and Freeman 
‘95) 

–  Corners (Kearny et al. ‘87, Harris and Stephens ’88, Shi 
and Tomasi ‘94)  

•  Lines 

•  Contours, regions (Govindu et al. ‘99) 

•  Scale invariant feature transform (SIFT), Lowe ‘04  

Feature Extraction 



•  L2-norm: 

–  Minimize the sum of squared errors (SSD) over overlapping 
subimage 

•  Cross-correlation 
–  Maximize cross-correlation over image overlap 

 
•  Normalized cross-correlation (NCC) 
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•  Mutual information (MI): 
     Maximizes the degree of statistical dependence between the 

images 

    or using histograms, maximizes 
 
 
      where M is the sum of all histogram entries, i.e., number of 
       pixels (in overlapping subimage) 
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Similarity Metrics (2) 



•  Partial Hausdorff distance (PHD): 
     
 
     where 1≤ K ≤ |I1|  (Huttenlocher et al. ‘93, Mount et al. ‘99) 
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Similarity Metrics (3) 



•  Discrete Gaussian mismatch (DGM): 
     
      
      
     where wσ(a) denotes the weight of point a, and 

 
 
    is similarity measure ranging between 0 and 1 
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•  Translation-only, rigid 
•  Rotation, scale, and translation (RST) 
•  Affine (6 degrees of freedom) 
 

 

 
 

•  Projective/homography (e.g., for perspective effects in image 
mosaicing); 8 parameters  
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Transformation Functions 



•  Weighted linear transformation; adaptive transformation, 
continuous and smooth, applied to multiview images with 
local geometric differences, and maps an entire image to 
another 
–  Interpolating surface is a weighted sum of planar patches, 

each of which passes through a control point and provides 
a desired gradient, i.e., 
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Transformation Functions (2)  



•  Exhaustive search (exponential in dimensionality of space) 
•  Fast Fourier transform (FFT) 
•  Numerical optimization (e.g., steepest gradient descent wrt 

SSD, NCC, and MI (Thévenaz, Ruttimann, and Unser (TRU) 
‘98; Spall ’92) 

•  Robust transformation estimate (e.g., RANSAC, LMS) if 
(most) correspondences are known (via SIFT-like) 

•  “Correspondenceless”, e.g., correlation of descriptor 
distribution/feature consensus (Govindu et al. ‘99) 

•  Robust feature matching (RFM), e.g., efficient subdivision and 
pruning of transformation space; Huttenlocher et al. ‘93, Mount 
et al. ’99, Netanyahu et al. ‘04  

Matching Strategies 



Matching Strategies (2)  

•  Frequency domain-based approach 
– Efficient computation of correlation as inverse of 
      
–  Practical implementation (extension to NCC, masking 

invalid pixels, optimized computation) 
–  Finding (small) rotational and scale differences (by 

matching chips) 
–  Subpixel registration for translation-only using phase 

estimate (also in case of image aliasing) 
– Rotation and scale estimate by casting to log-polar 

coordinates 
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Matching Strategies (3)  

•  Matched filtering 
–  Maximize SNR (using theory of linear systems) 
–  Apply phase-only and symmetric phase-only matched 

filters for translation-only IR 

 

–  Apply Fourier-Mellin transform for rotation and scale 
changes; transform represents these parameters as 
translational shifts in log-polar coordinates of magnitude of 
Fourier spectrum, i.e., first estimate rotation and scale, 
followed by translation estimate 
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Matching Strategies (4)  

•  Numerical optimization 
–  Powel’s, Brent’s (1-D), simplex, etc. 
 
–  Steepest descent/ascent variants 

•  Standard 

•  Newton-Raphson 

•  Levenberg-Marquardt 

– Apply to various similarity metrics, e.g., SSD (Eastman and 
Le Moigne ‘01), Mutual Information, etc. 

»  Explicit computation of gradient (and Jacobian/Hessian), e.g., 
Thévenaz and Unser ‘00  

»  Stochastic approx. (Spall ‘92; Cole-Rhodes et al. ’03) 
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Matching Strategies (5)  

Rotated contours 

Slope angle distributions and their correlation 

•  Alignment via local geometric distributions 



•  Robust feature matching (RFM) 
–  Space of affine transformations: 6-D space 
–  Subdivide: Quadtree or kd-tree.  Each cell T represents a set 

of transformations; T is active if it may contain     ; o/w, it is 
killed  

–  Uncertainty regions (UR’s): Rectangular approximation to 
the possible images         for all   

–  Bounds: Compute upper bound (on optimum similarity) by 
sampling a transformation and lower bound by computing 
nearest neighbors to each UR  

–  Prune: If lower bound exceeds best upper bound, then kill the 
cell; o/w, split it 

( )aτ 1,T a Iτ ∈ ∈

optt

Matching Strategies (6)  



•  Computational efficiency 
– “Culling” feature points via, e.g., condition theory 
– Efficient numerical or discrete algorithmic 

procedures 
– Hierarchical pyramid-like (wavelet) decomposition 
– Use landmark chip database (instead of a large 

scene) or alternatively, extract automatically 
corresponding regions of interest using 
mathematical morphology (Plaza et al ‘07)  

 

Matching Strategies (7)  



Brief Image Fusion Survey 



•  Prerequisite to Image Fusion: Very accurate registration 

•  Various Approaches [Blum and Liu, 2005]: 
–  Multiscale-Decomposition-Based Fusion Methods 

 
1.  Multiscale representations: Pyramid Transform (e.g., Laplacian), Discrete Wavelet 

Transform (DWT) and Discrete Wavelet Frame (DWF) 
2.  Activity-level measurement 
3.  Coefficient Grouping Method 
4.  Coefficient Combining Method 
5.  Consistency Verification 

Methods of Image Fusion 

FUSION 
PROCESS 

Decomp 

Decomp 

Reconstruct 

Input 
Registered 

Images 

Decomposed 
Images 

Fused Multiscale 
Representations 

Fused 
Image 



–  NonMultiscale-Decomposition-Based Methods  
•  Pixel-Level Weighted Averaging 

–  e.g., PCA 

•  Non-Linear Method 
–  e.g., separate images into low-pass (LP) and high-pass (HP); then 

modify and fuse LP and HP 

•  Estimation Theory Based Methods 
–  e.g. using Maximum A Priori (MAP) and Maximum Likelihood 

(ML) estimates or Markov Random Field (MRF) distributions 

•  Color Composite Fusion 
–  Combines input images in color space => false color representation 
– Often used with another method, e.g., PCA or Neural Network 

•  Artificial Neural Networks 
–  e.g., trained to superimpose objects of interest on background 

Methods of Image Fusion (2) 



•  Objective Evaluation using a Reference Image 
•  Root Mean Square Error (RMSE) 

» Where R is the reference image, F the fused image, and NxM 
the size of the image 

•  Correlation 
•  Peak Signal to Noise Ratio (PSNR) 

   
   

» Where L is the number of gray levels in the image 

 

Performance Evaluation of Fusion Algorithms 
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•  Objective Evaluation using a Reference Image 
(cont.) 

•  Mutual Information (MI) 
•  Universal Quality Index (QI) (Wang and Bovik, 2002) 

» Where               represent the average of all pixels in the 
reference and the fused images, respectively,  

»                   represent the respective variances and        represents 
the co-variance between the 2 images 

– Other indexes derived from QI, (e.g., (Piella et al, 2003) where 
index based on the local saliencies of the input images) 

Performance Evaluation of Fusion Algorithms (2) 
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•  Objective Evaluation without a Reference Image 
•  Standard Deviation (SD) 
•  Entropy (H) 
•  Overall Cross Entropy of the source images X, Y and the 

fused image F 

» Where h is the normalized histogram of the image 

Performance Evaluation of Fusion Algorithms (3) 

CE(X,Y ;F) =
CE(X;F)+CE(Y ;F)

2
with

CE(X;F) = hx (i)log2

i=0

L

∑ hX (i)

hF (i)

⎛

⎝
⎜

⎞

⎠
⎟



•  L. Wald, “Some terms of reference in data fusion,” IEEE Transactions on Geoscience and Remote Sensing, 
Vol. 37, No. 3, 1999, pp. 1190-1193. Also at http://www.data-fusion.org/terms_of_reference 

•  J.R. Townshend, C.O. Justice, C. Gurney, and J. McManus, “The impact of misregistration on change 
detection,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5, 1992, pp. 1054-1060.  

•  X. Dai and S. Khorram, “The effects of image misregistration on the accuracy of remotely sensed change 
detection,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1998, pp. 1566-1577.  

•  L.G. Brown, “A survey of image registration techniques,” ACM Computing Surveys, Vol. 24, No. 4, 1992,  
pp. 325-376. 

•  J. Le Moigne, N.S. Netanyahu, and R.D. Eastman, Image Registration for Remote Sensing, Cambridge 
University Press, 2011. 

•  E.P. Simoncelli and W.T. Freeman. “The Steerable Pyramid: A Flexible Architecture for Multi-Scale 
Derivative Computation,” IEEE Second Int'l Conf on Image Processing, October 1995. 

•  J.K. Kearney, W.B. Thompson and D.L. Boley, “Optical flow estimation: An error analysis of gradient-based 
methods with local optimazation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9 , 
1987, pp. 229–244. 

•  C. Harris and M. Stephens, “A combined corner and edge detector,” Proceedings of  the 4th Alvey Vision 
Conference, 1988, pp. 147-151. 

•  J. Shi and C. Tomasi, “Good features to track,” 9th IEEE Conference on Computer Vision and Pattern 
Recognition, Springer. 

•  V. Govindu and C. Shekhar. Alignment Using Distributions of Local Geometric Properties, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, PAMI, October 1999. 

•  D.G. Lowe, “Distinctive Image Featyres from Scale-Invariant Keypoints,” International Journal of Computer 
Vision, Vol. 60, No. 2, 2004, pp. 91-110. 

References … 



•  D.P. Huttenlocher, G.A. Klanderman and W.J. Rucklidge, “Comparing images using the Hausdorff distance,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15 , 1993, pp. 850–863. 

•  D.M. Mount, N.S. Netanyahu, and J. Le Moigne, “Efficient algorithms for robust point pattern matching’, 
Pattern Recognition, Vol. 32 , 1999, pp. 17–38. 

•  N.S. Netanyahu, J. Le Moigne and J.G. Masek, “Georegistration of Landsat data via robust matching of 
multiresolution features,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42 , 2004, pp. 
1586-1600. 

•  P. Thevenaz, U. Ruttimann and M. Unser, “A pyramid approach to subpixel registration based on intensity,” 
IEEE Transactions on Image Processing, Vol. 7, No. 1, 1998, 27-41. 

•  J.C. Spall, “Multivariate stochastic approximation using a simultaneous perturbation gradient 
approximation,” IEEE Transactions on Automatic Control, Vol. 37, No. 3, 1992, pp. 332-341. 

•  A. Cole-Rhodes, K. Johnson, J. Le Moigne, and I. Zavorin, “Multiresolution registration of remote sensing 
imagery by optimization of mutual information using a stochastic gradient,” IEEE Transactions on Image 
Processing, Vol. 12, No. 12, 2003, pp. 1495-1511.  

•  A. Plaza, J. Le Moigne, and N.S. Netanyahu, “Parallel Morphological Feature Extraction for Automatic 
Registration of Remotely Sensed Images,” 2007 IEEE International Geoscience and Remote Sensing 
Symposium, IGARSS'07, Madrid, Spain, July 2007. 

•  R.S. Blum and Z. Liu (eds), “Multi-Sensor Image Fusion and its Applications,” Taylor & Francis, 2005. 
•  Z. Wang and A.C. Bovik, “A Universal Image Quality Index,” IEEE Signal Processing Letters, Vol. 9, No. 3, 

2002, pp. 81-84. 

•  G. Piella and H. Heijmans, “A New Quality Metric for Image Fusion,” Proc. International Conference on 
Image Processing (ICIP), Sept 2003, Vol.2, pp. III-173-176. 

References … 



Section 2c 
Wavelets and Redundant Representations 

for Image Registration 



•  Representations such as the multiresolution wavelets utilized for the new 
compression standard JPEG-2000 can bring multisensor/multiresolution 
data to the same spatial resolution without losing significant information 
and without blurring the higher resolution data. 

•  At the lower resolutions, the process preserves important global features 
such as rivers, lakes and mountain ridges as well as roads and other man-
made structures, while at the same time eliminating weak higher 
resolution features often considered as "noise or "spurious pixels." Of 
course, some of the important finer features will be lost at the lowest 
resolutions but, if needed, they can be retrieved in the iterative higher 
levels of decomposition. 

•  The multiresolution iterative search focuses progressively toward the 
final transformation with a decreasing search interval and an increasing 
accuracy at each iteration. Hence, this type of strategy achieves higher 
accuracies with higher speeds than a full search at the full resolution. 

•  Wavelet decomposition and multiresolution iterative search are very 
well-suited for fine-grained parallelization, thus speeding up the 
computations even more. 

Why Wavelets and Redundant Representations for 
Image Registration 



•  1994: First results on the utilization of orthogonal 
Daubechies wavelets for image registration 

Wavelets for Image Registration 



•  Orthogonal wavelets, feature information changes within 
or across subbands with subsampling => Study for Shift 
Sensitivity: 
–  low-pass subband relatively insensitive to translation, if 

features are twice the size of wavelet filters 
–  high-pass subband more sensitive but can still be used. 

t 

s 

w 

Correlate Wavelets of Two Pulses 

Rotation and Translation Invariance Issues 



Translation Sensitivity  – Low-Pass Level 3 



Translation Sensitivity  – High-Pass Level 3 



•  Spline Wavelets [Battle & Lemarié; Unser et al] 
         with scaling function                                           

        p arbitrary invertible convolution operator or filter, 
        and           is a B-spline of order n  (can be constructed  
        by repeated convolution of B-Spline of order 0)   

 

     Example of B-Spline Scaling Function and Associated Wavelet 
 
 
 
 

•  Simoncelli et al  
–  Relax critical sampling condition of wavelet transforms 
–  Provides an overcomplete representation by 4k/3 

Original  
Image or  

Output of L1 

• 
• 
• 

H0 

L0 B0 

B1 

Bk 

L1 Decimate 
by 2 

Vi
n = {gi

n (x) = ci
k=−∞

+∞

∑ (k)ϕ n (2−i x − k), x ∈ℜ,ci ∈ l2} ϕ n (x) = p(k)β n

k=−∞

+∞

∑ (x − k)

β n (x)

       
       
        

Rotation- and Translation-Invariant  
Representations  



 

Correlation L2-norm MI Hausdorff distance 

FFT 

Robust 
feature 

matching 
Gradient  
descent 

Spall’s 
optimization 

Thévenaz, 
Ruttimann, 

Unser  
optimization 

Gray levels 
Orthogonal Wavelets, 
Spline or Simoncelli 
Low-Pass Features 

Orthogonal Wavelet  
 or Simoncelli  

Band-Pass Features 

L2-norm  MI 

Gradient  
descent 

Spall’s 
optimization 

Thévenaz, 
Ruttimann, 

Unser  
optimization 

Features 

Similarity 
measure 

Matching 
strategy 

Framework for Evaluation of 
   Image Registration Components 



Framework for Evaluation of 
   Image Registration Components 

TARA (Toolbox for Automated  
Registration and Analysis) 



Algorithm Testing Using …  
  Synthetic Data 
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Transformation of Starting Scene: 
•  Scales in [0.8,1.2] (step = 0.05) 
•  Translations in [0,20] pixels (step = 0.5) 
•  Rotations in [0,20] degrees (step = 0.5) 
•  Gaussian noise in [-15, 20] dB (step = 1) 
•  Radiometric Transformation (PSF 

constructed from black 512x512 image 
with 5x5 white center) 



Results Marquart Levenberg Optimization + L2 Similarity 
 Spline Wavelets and Simoncelli Features 
   Varying Noise – With or Without PSF [Zavorin et Le Moigne, 2005] 

The shaded green regions in each plot correspond to those 
points in the parameter space for which the resulting global 
RMS registration error is larger than 1.0 



Overall Main Findings 
•  Simoncelli-based methods outperform 

Spline pyramid-based methods 
• Optimization based on Mutual Information 

does not perform better than L2-Norm 
•  Simoncelli/Low-Pass better than Simoncelli/

Band-Pass for Low Noise and Same 
Radiometry and for Initial Guess Sensitivity 

Sensitivity to Initial Guess [Le Moigne et al, 2004] 

 



Landmark 
Chip  

Database 
Extracted 

  

UTM of 4 Scene Corners Known  
from Systematic Correction 

Input Scene 

1.  Find Chips that correspond to 
the Incoming Scene 

2.  For Each Chip, Extract Window 
from input scene using UTM 
coordinates 

3.  Eliminate Windows with 
insufficient information 

4.  Smooth and Normalize gray 
values of both Chip and 
Window using a Median Filter 

5.  Register each (Chip,Window) 
Pair using a wavelet-based 
automatic registration: get a 
local transformation for each 
pair 

6.  Eliminate Outliers 
7.  Compute Global Rigid 

Transformation from all local 
ones 

8.  Compute Correct UTM of 4 
Scene Corners of input scene 

9.  If desired, Resample the input 
scene according to the global 
transformation 

Registration using a Chip Database 

 



Algorithm Testing Using …  
  Landsat-TM Multitemporal Data [Netanyahu et al, 2004] 



•  Landsat-5 and -7 Multi-Temporal Data [Netanyahu et al, 2004]: 
–   Chips and Corresponding Windows 

7 Landsat-7  
Chips 

One chip and 4 Corresponding 
Windows Extracted from 4 
Multi-Temporal Landsat Imagery  

Algorithm Testing Using …  
  Landsat-TM Multitemporal Data (2) 



Chip # 84240 87136 96193 97275

#1 - Rot:
TX
TY
Distance

0
8
-39
0.00

0
18
-25
1.00

1
12
-92
1.80

0
21
-28
0.00

#2 - Rot:
TX
TY
Distance

0
8
-41
0.00

-0.5
11
-41
 0.62

1
-66
4
1.93

0
22
-30
0.00

#3 - Rot:
TX
TY
Distance

0
8
-40
1.00

-0.5
11
-41
0.89

-0.3
10.84
-96
0.52

0
21
-29
0.00

#4 - Rot:
TX
TY
Distance

0
8
-41
1.00

0.8
12.34
--38.12
0.96

0
11
-94
0.00

0
21
-28
0.00

#5 - Rot:
TX
TY
Distance

0.4
7.8
-40.86
0.94

0.7
10.4
--40.34
0.93

0
-38
52
2.24

0
20
-31
0.00

#6 - Rot:
TX
TY
Distance

0
6
-41
1.00

-0.8
10.61
-41.94
0.78

0.3
11.5
-99
0.70

0
22
-33
0.00

#7 - Rot:
TX
TY
Distance

0.5
9
-40
0.56

0
12
-38
0.00

0
12
-94
0.00

0
22
-29
0.00

Transf. 84240 87136 96193 97275

Rotation 0.013 0.003 -0.042 -0.143

Transl-x 7.18 11.43 12.61 21.20

Transl-y -41.12 -40.49 -95.38 -28.85

Global Registration for 4 Scenes 
Transf. 84240 87136 96193 97275

Rotation 0.00 0.00 0.00 0.00

Transl-x 7.18 10.55 9.48 20.97

Transl-y -40.06 -39.16 -95.16 -28.97

Manual Registration for 4 Scenes 
• This Chesapeake Bay Example:  

 Global Accuracy Error ≈ 0.82 pixel 
• Other Virginia Scenes: 

 Global Accuracy Error ≈ 0.31 pixel  

Algorithm Testing Using …  
  Landsat-TM Multitemporal Data (3) 



Algorithm Testing Using …  
  EO-1 and Global Land Survey (GLS) Maps 



Algorithm Testing Using …  
  EO-1 and Global Land Survey (GLS) Maps (2) 



•  Multi-Sensor Data 

–  EOS Validation Core Sites 
–  IKONOS/Landsat-7/MODIS/

SeaWiFS 
•  Red and NIR bands for each sensor 
•  Spatial resolutions: IKONOS: 4m; 

ETM+: 30m; MODIS: 500m; 
SeaWiFS: 1000m 

–  4 different sites: 
•  Coastal Area: VA, Coast Reserve 

Area, October 2001 
•  Agriculture Area: Konza Prairie in 

State of Kansas, July to August 2001 
•  Mountainous Area: Cascades Site, 

September 2000 
•  Urban Area: USDA Site, Greenbelt, 

MD, May 2001 

Algorithm Testing Using …  
  Multisensor Data 

r 

ETM/IKONOS - Coastal VA Data 

ETM/IKONOS - Agricultural 
Konza Data 



Rotation Translation Rotation Translation Rotation Translation Rotation Translation Rotation Translation

(1) etm_nir_31.25.power /

etm_red_31.25.extract

(2) iko_nir_3.91.power / _ (2,1) 0.0001 (1.9871,-0.0564) 0 (2,0) 0 (2,0) 0 (0,0)

etm_nir_31.25.extract

(3) iko_red_3.91.power / _ (2,1) -0.0015 (1.7233,0.2761) 0 (2,0) 0 (2,0) 0 (0,0)

etm_red_31.25.extract

(4) etm_nir_31.25.power / _ (-2,-4) 0.0033 (-1,7752,-3.9238) 0 (-2,-4) 0 (-2,-4) 0 (-3,-3.5)

modis_day249_cc_nir.extract

(5) etm_red_31.25.power / _ (-2,-4) 0.0016 (-1.9665,-3.9038) 0 (-2,-4) 0 (-2,-4) 0 (-2,-3.5)

modis_day249_cc_red.extract

(6) modis_day249_cc_nir.power / _ (-9,0) 0.0032 (-8.1700,0.2651) 0 (-8,0) 0 (-9,0) 0.5 (-6,2)

seawifs_day256_to249_nir.extract

(7) modis_day249_cc_red.power / _ (-9,0) 0.0104 (-7.6099,0.5721) 0 (-8,0) 0 (-8,0) 0.25 (-7,1)

seawifs_day256_to249_red.extract

Pair to Register
Method 4 (WMIE) Method 5 (WHR)

Rotation  = 0 , Translation = (0,0) computed by all methods, using seven sub-windows pairs

Method 1 (GC) Method 3 (WCE)Method 2 (GGD)

•  GC: Gray Levels + Fast Fourier Correlation 
•  GGDL Gray Levels + Gradient Descent 
•  WCE: Wavelets + Correlation  
•  WMIE: Wavelets + Mutual Information 
•  WHR: Wavelets + Hausdorff + Robust Feature Matching 

Algorithm Testing Using …  
  EOS Validation Core Sites (2) 



Image Name Computed X Computed Y Comes from
Registered Pair

IKONOS red 0 0 (Starting Point)
IKONOS nir -0.2500 -0.2500 IKO red to ETM red

and ETM red to IKO nir
IKONOS nir IKO red to ETN nir

-0.2500 -0.3125 and ETM nir to IKO nir
Table 3 - Self-Consistency Study of the Normalized Correlation Results

Image Name Computed X Computed Y Comes from
Registered Pair

IKONOS red 0 0 (Starting Point)
IKONOS nir 0.2500 0.0000 IKO red to ETM red

and ETM red to IKO nir
IKONOS nir 0.1250 -0.1250 IKO red to ETN nir

and ETM nir to IKO nir
Table 4 - Self-Consistency Study of the Mutual Information Results
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Algorithm Testing Using …  
  EOS Validation Core Sites (3) 
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Section 2f 
Fusion using cokriging 



•  Kriging and cokriging are geostatistical techniques 
used for interpolation purposes, originally used in 
geo-statistics, mining, and petroleum engineering 
applications 

•  Both methods are generalized forms of univariate and 
multivariate linear regression models: 
–  They are linear-weighted averaging methods, similar to 

other interpolation methods 
–  Other methods use weights based on the distance of each 

control point (sample value) from the target location; 
controls points closer to the target receive the larger 
weights => not necessarily true if the data exhibit strong 
anisotropy 

Kriging and Cokriging …  



•  Kriging and cokriging 
–  Pioneered by Danie Krige, 1951; formalized by Georges 

Matheron in the 1960s 
–  Ability to capture anisotropy of the underlying variables 

through the spatial covariance model: 
•  Distant control points along the axis of maximum correlation should 

have greater influence on the interpolated value  
•  Weights depend not only on distance, but also on the direction and 

orientation of the neighboring data to the unsampled 

•  Generalized version of kriging (B.L.U.E): 
–  Best: aims to minimize variance of the errors 
–  Linear: estimates are weighted linear combination of the 

available data 
–  Unbiased: tries to have mean residual, or error, equal to zero. 
–  Estimator:     νν .

1
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Kriging and Cokriging (2)   
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Interpolation using more that one type 
of variable to estimate an unknown 
value at a particular location. 
 

          Estimation error: 
 
 
 
 
 
Goal of cokriging is to minimize 
variance of error subject to some 
constraints (to ensure unbiasedness of 
our estimate, here “ordinary cokriging”) 

Cokriging …  
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Cokriging (2)  

•  Variance to minimize with 2 constraints: 

Where m1 and m2 are 2 Lagrange multipliers 



aiCov(UiUj )
i=1

n

∑ + bi
i=1

m

∑ Cov(ViU j )+μ1 =Cov(U0Uj ),

aiCov(UiVj )
i=1

n

∑ + bi
i=1

m

∑ Cov(ViVj )+μ2 =Cov(U0Vj ),

with ai
i=1

n

∑ =1

and bj
j=1

m

∑ = 0

for (j = 1…n) 

for (j = 1…m) 

•  The next step is taking partial derivatives of the above equation 
with respect to all n + m  cokriging variables and the two 
Lagrange multipliers and setting them to zero. Then, we have 
the following n+m+2  equations to solve: 

Cokriging (3)  



•  Spectral dimension 
–  ALI: 9 multispectral bands  
–  Hyperion: 220 hyperspectral bands 
–  Increase spectral resolution of ALI where needed using Hyperion 

information  

•  One variable only 
•  Software used 

–   UCL-FAO Agromet project  
(http://www.aigeostats.org/software/Geostats_software/

agromet.htm) 
–   C++ 

Experiments Cokriging – Spectral Dimension 



Original 1 pixel plot for ALI and Hyperion 

Results Cokriging – Spectral Dimension 



Fusion results on one pixel using cokriging by creating one band/value  
in center of each wavelength interval where ALI data is missing. 

Results Cokriging – Spectral Dimension (2) 



Fusion results on one pixel using cokriging by estimating up to 3 values  
in each wavelength interval where ALI data is missing. 

Results Cokriging – Spectral Dimension (3) 



Fusion results on one pixel using cokriging by estimating values at all Hyperion centers  
in each wavelength interval where ALI data is missing. 

Results Cokriging – Spectral Dimension (4) 



Experiments Cokriging –  
   Fusion of Panchromatic and Multispectral 

•  Landsat 7 ETM data sets 
–  Datasets provided by IEEE Data Fusion Committee 
–  8 Bands: 

•  7 multispectral at 30 m spatial resolution 
•  1 panchromatic at 15 m spatial resolution 

•  Objective 
–  Pan sharpening of selected multispectral bands 

•  Comparative Methods 
–  Cokriging 
–  PCA 
–  Wavelets 



Landsat 7 Multispectral 
Bands 2, 3, and 4 

 

Landsat Panchromatic Band 8 

Band Resolution 

Spatial 
(meters) 

Spectral 
(m) 

1 30 0.45–0.52 

2 30 0.53–0.61 

3 30 0.63–0.69 

4 30 0.78–0.90 

5 30 1.55–1.75 

6 30 10.4–12.5 

7 30 2.09–2.35 

8 (PAN) 15 0.52–0.90 

Band Resolution 

Spatial 
(meters) 

Spectral 
(m)

1 30 0.45–0.52 

2 30 0.53–0.61 

3 30 0.63–0.69 

4 30 0.78–0.90 

5 30 1.55–1.75 

6 30 10.4–12.5 

7 30 2.09–2.35 

8 (PAN) 15 0.52–0.90 

Experiments Cokriging –  
   Fusion of Panchromatic and Multispectral (2) 



MS-1 

MS-2 

MS-3 

MS-4 

MS-5 

MS-7 
 

 
 
 
PAN 

Spectral Resolution 

Pan + MS-2             fused_b2 
Pan + MS-3             fused_b3 
Pan + MS-4             fused_b4  

Spectral Resolution 
1 pixel of MS band 

 
MS-Value 

Pan Value 
1 

Pan Value 
2   

Pan Value 
3 Pan Value 

4 

x1  y1     p1      ? 
x2  y2     p2      ? 
x3  y3     p3     ms 
x4  y4     p4      ? 
(using nearest  
Neighborhs, e.g. 5x5) 

Methods: Cokriging –  
   Fusion of Panchromatic and Multispectral 



MS-1 

MS-2 

MS-3 

MS-4 

MS-5 

MS-7 
 

PC-1 

PC-2 

PC-3 

PC-4 

PC-5 

PC-7 
 

PC Transform 

PAN 

Replace PC-1 
with stretched  
PAN band 

S-
PAN 
PC-2 

PC-3 

PC-4 

PC-5 

PC-7 
 

Inverse 
PC Transform 

F1 

F2 

F3 

F4 

F5 

F7 
 

Stretch PAN band to match PC-1 in 
Its mean and standard deviation. S-

PAN 

Input Raw Data 

Methods: Principal Components Analysis –  
   Fusion of Panchromatic and Multispectral 

Principal Components Fusion Fused Bands 



Decomposition 

Reconstruction 
Improved 

Resolutions  

... 

... 

High Spatial�
Resolution�
Data: PAN 

Low Spatial 
Resolution 
Data: MS 

FUSED 
DATA 

Methods: Wavelet-Based Fusion –  
   Fusion of Panchromatic and Multispectral 



•  Past Quality Metrics 
–  Piella, etc. 
–  Gray level only 
–  No support for multi-spectral image 

•  Objective 
–  Improved Classification 

•  Performed k-means with k=7, max iterations 15 (for PCA and wavelets) 
–  Needs ground truth 

•  Similarities 
–  Spatial Quality: Entropy 
–  Spectral quality: correlation 

•  Differences 
–  Added Texture  
–  Co-occurrence matrix for statistical texture properties (Haralick,1973) 
–  Variance image 

Evaluation Fusion Results –  
   Fusion of Panchromatic and Multispectral 



Landsat Pan-sharpened MS bands 2, 3, and 4 
 Through Cokriging with Pan band 8 

Results Cokriging –  
   Fusion of Panchromatic and Multispectral 



Landsat Pan-sharpened MS bands 2, 3, and 4 
with Pan band 8 

Through PCA Through Wavelets 

Results PCA and Wavelets –  
   Fusion of Panchromatic and Multispectral 



CORRELATION OF FUSED BANDS WITH MS INPUT BANDS 

Bands Wavelet PCA Cokriging 

f2, b2 
f3, b3 
f4, b4 

0.82 
0.84 
0.92 

0.99 
0.99 
0.75 

0.91 
0.93 
0.93 

Average 0.86 0.91 0.92 

Results Evaluation though Correlation –  
   Fusion of Panchromatic and Multispectral 

Wavelet PCA Cokriging 
•  Fuse pair of bands at a time 
•  Require various spatial 

resolution to differ by power 
of 2 

•  Fuse multiple bands at a 
time 

•  Require the same number 
of pixels (same image 
dimension) for all bands 

 

•  Fuse multiple bands at a time 
•  Fuse data with different 

spatial and spectral 
resolutions 

•  Fuse data of different natures 
•  Can handle scattered data 



ENTROPY OF MS AND FUSED BANDS 

Original 
Bands 

Fused 
Bands Wavelet PCA Cokriging 

b2 
b3 
b4 

2.68 
3.01 
3.44 

f2 
f3 
f4 

3.12 
3.28 
3.93 

2.69 
3.72 
5.21 

3.23 
3.64 
4.90 

Average 3.04 3.44 3.87 3.92 

Results Evaluation though Entropy –  
   Fusion of Panchromatic and Multispectral 



MEAN ENTROPY OF ENTROPY IMAGES OBTAINED THROUGH 
CO-OCCURRENCE MATRICES 

Original 
Bands 

Fused 
Bands Wavelet PCA Cokriging 

b2 
b3 
b4 

1.37 
1.42 
1.77 

f2 
f3 
f4 

1.37 
1.45 
1.78 

1.37 
1.49 
2.02 

1.44 
1.45 
1.96 

Average 1.52 1.53 1.63 1.62 

Results Evaluation though Co-Occurrence Matrix –  
   Fusion of Panchromatic and Multispectral 
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