Destructive Single-Event Failures in Schottky Diodes

Megan C. Casey¹, Jean-Marie Lauenstein¹, Robert A. Gigliuto², Edward P. Wilcox², Anthony M. Phan², Hak Kim², Dakai Chen¹, and Kenneth A. LaBel¹

1. NASA Goddard Space Flight Center, Code 561
2. ASRC Space & Defense, Inc.

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
List of Acronyms

- DUT – Device Under Test
- EEE Parts – Electrical, electronic, and electromechanical parts
- EEE-INST-002 – Instructions for EEE Parts Selection, Screening, Qualification, and Derating
- GSFC – Goddard Space Flight Center
- IEEE – Institute of Electrical and Electronics Engineers
- I_R – Reverse Current
- IR – International Rectifier
- LBNL – Lawrence Berkeley National Laboratory Facility’s 88-Inch Cyclotron
- LET – Linear Energy Transfer
- MOSFET – Metal-oxide-semiconductor field-effect transistor
- NEPP – NASA Electronic Parts and Packaging program
- NSREC – Nuclear and Space Radiation Effects Conference
- REDW – IEEE Radiation Effects Data Workshop
- SEE – Single-Event Effect
- STMicro – STMicroelectronics
- TAMU – Texas A&M University’s Radiation Effects Facility
- V_R – Reverse Voltage
- V_F – Forward Voltage
Outline

• Introduction
 – Destructive Failures in DC-DC Converters

• Test Facilities and Set-Up

• Test Results
 – ON Semiconductor MBR20200CT
 – Sensitron SD125SB45A
 – STMicroelectronics STPS20100

• Path Forward

• Conclusions
Introduction: Destructive Failures in DC-DC Converters

• Destructive SEEs observed in DC-DC converters by two different manufacturers, IR and Crane Aerospace
 – Attributed to the shorting of the anode and the cathode of the output diodes

• Diodes generally are not considered to be susceptible to SEEs
 – Implication of these diode failures could be catastrophic to scientific instruments, or even entire spacecraft

• Under NEPP, the diodes are independently irradiated to identify and understand the failure mechanism, and the severity of the potential impact to NASA missions

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Parts Tested and Test Set-Up

• Diodes Tested
 – ON Semiconductor MBR20200CT
 • Dual 200 V, 10 A Schottky diode
 • 45 diodes were irradiated
 – Equivalent to Sensitron SD125SB45A
 • 45 V, 15 A Schottky diode
 • 4 diodes were irradiated
 – ST Micro STPS20100
 • Dual 100 V, 10 A Schottky diode
 • 3 diodes were irradiated

• Test Set-Up
 – Experiments were conducted using GSFC High-Voltage Power MOSFET Motherboard

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Facilities and Beam Conditions

<table>
<thead>
<tr>
<th>Facility</th>
<th>Ion</th>
<th>Energy (MeV)</th>
<th>LET at Normal Incidence (MeV-cm²/mg)</th>
<th>Range in Si (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMU</td>
<td>Ar</td>
<td>944</td>
<td>5.60</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
<td>1032</td>
<td>27.80</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
<td>1512</td>
<td>51.5</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>2076</td>
<td>77.3</td>
<td>119</td>
</tr>
<tr>
<td>LBNL</td>
<td>O</td>
<td>183</td>
<td>2.19</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Ne</td>
<td>216</td>
<td>3.49</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>508</td>
<td>14.59</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>10</td>
<td>48.15</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
<td>1232</td>
<td>58.78</td>
<td>90</td>
</tr>
</tbody>
</table>

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
All parts were only found to be susceptible when reverse biased
- EEE-INST-002 states that all diodes should be derated to 75% of rated voltage, so in theory, these diodes could be used up to a voltage of 150 V
- When irradiated with 508 MeV V, failed at voltages greater than 150 V
- When irradiated with 1032 MeV Kr, failed below derated voltage threshold

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Results
Sensitron SD125SB45A

- Schottky diodes were irradiated with 1232 MeV Xe (LET = 58.8 MeV-cm2/mg) at LBNL and with 2076 MeV Ta (LET = 77.3 MeV-cm2/mg) at TAMU
 - No failures were observed with either ion, including at full rated voltage of 45 V
- Failure in the MTR28515 may be due to something other than burnout in the diode
 - Location of the failure was not along the guard ring in the DC-DC converter test
 - No failures observed in these parts independent of the converter

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Results
STMicro STPS20100

- Full rated voltage (100 V) was applied during irradiation
- Current increased in steps during irradiation with Xe, but did not fail
 - May have exceeded datasheet specification for reverse current (30 μA) if fluence had been higher (3×10^5 particles/cm^2)
- Diode failed short as soon as the beam was turned on with Ta
 - Failure rate would be very low

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Additional Parts Tested

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Reverse Voltage (V)</th>
<th>Number of Parts Tested (#)</th>
<th>Xe Energy (MeV)</th>
<th>Xe LET (MeV-cm²/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STMicro</td>
<td>1N5819</td>
<td>45</td>
<td>3</td>
<td>1512</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>STPS1045</td>
<td>45</td>
<td>3</td>
<td>1512</td>
<td>51.5</td>
</tr>
<tr>
<td>IR/Vishay</td>
<td>95-9951</td>
<td>45</td>
<td>3</td>
<td>1366</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>96-1063</td>
<td>45</td>
<td>4</td>
<td>1366</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>96-1052</td>
<td>60</td>
<td>3</td>
<td>1366</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>95-9953</td>
<td>150*</td>
<td>1</td>
<td>1366</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>95-9942</td>
<td>150</td>
<td>3</td>
<td>1366</td>
<td>53.1</td>
</tr>
</tbody>
</table>

* Part irradiated at 100 V

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Path Forward

• Recently procured 23 different Schottky diodes
 – Variety of manufacturers, reverse voltage ratings, and forward current ratings

• DUTs will be tested at LBNL June 29-July 1
 – 12 hrs to irradiate 46 DUTs

• Test plans are go/no-go testing
 – Will irradiate with Xe at 100% of rated voltage
 • If pass, test two more under same conditions
 • If fail, test at 75%, 50%, 25%...
 – Intent is to identify what parameters determine failure
 – Derating guideline would be next step using failing parts
Path Forward

Investigating Effect of Manufacturer

Investigating Effect of Forward Current

Investigating Effect of Reverse Voltage

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Reverse Voltage</th>
<th>Forward Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR20200CTTU</td>
<td>Fairchild Semiconductor</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>FYPF2010DNTU</td>
<td>Fairchild Semiconductor</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>MBR20100CTTU</td>
<td>Fairchild Semiconductor</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>MBR2060CT</td>
<td>Fairchild Semiconductor</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>MBR3045PT</td>
<td>Fairchild Semiconductor</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>FST30100</td>
<td>Microsemi</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>NXPS20H100CX,127</td>
<td>NXP Semiconductor</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>MBRF20100CTG</td>
<td>ON Semiconductor</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>MBR2080CTG</td>
<td>ON Semiconductor</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>MBR2060CTG</td>
<td>ON Semiconductor</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>MBR6045WTG</td>
<td>ON Semiconductor</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>MBR4045WTG</td>
<td>ON Semiconductor</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>MBRF2045CTG</td>
<td>ON Semiconductor</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>RB205T-60</td>
<td>Rohm Semiconductor</td>
<td>60</td>
<td>7.5</td>
</tr>
<tr>
<td>STPS60SM200CW</td>
<td>STMicroelectronics</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>STPS20200CT</td>
<td>STMicroelectronics</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>STPS30H100CT</td>
<td>STMicroelectronics</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>STPS40M60CT</td>
<td>STMicroelectronics</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>STPS4045CT</td>
<td>STMicroelectronics</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>MBR20H200CT-E3/45</td>
<td>Vishay Semiconductor</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>MBR60100CT-E3/45</td>
<td>Vishay Semiconductor</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>MBR20100CT-E3/4W</td>
<td>Vishay Semiconductor</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>VS-MBR4045WTBF</td>
<td>Vishay Semiconductor</td>
<td>45</td>
<td>20</td>
</tr>
</tbody>
</table>

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Conclusions

• We have shown that Schottky diodes are susceptible to destructive single-event effects
 – Failures only occur when diodes are reverse biased
 – Failures visible along guard ring in parts with no current limiting

• Future work will be completed to identify parameter that determines diode susceptibility
 – Manufacturer(s)? Reverse voltage? Forward Current?

• By determining the last passing voltages, a safe operating area can be derived
 – If these values are used for derating, rather than the rated voltage we can work to ensure the safety of future missions
 • This is currently done with power MOSFETs

To be published on nepp.nasa.gov previously presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.