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Abstract Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD)

Q1

simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the
subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven
phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a
relaxation phase, during which the configuration continues to respond to the driving. The boundary
deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail,
converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC
simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which
may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the
onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal
MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads
to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The
earthward flow shows the characteristics of a dipolarization front: enhancement of Bz , associated with a thin
vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of
energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner
tail. Localized Joule dissipation plays only a minor role.

1. Introduction

It is now well established that magnetic reconnection plays a crucial role in the energy release and trans-
port associated with magnetospheric substorms. However, the onset of reconnection and its association
with observed substorm onset signatures is less well understood. It is generally believed that the onset of
reconnection involves a generalized tearing instability, where “generalized” means that the underlying con-
figuration is not a plane one-dimensional current sheet, as assumed in the original tearing theory [Furth
et al., 1966], but contains variations along the sheet as well as a normal magnetic field component, which
is characteristic of the magnetotail. The onset of tearing in two-dimensional magnetotail-like configura-
tions is apparently no problem in resistive magnetohydrodynamic (MHD) models, as shown by linear theory
[Janicke, 1980] and numerical resistive MHD simulations [Birn, 1980]. The MHD simulations also demon-
strated that the magnetotail evolution following the imposed presence of resistivity, shows the major
elements of the empirical reconnection substorm model [McPherron et al., 1973; Hones, 1977]: formation of
a near-Earth neutral line together with plasmoid formation and ejection. However, the source of resistivity
and the applicability of the resistive model to the onset problem in the collisionless magnetotail plasma are
questionable.

Schindler [1974] first concluded that the onset of collisionless tearing in a current sheet with finite normal
magnetic field Bz requires a reduction of both the current sheet thickness and of Bz , and provided a quantita-
tive onset criterion based on the existence of an ion-tearing instability. However, it was later shown that the
ion-tearing mode becomes stabilized by electron compressibility effects for rather weak normal fields [Pellat
et al., 1991; Brittnacher et al., 1995]. Nevertheless, the two parameters, normal magnetic field Bz and current
sheet thickness, or equivalently current density magnitude, which are closely coupled [Hesse and Birn, 2000],
remain the essential ingredients in the onset of tearing (or other current sheet instabilities). The onset prob-
lem thus becomes a problem of sufficient current sheet thinning, or of the formation of a thin embedded
current sheet.
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The formation of thin current sheets has been investigated by many authors. In application to the onset
of reconnection associated with solar flares it was suggested that thin current sheets form within initially
smooth configurations as the consequence of a slow evolution that leads to a critical state, at which neigh-
boring smooth solutions cease to exist (“loss of equilibrium”) [e.g., Parker, 1972, 1994; Syrovatskii, 1971, 1978;
Priest, 1981; Priest et al., 1995].

Thin current sheet formation from magnetotail convection was demonstrated through particle-in-cell
(PIC) simulations by Pritchett and Coroniti [1994] in two-dimensional configurations with a uniform applied
electric field and later by Pritchett [2005] in a three-dimensional simulation with an external electric field
localized in the x direction, leading not only to the formation of a thin embedded current sheet but also
to the onset of reconnection without involvement of significant cross-tail modes. Pritchett [2010] extended
this approach to realistic ion/electron mass ratio within a two-dimensional PIC simulation and showed that
the onset of reconnection, as well as the reconnection rate did not significantly depend on the assumed
mass ratio.

In these simulations, the driving field was applied continuously. In contrast, Birn et al. [1994], through MHD
simulations, and Hesse et al. [1996b], through hybrid particle simulations, demonstrated that a finite defor-
mation of the magnetotail, equivalent to a temporally limited driving, could also lead to the formation of
thin embedded current sheets. This concept was further proven theoretically for quasi-static evolution of
two-dimensional equilibria [Birn and Schindler, 2002], based on mass and entropy conservation on closed
magnetic flux tubes for magnetotail-like configurations. Birn and Schindler [2002] showed analytically that
a finite boundary perturbation could lead to a loss of equilibrium, and that the limiting state was char-
acterized by an embedded thin intense current sheet, which, in a 2-D configuration, bifurcates into two
embedded sheets closer to Earth. Temporally limited driving was also the basis for a comparison study of the
subsequent onset and growth of reconnection in a Harris current sheet, denoted as “forced” reconnection
[Birn et al., 2005].

A major assumption of this concept is the conservation of an entropy integral, defined for 2-D configura-
tions by

S(A) = ∫ p1∕𝛾ds∕B (1)

where A is a flux variable with B = ∇A(x, z) × 𝐲̂, and the integration is taken along closed field lines from
one boundary intersection to the other. In equilibrium, when the pressure p is constant along field lines,
S = p1∕𝛾V , where V is the differential flux tube volume defined as

V(A) = ∫ ds∕B (2)

The quantity S(A) is conserved in ideal MHD by assumption. However, in particle simulations that do not
necessarily satisfy the ideal MHD approximations, the conservation of S(A) is not a given, considering also
that the pressure tensor may be anisotropic and includes both ion and electron contributions. Nevertheless,
Birn et al. [2006] demonstrated for reconnection in an initially one-dimensional Harris current sheet that
S(A) is a very well-conserved quantity also in PIC simulations of localized reconnection before and even
after reconnection. The concept of thin current sheet formation in a magnetotail configuration by finite
boundary perturbations, and the subsequent onset of reconnection, was further demonstrated through
2-D PIC simulations [Hesse and Birn, 2000; Hesse and Schindler, 2001]. Our present investigation follows the
approach of Hesse and Schindler [2001], albeit at higher spatial resolution, addressing also possible features
of importance for the connection between the magnetotail and ground signatures.

The variation of the entropy integral (1) along the tail is also the crucial element governing balloon-
ing/interchange instability [Schindler and Birn, 2004]. Simply stated, a typical two-dimensional magnetotail
configuration should be (ideal MHD) ballooning stable if the entropy function increases monotonically
downtail. The conservation of a monotonic entropy function S(A) together with a monotonic variation of A
along the tail therefore would ensure ballooning stability.

The importance of extending the investigation of the entropy conservation to two-dimensional magnetotail
configuration lies in the fact that closed field lines (with both foot points at the near-Earth boundary) exist
prior to the onset of reconnection and that during the preonset evolution, the magnetic field strength at
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the equatorial crossing point decreases. As a consequence, ions can become demagnetized earlier than
electrons, such that entropy conservation, based on the total or ion pressure, might become violated before
electron demagnetization can initiate tearing instability. If this would lead to a change in the monotonicity
of the entropy function, ballooning instability might be initiated prior to the onset of reconnection. The
properties of the entropy function can be investigated with a 2-D code, even though the ballooning modes
themselves cannot be modeled.

In addition to the investigation of the entropy conservation and other characteristics of the preonset evolu-
tion, we also explore characteristics of the earthward flow, specifically signatures of a “dipolarization front”
[Nakamura et al., 2002], and the energy conversion and transfer associated with reconnection in the tail.
This latter topic has been investigated in 3-D MHD simulations [Birn and Hesse, 2005] and in localized PIC
simulations [Birn and Hesse, 2010] but not in PIC simulations of more realistic magnetotail reconnection.

2. Overview of theNumerical Procedure
2.1. Initial State

The initial magnetic field configuration is a two-dimensional generalized Harris-type magnetotail equilib-
rium [Schindler, 1972; Birn et al., 1975], identical to the one chosen by Hesse and Schindler [2001]. It is given
by a flux function

A(x, z) = −L [ln cosh 𝜁 − ln B̂(x)], 𝜁 = B̂(x)z∕L (3)

with

B̂(x) = [1 + bx∕(Lq)]−q (4)

choosing parameters

L = 2, b = 0.05, q = 0.6 (5)

We note that x is taken as the positive downtail, opposite to magnetospheric coordinates, while Bx is
assumed positive for z > 0. Here and in the following, we use normalized quantities, based on standard
units for the PIC simulation, which are given by B0, the magnitude of the lobe magnetic field at the left
boundary x = 0, the ion inertial length (or ion skin depth) 𝜆i = c∕𝜔pi with 𝜔pi =

√
n0e2∕(𝜖0mi), and a

time unit 1∕𝜔ci, where 𝜔ci = eB0∕mi is the ion-cyclotron frequency. The reference density n0 is chosen as
the difference between central plasma sheet and lobe densities at x = 0. This yields a characteristic speed
v0 = 𝜆i𝜔ci = B0∕

√
𝜇0min0, equal to the Alfvén speed defined by B0 and n0, an electric field unit E0 = v0B0,

pressure p0 = B2
0
∕𝜇0, and a magnetic flux unit B0𝜆i. In the MHD simulations B0, L, and n0 are independent

arbitrary units.

The initial magnetic field components and the plasma pressure are then given by

Bx = −𝜕A∕𝜕z = B̂ tanh 𝜁 (6)

Bz = 𝜕A∕𝜕x = − b
1 + bx∕(Lq)

(1 − 𝜁 tanh 𝜁 ) (7)

p = p̂(x)
cosh2

𝜁
+ pb where p̂(x) = B̂2(x)

2
(8)

The initial temperature is assumed uniform with a unit kT0 = miv
2
0
, such that the density is proportional to

the pressure with T = 1∕2 in dimensionless units. T and p represent the sums of ion and electron contri-
butions. A uniform background (lobe) density 𝜌b = 0.1 and a corresponding lobe pressure pb = 0.05 are
included to keep the Alfvén speed finite in the lobe regions.

The box size is given by 0 ≤ x ≤ 60 and |z| ≤ 10, using symmetry around z = 0 for the MHD simulations.
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Figure 1. Inflow speed vb in the PIC simulation at the top and bottom boundary, (a) as function of time, (b) as function of x at t = 20
(red solid lines). Black dashed lines show the inflow speed profiles applied in the MHD simulation, some of the simulations used an
identical temporal profile as in the PIC simulation (red curve in Figure 1a).

2.2. Codes

The particle simulations are based on a 2.5-dimensional version of our fully electrodynamic particle-in-cell
code [Hesse and Schindler, 2001], using 1600× 800 grid cells in x, z with 2× 108 particles of each species. Ions
are assumed to be protons and a mass ratiome∕mi = 1∕100 and initial temperature ratio Te∕Ti = 1∕5 are
used. The MHD simulations are based on an explicit leapfrog scheme [Birn et al., 1996], using different grid
resolutions with up to 240 × 240 cells to ensure that the reported results are not affected by the number of
grid points.

Boundary conditions assume closed boundaries, except for the initial phase when the inflow of magnetic
flux at the top and bottom are prescribed by an inflow speed vz (MHD) or the corresponding electric field Ey
(PIC). The left (near-Earth) boundary is also closed to inflow or outflow. However, the parallel flow speed vz
was also prescribed initially to be consistent with the inflow at the top and bottom boundaries.

3. Temporal Evolution

The evolution in both types of simulations is initiated by a perturbation at the boundary, consisting of a
spatially and temporally limited inflow of magnetic flux, given by

vzb = ±vb(x)f (t) at z = ∓10 (9)

The temporal and spatial profiles of the inflow speed vz are shown in Figure 1 together with the spatial pro- F1

file used in the MHD simulations (dashed line in Figure 1b). The inflow in the PIC simulation was forced by a
boundary electric field Eyb = vzbBx , with vzb given by (9), rather than the inflow speed. Due to the additional
presence of a small tangential velocity component and the numerical implementation of the boundary
inflow, the actual inflow speed vz just inside of the boundary (red line in Figure 9b) did not have a smooth
profile as function of x.

Two different temporal profiles were considered in the MHD simulations, one being identical to that of the
PIC simulation, the other one, shown by the dashed line in Figure 1a, is given by

f (t) = 2a𝜔 tanh𝜔t∕ cosh2
𝜔t (10)

with parameters

a = 4 𝜔 = 0.1 (11)

chosen to lead to an equivalent boundary deformation at t = 20. The two temporal profiles were found to
cause no significant differences in the subsequent evolution. The main effects stemmed from the resulting
boundary deformation, illustrated by a few selected field lines in Figure 2. Due to the fact that we keep the F2
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Figure 2. Field deformation by the boundary inflow, shown by a few selected field lines at t = 0 (dashed lines) and t = 20 (solid
red lines).

inflow speed fixed over the driving period, the lobe magnetic field, and hence the electric field near the top
and bottom, boundaries increase in time from ∼ 0.2 to ∼ 0.4 at x = 0 and from ∼ 0.12 to ∼ 0.16 at x ≈ 13,
which is the location of the X line formation.

The effects of the deformation, specifically current sheet thinning, continue even after the external driving
subsides after t = 20. Reconnection onset in the PIC simulation does not occur until after t = 60, as demon-
strated in Figure 3, which shows (top) the reconnected flux, defined byΨrec = ∫ Bz dx over the region where F3

Bz is positive (in our coordinates), for the PIC simulation (solid red line) in comparison to three MHD simu-
lations (blue lines), together with the evolution of (middle) the ion internal (thermal) energy and (bottom)
the ion bulk kinetic energy. Figure 3, middle and bottom, demonstrate that the inflow of energy and mag-
netic flux causes a directly driven increase in ion thermal energy (and similarly electron thermal energy; not
shown), but no significant change in the bulk kinetic energy. (The finite kinetic energy prior to the onset of
reconnection stems from the ion flow speed associated with the equilibrium current.)

The early part of the PIC evolution might be considered as consistent with ideal MHD (apart from
anisotropies, not included in ordinary MHD). For comparison, we therefore did not impose finite resistivity in
the MHD simulations until after t = 60. In section 3.1 we focus on the evolution prior to the onset of recon-
nection, while the evolution after the onset of reconnection will be discussed in the subsequent sections.

3.1. Preonset Evolution, Thin Current Sheet Formation

Figure 4 shows the evolution of the cross-tail current density Jy during the early evolution prior to the onset F4

of reconnection for (left) the PIC simulation and (right) the MHD simulation with 𝜂 = 0. Obviously, the
response to the boundary deformation is not finished at t = 20, although the inflow has subsided. Current

Figure 3. Evolution of (top) the reconnected flux for the PIC simulation (red solid line) and three MHD simulations with different values
of the maximum resistivity 𝜂1 (blue lines), (middle) ion internal energy, and (bottom) ion bulk kinetic energy.

BIRN AND HESSE ©2014. American Geophysical Union. All Rights Reserved. 5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Journal of Geophysical Research: Space Physics 10.1002/2013JA019354

Figure 4. Evolution of the current density Jy during the preonset evolution: (left) PIC simulation and (right) ideal MHD simulation.

concentration and intensification continue. There is basic agreement in the development of bifurcated thin
current sheets in the near tail. However, in contrast to the MHD simulation, in the PIC simulation, the bifur-
cated current sheets do not necessarily converge to a single sheet farther out. Possible reasons include
time dependency and/or pressure anisotropy. The compression in z primarily increases the Pzz component,
whereas the force balance in x is dominated by the Pxx component.

The bifurcated structure of the PIC current sheets by Figure 4 somewhat hides the fact that the current
density also becomes enhanced in the center around z = 0 and that the overall thickness decreases substan-
tially. This is demonstrated by Figure 5, which shows the current density profiles as functions of z for three F5

different times at x ≈ 13.1, which is close to the location where the neutral line starts to form. Solid lines
correspond to the PIC simulation and dashed lines to the MHD simulation. The overall current concentra-
tion is similar in both PIC and MHD simulations; however, the internal structure differs. Similar substructures
of the current sheet can also be found in PIC simulations of the slow compression of a one-dimensional

Figure 5. Current density as function of z at x ≈ 13 for three different
times. Solid lines correspond to the PIC simulation and dashed lines to
the ideal MHD simulation.

current sheet [Schindler and Hesse, 2008,
2010]. However, the current concentration
and the increase in the peak current density
by a factor of ∼3.5 in the 2-D case signif-
icantly exceed the values obtained in a
1-D compression.

Further insights into the effects of the exter-
nal driving are given by Figure 6, showing F6

the temporal evolution of the current sheet
half-thickness Lh at the location x ≈ 13.1 where
the X line forms (top), defined as the distance
from z = 0 to the location at which the current
density decreases to 50% of its maximum value.
The bottom part of Figure 6 shows the maxi-
mum current density. After onset, it is taken at
or near the x location of the X line. Solid red
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Figure 6. (Top) Current sheet (half-)thickness at x ≈ 13 as function of
time for PIC (solid red line) and two ideal MHD simulations (blue solid
and green dashed lines); (bottom) maximum current density, taken at
or near the location of the X line after X line formation, indicated by the
red dotted lines.

lines represent the PIC simulation, red dotted
lines indicated the time of X line formation. The
green dashed and solid blue lines in Figure 6
represent two ideal MHD runs for different val-
ues of 𝜔 = 0.01 and 𝜔 = 0.1, respectively,
as defined in equation (10), corresponding
to different driving periods 1∕𝜔. The two
cases were designed to lead to the same final
boundary perturbation.

The more slowly driven case (𝜔 = 0.01) can
be considered as truly quasi-static: the config-
uration and the characteristic parameters Lh
and Jmax do not change significantly after the
end of the driving period, t > 200. The more
rapidly driven case 𝜔 = 0.1, however, which is
equivalent to the driving in the PIC simulation,
although slow compared to a characteristic
Alfvén period, causes oscillations in Lh and Jmax,
which eventually approach the values of the
slowly driven case. The sudden jumps in Lh are
caused by a temporary triple-peak structure
of the current density as function of z. When
the valleys surrounding the central peak are
deep enough, Lh measures the half width of the
central peak; otherwise, it measures the half
width of the entire triple-peak structure. The

slowly driven case does not exhibit such triple-peak structure. This might be taken as an indication that the
double-peak structure of the current density in the PIC simulation prior to the onset of reconnection is also
a time-dependent effect. Further simulations are necessary to resolve this issue.

The more rapid driving obviously leads to a more significant initial current density enhancement and
current sheet thinning than the slow driving, easing the onset of reconnection. The current sheet
half-thickness in the PIC simulation at the time of X line formation is ∼ 0.5 ion skin depths (or ∼ 5 elec-
tron skin depths for our mass ratio of mi∕me = 100),in agreement with the results of Pritchett [2010].
The thickness decreases further shortly after the neutral line formation, which was not shown by Pritch-
ett [2010] but is consistent with observations [e.g., Sanny et al., 1994]. The fact that the MHD simulations
approach a minimum far in excess of the grid resolution is an indication that the evolution does not
quite reach a critical state (corresponding to infinite local current density with Lz → 0 in ideal MHD).
However, the current sheet thinning is sufficient to initiate reconnection in the PIC simulation.

Figure 7. Normal magnetic field Bz in the PIC simulation at z = 0
as function of x for selected times prior to and shortly after the
X line formation.

The variation of Bz along the x axis during the
preonset evolution and shortly after onset is
shown in Figure 7 for various selected times. F7

It shows the reduction of Bz , which continues
after the end of the driving period and assumes
a minimum at x ≈ 14, which later leads into the
formation of an X line. The figure demonstrates
the transition from a slow reduction of Bz dur-
ing the relaxation phase (t ≤ 60) to a rapid and
drastic change after the onset (t = 75).

A topic of particular interest in the evolution
prior to the onset of reconnection is the iden-
tification of signatures that might provide
a connection to the ionosphere, specifically
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Figure 8. Current sheet structure in the PIC simulation at t = 60, corresponding to the left bottom panel of Figure 4: (top) ion current
density, (middle) electron current density, and (bottom) electric field component Ez .

those that could be related to auroral arc formation or intensification, which is presumably the earliest
near-Earth substorm onset identifier [Akasofu, 1964]. The possible connection between auroral arcs and thin
current sheets in the magnetotail was pointed out by Schindler and Birn [2002], Birn et al. [2004], and Birn
et al. [2012]. An important feature in thin electron current sheets that might be relevant for this connec-
tion is the electric field perpendicular to the current sheet, which is an intrinsic property of current sheets
at small scales [e.g., Pritchett and Coroniti, 1994; Hesse et al., 1996a]. Figure 8 shows the contribution of ion F8

(top) and electron currents (middle) together with the electric field component Ez (bottom) at t = 60 in the
PIC simulation, just before the onset of reconnection. It is quite obvious that the bifurcated current sheet,
developed before the onset of reconnection, is carried by the electrons and has the characteristic signature
of the perpendicular electric field, as pointed out already by Birn et al. [2012] for the time immediately after
the formation of a neutral line. The associated potential drop is of the order of kT∕ewhere T = Ti+Te. Similar
results were shown by Pritchett [2010] for the time after the onset of reconnection.

3.2. Postonset Evolution

The onset of reconnection occurs in the PIC simulation when the conditions are suitable for the onset of
a tearing instability, particularly when Bz and the current sheet thickness are sufficiently reduced, at least
locally, to demagnetize electrons, as indicated by Figures 6 and 7. The dissipation necessary for reconnection
then is generated self-consistently. In the MHD simulation, numerical diffusion is not sufficient to initiate
reconnection. As discussed above, we therefore imposed arbitrary localized resistivity after t = 60, given by

𝜂 = 𝜂1∕ cosh
2{[(x − x0)∕d2

x
+ (z∕dz)2]} (12)

with dx = 2,dz = 1. The values of the peak resistivity 𝜂1 were chosen to be close to unity (in normalized
units), to approach reconnection rates commensurable with the rates in particle simulations [Birn and Hesse,
2001; Otto, 2001]. As shown by Figure 3, such agreement can indeed be achieved for 𝜂1 ≈ 0.5.

Figure 9 shows magnetic field lines and the plasma pressure of the PIC simulation (left) and the MHD sim- F9

ulation (right) in the x, z plane at different times. The times after the onset of reconnection were chosen to
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Figure 9. Evolution of the pressure and magnetic field: (left) PIC simulation and (right) MHD simulation with 𝜂1 = 0.5. Times after onset
are chosen to correspond to the same amount of reconnected flux; cf. Figure 3.

correspond to approximately equal amounts of reconnected flux in both simulations. The pressure in the
PIC simulation is defined by one third of the trace of the full pressure tensor, given by the sum of ion and
electron pressures. The overall evolution is very similar in both cases. The main difference is the fact that at
the later stages the plasmoid magnetic island as well as the collapsing inner tail region becomes thicker in
the MHD simulation.

4. Entropy

The flux tube entropy S, defined here by equation (1), has been identified as a major quantity governing
not only preonset [Birn and Schindler, 2002] but also postonset evolution [Birn et al., 2009;Wolf et al., 2009;
Dubyagin et al., 2011]. Figure 10a shows S(A) at different times during the PIC simulation. The pressure here F10

is taken again as one third of the trace of the full pressure tensor (both ions and electrons), and the integral
is taken from one boundary crossing at x = 0 to the other along closed field lines. To assure continuity, we
added the northern and southern parts of S(A) for field lines that were not closed within the simulation box,
exiting through the distant boundary x = 60 or the top and bottom boundaries |z| = 10. The values A3

and A5 mark field lines that initially cross the corners of the simulation box at x = 60, z = 0, and x = 60,
|z| = 10, respectively.

The function S(A) remains unchanged during the compression phase, t < 20, and the subsequent relax-
ation phase prior to the onset of reconnection (t < 60, not shown). After the onset, at t = 75, plasmoid
severance leads to a reduction of S(A) between A1, marking the first reconnected field line, and A2. At later
times, t = 100, reconnection and the reduction of S(A) reach open field lines, indicated by proceeding to
A = A4. Figure 10a demonstrates not only the conservation of S(A) prior to the onset and the localized reduc-
tion of S(A) associated with the severance of a plasmoid but also the conservation of S(A) on the shortened
reconnected field lines after the onset.

The approximate conservation of S(A) before and after reconnection holds not only for the full pressure
but also for the individual contributions from ions and electrons, as demonstrated by Figure 10b for the
electrons. This might indicate that both ions and electrons are heated fully adiabatically. However, closer
inspection shows that there are deviations from the exact adiabatic behavior. If both ion and electron gases
were compressed or expanded fully adiabatically, the pressure and temperature ratio would be exactly
conserved. Figure 11 shows that the electron to ion pressure ratio remains conserved during the initial F11
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Figure 10. Entropy function S(A), defined by equation (1), in the
PIC simulation at different times: (a) for the sum of ion and electron
pressures and (b) the same for the electrons only.

compression phase but increases by 10–20 %
not only on reconnected field lines but also
on the contracting field lines earthward of
the reconnection site (A > A1). In addition,
there are anisotropy effects discussed in the
following section.

5. Pressure Anisotropy

To further explore properties affecting
the approximate conservation of S(A),
we have integrated the invariants of the
double-adiabatic theory [Chew et al., 1956].
Analogous to single-adiabatic theory, one
can derive integral quantities by using mass
conservation also. These quantities are given by

M⟂(A) = ∫
p⟂

B
ds
B

(13)

and

M∥(A) = ∫ p1∕3
∥ B2∕3 ds

B
(14)

Figure 12 shows M⟂(A) and M∥(A) at differ- F12

ent times, demonstrating that both quantities
are fairly well-conserved, apart from the
losses through plasmoid severance. This holds
despite the fact that the local double-adiabatic

invariants are not necessarily conserved within a moving plasma element. The probable reason is that
in double-adiabatic theory, heat flux is completely neglected, whereas the conservation of the field line
integrals only requires negligible heat flux across field lines.

The conservation of the entropy function S(A) and the double-adiabatic quantitiesM⟂(A) and M∥(A) does
not result from the pressure remaining isotropic. Figure 13 demonstrates significant anisotropy, defined as F13

(p∥ − p⟂)∕p, at three different times corresponding to the end of the driving phase (t = 20), just prior to
the onset of reconnection (t = 60), and a late stage of energy and flux transfer (t = 100). The initial driving
phase leads to an increase in perpendicular anisotropy, consistent with a dominance of betatron accelera-
tion in the compressed lobe and outer plasma sheet fields. This anisotropy gets reduced significantly during
the relaxation phase, possibly as a consequence of mirror instability, except near the plasma sheet bound-
ary, where it increases due to the continued contraction. The isotropization, however, does not affect the
conservation of the entropy integral (1). The later phase after the onset of reconnection leads to an increase

Figure 11. Ratio of electron to ion pressure in the PIC simulation, shown
as function of A at four different times.

in parallel anisotropy, consistent with
first-order Fermi acceleration in the contracting
near-Earth field and the ejected plasmoid.

The plasma pressure is dominated by the ion
pressure tensor. Further details of the ion pres-
sure components as functions of A and t are
shown in Figure 14. Since the pressure is not F14

necessarily constant along field lines, the com-
ponents Pii are taken as field line averages.
Figures 14a and 14b demonstrate that the ini-
tial compression primarily leads to an increase
of Pzzi. However, due to approximate gyrotropy,
Pyyi ≈ Pzzi close to the plasma sheet boundary
A ≈ A3, whereas Pyyi ≈ Pxxi in the near tail where
A ≈ 0. This remains similar near or shortly after
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Figure 12. Invariants of double-adiabatic theory, integrated along field
lines at different times: (top) M⟂(A) = ∫ (p⟂∕B)ds∕B and (bottom)
M∥(A) = ∫ p1∕3

∥ B2∕3ds∕B.

the onset of reconnection (Figures 14b and
14c), whereas at later times (Figure 14d), the
field collapse leads to a compression in x and a
corresponding increase of Pxxi, while Pyyi and Pzzi

approach each other, consistent with the par-
allel anisotropy shown in Figure 13. Figure 14b
also demonstrates the steepening gradient
of the pressure curves, which, in an isotropic
equilibrium model, would be directly related to
the current density increase (J = dp∕dA). The
electrons show a qualitatively similar behav-
ior during the late phase, whereas they remain
more closely isotropic in the earlier phases.

Despite the increase of the pressure on con-
vecting field lines, local observations might
show a decrease in pressure, as demon-
strated by Figure 15 for both electron and F15

ion pressure. Both decrease in the vicinity
of the reconnection site due to the inflow
of low-pressure field lines from the plasma
sheet boundary layer and the lobes. The
near-Earth part, however, shows an increase
in pressure from the compression of closed
field lines.

6. Energy Transfer and Conversion

Using a one-fluid approximation and neglecting heat flux and pressure anisotropy, one can write energy
conservation and conversion in the following form [e.g., Birn and Hesse, 2005]

𝜕um∕𝜕t = −∇ ⋅ 𝐒 − 𝐣 ⋅ 𝐄
= −∇ ⋅ 𝐒 − 𝐣 ⋅ 𝐄′ − 𝐯 ⋅ (𝐣 × 𝐁) (15)

𝜕uth∕𝜕t = −∇ ⋅𝐇 + 𝐯 ⋅ ∇p + 𝐣 ⋅ 𝐄′ (16)

𝜕uk∕𝜕t = −∇ ⋅
(
uk 𝐯

)
+ 𝐯 ⋅ (𝐣 × 𝐁 − ∇p) (17)

where 𝐄′ = 𝐄 + 𝐯 × 𝐁 is the electric field in the plasma rest frame, and

um = B2∕2 (18)

uth = p∕(𝛾 − 1) (19)

uk = 𝜌v2∕2 ≈ nmiv
2
i
∕2 (20)

represent magnetic, thermal, and bulk kinetic energy densities, respectively, with 𝛾 = 5∕3 for an isotropic
plasma pressure. The energy fluxes are defined by

𝐒 = 𝐄 × 𝐁 (Poynting vector) (21)

𝐇 = (uth + p)𝐯 (enthalpy flux) (22)

𝐊 = uk𝐯 (bulk kinetic energy flux) (23)
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Figure 13. Pressure anisotropy (p∥ − p⟂)∕p in the PIC simulation at three different times.

Spatial details of the dominant ingoing and outgoing energy fluxes are shown in Figure 16, together with F16

the (top) electric field component Ey , at the corresponding times t = 85 (PIC) and t = 75 (MHD). For bet-
ter comparison between PIC and MHD results, we have evaluated the PIC energy fluxes also in a one-fluid
manner, identifying p again with one third of the trace of the full pressure tensor and neglecting anisotropy
contributions to𝐇. There are differences, primarily in magnitude, but generally good qualitative agreements

Figure 14. Average ion pressure components as function of the flux variable A at four different times. The meaning of the flux values
A1 – A4 is the same as in Figure 10a: A3 represents the open-closed boundary, before reconnection reaches open field lines, connected
to x = 60, z = 0, A1 represents the first reconnected field line, A2 and A4 represent separatrix field lines, reconnected at t = 75 and
t = 100, respectively.
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Figure 15. Electron and ion pressure along the x axis at four
different times.

between PIC and MHD. The MHD flow and the
associated enthalpy flux have advanced closer
to the Earth at this time. The electric field in
both simulations is relatively uniform only in
a subsection of the box considered. This indi-
cates that the box in consideration is not in
full steady state. The MHD electric field is more
enhanced at this time, but the extent and the
location of the regions of enhanced Ey agree
well, although they change in time for both
types of simulations. The MHD simulation also
shows an expansion in z (associated with a
reversal of Ey and Sz) earthward and tailward
of the reference box, not seen in the PIC sim-
ulation. It is noteworthy, however, that such
an expansion, which may be part of a quasi
periodic pulsation, has been found also in Ther-
mal Emission Imaging System observations as
consequences of earthward flow bursts and
dipolarizations [Panov et al., 2010].

The temporal variation of the outgoing energy
fluxes from the reconnection site is shown in
Figure 17, integrated over the boundaries of F17

the box 8 < x < 20, |z| < 2.0, shown in
Figure 16, for two MHD simulation with 𝜂1 = 0.5 (solid lines) and 𝜂1 = 0.2 (dashed lines), together with
three different instants in the PIC simulation (circles). Showing the fluxes as function of reconnected flux,
Ψrec, rather than time, enables us to show both MHD runs together with the PIC results. Positive and negative
values represent tailward and earthward fluxes, respectively. The enthalpy fluxes in the PIC simulation have
been evaluated in two ways, with the isotropy approximation equation (22) and with the full anisotropic
pressure tensor (shown in Figure 17). The differences are only of the order of a few percent.

The PIC and MHD simulations agree in the order of magnitude of the energy flows and in the fact that
enthalpy flux is the dominant outflow in both directions, and that outgoing Poynting flux and bulk kinetic
energy flux are smaller by about 1 order of magnitude (although their relative order is sometimes different
between PIC and MHD). PIC and MHD also show a similar energy flow burst in the earthward direction for

Figure 16. Electric field and dominant ingoing and outgoing energy fluxes, at (left) t = 85 for the PIC simulation and at (right) t = 69
for an MHD simulation with 𝜂1 = 0.5: (top) electric field component Ey , (middle) ingoing Poynting flux Sz , and (bottom) outgoing
enthalpy flux. The solid black rectangle shows the box used for the integrated fluxes shown in Figure 17.
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Figure 17. Outgoing energy fluxes from the reconnection site as
function of reconnected magnetic flux. The energy fluxes are inte-
grated over the boundaries of a box 8 < x < 20, |z| < 2.0.
Circles correspond to the PIC simulation, solid lines to an MHD sim-
ulation with 𝜂1 = 0.5, and dashed lines to an MHD simulation
with 𝜂1 = 0.2. Positive and negative values represent tailward and
earthward fluxes, respectively.

Ψrec ≈ 1; however, the tailward energy flow shows
a larger increase in the MHD simulation. We should
stress, however, that the fluxes and the energy
conversion are strongly time-dependent and
that the PIC fluxes were evaluated only for three
instants after the onset of reconnection.

The PIC fluxes shown in Figure 17 included both
ions and electrons. Details of ion and electron
contributions are given in Table 1 for t = 85 and T1

t = 100, together with MHD results for 𝜂1 = 0.5
at t = 69 and t = 83, respectively. The values in
the table again show the relatively minor contri-
butions of the outgoing Poynting and bulk kinetic
energy fluxes. The outgoing fluxes typically exceed
the incoming fluxes, in both PIC and MHD. This
indicates again that the systems are not in a local
steady state but that energy is released also from
within the box considered. Table 1 also shows that

the electron contributions to the outgoing enthalpy fluxes are more significant than estimates based on the
original 1/5 electron to ion temperature ratio.

Figure 16 and Table 1 provide information of the instantaneous energy fluxes. A more global picture of the
energy release and conversion can be obtained from considering the changes in energy densities, defined
by equations (18)–(20). Figure 18 shows the changes of the energy densities between t = 60, just prior to F18

the onset of reconnection, and t = 100. This time does not represent the final state, as can be seen from
Figure 3. However, the later evolution is characterized by the plasmoid hitting the closed tailward boundary,
causing reflections and oscillations, not applicable to the tail substorm evolution. Figure 18 indicates that
the magnetic energy released from the lobes is converted primarily into thermal energy of the inner col-
lapsed tail region. The thermal energy patterns for each species look very similar to Figure 18b, despite the
fact that, at t = 100, 21.5% of the released energy has gone to electron heating, while 64.6% has gone into

Q2

ion heating, more than expected from the initial temperature ratio of 1/5. The remainder of 13.9% has gone
to bulk kinetic energy at this time, dominated by the ions.

Figure 18a also shows a reduction of the magnetic energy in the innermost portion of the tail, resulting from
an expansion of the plasma sheet, as well as an increase near the equator around x ≈ 10 and at higher
latitudes, associated with the dipolarization. Figure 18b further shows a reduction of thermal energy density
around the reconnection site. This results from the transport of plasma sheet plasma both earthward and
tailward together with the inflow of lower pressure lobe plasma.

7. Dissipation andDipolarization

Equations (15)–(17) show that the transfer of magnetic to thermal energy, via 𝐣 ⋅ 𝐄, may consist of a direct
transfer via Joule dissipation 𝐣 ⋅ 𝐄′ (equivalent to Ohmic heating 𝜂j2 in MHD), which may be used to iden-
tify the “dissipation region” [Zenitani et al., 2011], or, indirectly, of a transfer by Lorentz forces to bulk kinetic
energy, 𝐯 ⋅ ( 𝐣 × 𝐁), with subsequent (or immediate) transfer to thermal energy, via 𝐯 ⋅ ∇p, resulting from

Table 1. Energy Fluxes Into and Out of the Boxa

Sin SEarth Stail Hi,in Hi,Earth Hi,tail He,in He,Earth He,tail Hin HEarth Htail

PIC(85) 1.06 0.11 0.08 0.34 1.00 0.71 0.17 0.26 0.21 0.51 1.26 0.92
MHD(69) 1.52 0.09 0.03 - - - - - - 0.83 1.52 1.83

PIC(100) 0.99 0.09 0.13 0.20 0.26 0.87 0.08 0.09 0.26 0.28 0.35 0.96
MHD(83) 1.11 0.01 0.14 - - - - - - 0.48 0.31 1.38

aIndicated in Figure 16, taken at t = 85 and t = 100 for the PIC simulation, corresponding to t = 69
and t = 83, respectively, for the MHD simulation with 𝜂1 = 0.5. Incoming fluxes are added over both top
and bottom boundaries. The last three columns show the sum of ion and electron fluxes and the MHD enthalpy
fluxes, respectively.
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Figure 18. Changes in energy densities between t = 60 and t = 100, Δu = u(100) − u(60), showing (a) magnetic energy, (b) thermal
energy, and (c) bulk kinetic energy.

approximate force balance between Lorentz forces and pressure gradient forces [Birn and Hesse, 2005].
Figure 19 shows 𝐣 ⋅ 𝐄′ in the PIC simulation, together with the electron and ion contributions to 𝐣 ⋅ 𝐄 for two F19

different times. The earlier time, t = 85, is close to the peak of the energy transfer into the earthward direc-
tion, as already shown in Figure 17, whereas at t = 100, the energy transfer to the tailward side dominates.
The relative roles of ion and electron currents in the energy transfer 𝐣 ⋅ 𝐄, shown in the bottom two pan-
els, as well as the earthward-tailward asymmetry, shown in the bottom panel are consistent with results of
Pritchett [2010]. At both times, Joule heating, 𝐣 ⋅ 𝐄′, remains confined to the vicinity of the X line, domi-
nated by the electron current contribution. Outside of that region, energy transfer takes place inside the
separatrices within an earthward (t = 85) or tailward (t = 100) flow.

The earthward flow, which persists to t = 100, and the associated increase of Bz may be identified with
a dipolarization front (DF) [Nakamura et al., 2002], demonstrated earlier in 2-D and 3-D MHD simulations
[Hesse and Birn, 1994; Birn and Hesse, 2000; Birn et al., 2011] and 2-D hybrid simulations [Hesse et al., 1998]

Figure 19. Joule dissipation 𝐣 ⋅ 𝐄′ and energy conversion 𝐣e ⋅ 𝐄, 𝐣i ⋅ 𝐄 from ion and electron currents in the PIC simulation at two
different times.
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Figure 20. Magnetic field component Bz and cross-tail current density contributions in the PIC simulation at t = 85.

of magnetotail reconnection, as well as in more localized particle simulations of a reconnecting Harris sheet
[Sitnov et al., 2009].

Further details of the dipolarization front (DF) are given in Figures 20 and 21. Figure 20 shows the enhance- F20

F21ment of Bz and the current contributions associated with the earthward flow, while Figure 21 shows the
variation of Bz , Ex , and Ey along the x axis for three different times. It is obvious from Figure 20 that the sharp
increase of the magnitude of Bz at the earthward edge is associated with an electron current, while the main
cross-tail current earthward of the DF is carried by the ions (in the simulation frame). It is noteworthy that
there is no equivalent sharp front on the tailward side. We further point out the sharp increase in the mag-
nitude of Ex (our sign is opposite to that in GSM coordinates), which is comparable to or even exceeds the
increase of Ey . This is a kinetic effect not included in MHD, resulting from the fact that the current in the thin
vertical current sheet is a Hall current carried by 𝐄 × 𝐁 drift of the electrons. The x gradient of Ey decreases
when the flow is slowed and magnetic flux is piled up at t = 100.

The absence of significant Joule dissipation at the DF, shown in Figure 19, indicates that the energy conver-
sion in the DF is dominated by the ideal term 𝐣 ⋅ (−𝐯×𝐁) = 𝐣 ⋅ (−𝐯e×𝐁). In agreement with Sitnov et al. [2009]
and Pritchett [2010], we find that 𝐣⋅𝐄 at the DF is dominated by the ion current. This can be easily understood
from the absence of significant dissipation 𝐣 ⋅ 𝐄′, which implies that 𝐄 ≈ −𝐯e × 𝐁, such that 𝐣e ⋅ 𝐄 ≈ 0 and

𝐣i ⋅ 𝐄 ≈ ne𝐯i ⋅ (−𝐯e × 𝐁) = 𝐯i ⋅ (𝐣e × 𝐁) (24)
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Figure 21. Variation of characteristic quantities in the PIC simu-
lation along the x axis at three different times, (a) magnetic field
component Bz , (b) electric field component Ex , and (c) electric
field component Ey . To reduce noise, Ex is averaged in x and z
over ±5 neighboring grid points, while Ey is averaged over ±2
neighboring points.

The energy conversion (we use the term “dis-
sipation” in a narrower sense than Sitnov et al.
[2009]) thus results from the ion acceleration by
the Lorentz force associated with the dominant
electron current (with subsequent thermaliza-
tion). Observations of the presence or absence of
Joule dissipation indicate variable results. A study
of six dipolarization events by Runov et al. [2011]
showed both positive and negative values for 𝐣 ⋅ 𝐄′

with an average positive.

8. Summary andDiscussion

Using two-dimensional particle-in-cell and mag-
netohydrodynamic simulations of magnetotail
dynamics, we have studied the onset of recon-
nection and the subsequent energy conversion
and transfer. Specific emphasis of this investi-
gation was on properties of the preonset phase
and the energy transfer after onset in a realistic
magnetotail scenario. In either simulation, recon-
nection onset was preceded by a driven phase,
during which magnetic flux was added to the
tail at the high-latitude boundaries, similar to the
PIC simulation of Hesse and Schindler [2001] and
three-dimensional MHD simulations [Birn et al.,
2011]. The inflow subsided after t = 20 (mea-
sured in ion-cyclotron periods). However, the
configuration continued to adjust to the forced
boundary deformation, and reconnection did not

start in the PIC simulation until after t = 60. A comparison with ideal MHD simulations of similar boundary
deformations but different time scales of the driving period indicates that this adjustment occurs on a char-
acteristic time scale of ∼ 100 Alfvén times. It is noteworthy that the continued adjustment to the change in
boundary conditions does not lead to fast flows or noticeable increases in kinetic energy prior to the onset
of reconnection.

For better comparison with the PIC simulation, the onset of reconnection in the resistive MHD simulation
was initiated by imposing finite resistivity at t = 60. To approximate the fast growth in the PIC simulation,
the resistivity was chosen to be spatially localized with a peak value corresponding to a Lundquist number
(commonly also called magnetic Reynolds number) of order unity [e.g., Birn and Hesse, 2001; Otto, 2001].

The externally forced deformation leads to a current intensification and the formation of thin current sheets,
which are bifurcated in the near tail, converging to a single embedded thin current sheet farther out in the
MHD simulations. Eventually, the current concentration and intensification leads to the onset of reconnec-
tion (enforced in the MHD simulation by imposing finite resistivity), the formation and ejection of a plasmoid
and a collapse of the inner tail. The onset time and the growth rate might be affected by the current bifur-
cation [Camporeale and Lapenta, 2005;Matsui and Daughton, 2008], which persisted close to onset, and the
assumed mass ratiomi∕me = 100. However, these effects were not investigated in detail here.

The location of the X line is largely determined by the location of strongest thinning and reduction of Bz ,
which is about the same in PIC and MHD and the consequence of the applied boundary inflow. The relevant
length scale for distance from the near-Earth boundary, therefore, is not a kinetic scale but the scale of the
unperturbed plasma/current sheet, which is a few RE in a realistic tail. Thus, the distance from the near-Earth
boundary would be in the range 10–20 RE , which seems realistic, considering also that our inner boundary is
not the Earth.

Adiabatic ideal MHD theory and simulations [Birn and Schindler, 2002] have demonstrated that modest mag-
netotail deformations, satisfying mass, and entropy conservation on closed magnetic flux tubes, may lead to
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thin current sheet formation and eventual loss of neighboring equilibrium, providing a plausible concept of
the onset of instability and substorm initiation. The entropy conservation has been demonstrated previously
in more localized PIC simulations of reconnection in a plane current sheet [Birn et al., 2006; Birn and Hesse,
2010], but not in realistic magnetotail configurations. Here we demonstrated that prior to reconnection,
and even after the plasmoid loss, the particle distributions satisfy very well integral entropy conservation,
individually as well as one fluid, despite significant anisotropies.

However, the fact that the ideal MHD evolution leads to oscillations for more rapid driving (𝜔 = 0.1) and
a gradual relaxation toward equilibrium values for slower driving (𝜔 = 0.01) (Figure 6) indicates that the
system has not reached the threshold for loss of equilibrium, so that the onset of reconnection in the PIC
simulation should be interpreted as an onset of (electron tearing) instability. This is supported by evaluating
the electron gyrotropy parameter 𝜁 = k𝜌n [Hesse and Schindler, 2001], where k = 2𝜋∕𝜆 and 𝜌n is the electron
gyro radius in the normal field Bn at z = 0. Using a characteristic wave length 𝜆 ≈ 10di and a characteristic
value of Bn∕B0 ≈ 0.02 at t = 60, as indicated by Figure 6, we find 𝜁 ≈ 𝜋∕2. As discussed by Hesse and
Schindler [2001], instability is expected when 𝜁 approaches or exceeds a value close to unity.

The thin current sheets that develop during this phase in the PIC simulation are carried by electrons,
consistent with earlier findings [Pritchett and Coroniti, 1994; Hesse et al., 1996b], associated with a strong
electrostatic perpendicular potential drop of the order of k(Ti+Te)∕e. The closure of the perpendicular poten-
tial through parallel electric fields may provide a near-Earth connection by driving auroral arcs even prior to
the onset of reconnection [Pritchett and Coroniti, 1995; Birn et al., 2004].

We further investigated the energy conversion and transfer. As in localized simulations of reconnection,
Joule dissipation 𝐣 ⋅ 𝐄′, where 𝐄′ is the electric field in the plasma rest frame, was found to be strongly local-
ized and not significantly contributing to the energy conversion. The energy transfer mainly consists of a
conversion of incoming Poynting flux to outgoing enthalpy flux, even to the open tail side. The PIC simula-
tion and the MHD simulations agree in the basics and the approximate magnitude of the energy conversion,
although not in all details. The PIC simulation shows a significant contribution of electrons to the overall
energy budget, beyond what is expected from the initial 1/5 electron to ion temperature ratio.

The earthward flow in the PIC simulation also showed characteristics of a dipolarization front [Nakamura et
al., 2002], identified in MHD [Hesse and Birn, 1994; Birn and Hesse, 2000; Birn et al., 2011], hybrid [Hesse et al.,
1998] and PIC simulations of magnetotail reconnection [Pritchett, 2010], as well as localized plane current
sheet reconnection [Sitnov et al., 2009]: a sharp enhancement of Bz associated with a thin vertical (i.e., y, z
oriented) electron current sheet and a strong Ex component. Our simulation demonstrated the earthward
propagation as well as a pileup of magnetic flux when the earthward propagation is stopped.

One important aspect of comparing PIC and MHD simulations is to find out to what extent particle simula-
tion results can be approximated (or ignored) by fluid simulations. Here we focused on the evolution prior
to the onset of reconnection and the energy conversion after reconnection. We found that the preonset
evolution, including particularly the integral entropy conservation, is well described by ideal MHD, despite
anisotropies and other kinetic effects in PIC simulations. Also, the energy conversion is qualitatively (within
factors of ∼2) in agreement. The onset time and mechanism are more problematic. Here we simply imposed
resistivity values and onset times to agree roughly with the PIC results. It might be possible to identify onset
times by characteristic values of the local magnetic field and current density, but it is not shown yet how
well that works in general 3-D configurations. Also, the magnitude of resistivity applied here can provide
maximum reconnection rates comparable to the fast rates of collisionless reconnection but the immediate
imposition of high resistivity does not capture the more gradual onset of collisionless reconnection. More
research is needed to resolve these issues.
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7. Drawing Markups Tools – for drawing shapes, lines and freeform 
annotations on proofs and commenting on these marks. 
Allows shapes, lines and freeform annotations to be drawn on proofs and for 
comment to be made on these marks.. 

How to use it 

� Click on one of the shapes in the Drawing 
Markups section. 

� Click on the proof at the relevant point and 
draw the selected shape with the cursor. 

� To add a comment to the drawn shape, 
move the cursor over the shape until an 
arrowhead appears. 

� Double click on the shape and type any 
text in the red box that appears. 
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Additional�reprint�and�journal�issue�purchases�
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Should�you�wish�to�purchase�additional�copies�of�your�article,�
�please�click�on�the�link�and�follow�the�instructions�provided:�

�
Corresponding�authors�are�invited�to�inform�their�co�authors�of�
the�reprint�options�available.�

�
Please�note�that�regardless�of�the�form�in�which�they�are�acquired,�
reprints�should�not�be�resold,�nor�further�disseminated�in�electronic�form,�nor�
deployed�in�part�or�in�whole�in�any�marketing,�promotional�or�educational�
contexts�without�authorization�from�Wiley.�Permissions�requests�should�be�
directed�to�mailto:�permissionsus@wiley.com�

�
For�information�about�‘Pay�Per�View�and�Article�Select’�click�on�the�following�
link:�http://wileyonlinelibrary.com/ppv
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