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Overview

The objective of this work was to exercise an out-of-autoclave all-bonded joint
design concept for a Space Launch System (SLS) fairing during the
Composites for Exploration (CoEx) effort

This presentation aims to:
* Report the buckling test and analysis correlation results for
the 54" x 29” CoEx IM7/977-3 jointed panel. The analyses

include:
» Pre-test analyses to obtain a baseline buckling load and the
stress state
= A trade study to look at design changes to lower the panel
ends/corners stresses
= Correlating the buckling test data:
o Using linear vs. non-linear analysis
o Investigating surface (shape) imperfections on the jointed
panel buckling behavior
* Present a summary results of the damaged jointed panel
buckling and edge-supported compression tests, and to

discuss the next steps to correlate the observed behayiggs;ti
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Background

* The parent material:

— The Hitco demonstration HC sandwich panel, 1/16t" arc segment of 33-ft diameter
cylinder, made under the CoEx program

® 8-ply [45°/90°/-45°/0°], face-sheets (IM7/977-3) with 1 in thick 3.1 pcf Al

honeycomb core Segment 1/scan 1
#4512 >
Designated segment #1
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A B
¥ ¥
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Designated segment #2

Note: The final trimming reduced the overall size of the “jointed panel” to 52 in. x 27.8 in.
(The panel still to be referred to as 54 in x 29 in)
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Bonded Joint Configuration
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5-ply out of autoclave cured plain weave

« Cured ply thickness:0.008 in (140-800/5320-1) laminate

* Dominant mechanical properties were obtained through >
testing _———

* Joint out-of-autoclave cured to H/C panel in a co-bond :

operation _— CAM '
* The joint was made and inspected without e I ST L
any flaws




The Baseline FE Model Description

RBE2s (Top & Bottom)

N

~0.5-in. element size with finer mesh at
the joint region and at the fixed ends

- Total of 61,146 elements and 56,444
nodes

Face-sheets and bonded joint were
modeled using 2-D elements
(CQUAD4/PCOMP) with proper off-
setting

RBEZ2s were used to apply load and
boundary conditions at the top and
bottom

o Top: Applied nodal load/displacement

while constraining all degrees of
freedom except for the axial translation

o Bottom: Fixed

1 in%

z

52 in

e

%
l 4 in. Wide Bonded Join__t___,

27.8in— -
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The Baseline FE Model Description -cont.

4 in. Wide Bonded Joint

—] <= Panel Cross Section

Core was modeled using solid
elements (5 elements through
the thickness)

- 2-D plate elements share nodes

_ : . Adhesive Paste
with the most inner/outer core solid Joint Laminate

3-D Core

elements

Potting region and the Al frame
(fixture) were modeled using
solid elements

Cut (potting) was modeled
~0.24 in wide to avoid a very
fine mesh

2-D Face-sheet

Aluminum Frame
Potting Compound
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Buckling and Strength Baseline Analyses
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Euler eigenvector buckling contour
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Panel End-Condition Improvement

To address the high stress concentration issue at the ends/corners the
following modifications were examined:

* Adding doublers to panel ends
* Including stress relief features into the potting compound
« Having both, the end-doublers, and the stress relief features

‘CAV




Addlng End Doublers

shown

2.5in Wide Doubler

Doublers
 Plain weave

* A 4-ply laminate
» Co-bonded to panel at same time
as joints

End-Doubler & FS
A




Adding Stress Relief Features

* The potting compound at the 3-D Core
corners was removed, as 2-D Face-sheet
shown, to release the stresses

at the corners/edges

Stress Relief

Aluminum Frame
Potting Compound

-




Face-sheet/Joint/Doubler Failure Index

with End-doublers (only)

Failure Index Contour
(Max. Strain Failure Criterion)
at the critical buckling load, for
each configuration

Base-line Configuration

P critical = 88.7 kips
with Stress Relief Features (onIy)

P critical = 88.4 kips | e
Selected Design _——u

P critical =

Failure Index Contour, Max. Strain Failure Criterion
with End-doublers and Stress Relief Features

P critical = 85.1 kips
z

L.




Core Stresses

Core Through Thickness Stress at Panel Ends, psi
Base-line Configuration Base-line Configuration

o < Pecritical = 85.1 kips

262,

222

with End-doublers (onl 183,

144

104 <— P critical = 88.7 kips

with Stress Relief Features (only) 137

<—— P critical = 84.9 kips

with End-doublers and Stress Relief Features

-210.

-2h0.

<—— P critical = 88.4 kips

-289.

Selected configuration

SOL 105 Face-Sheet and Joint | Honeycomb Out-of-Plane Stresses, psi = .
Configuration Buckling Critical . e
Load (kips) Max. FI Mino, | Max o, [Tzxl T

Base-line 85.1 0.61 -289 301 459 ¢
with End-doublers 88.7 0.50 -255 149 478 c‘nM
with Stress Relief ]

84.9 0.54 -287

Fm THE COMPOSI ES AND ADVANCED MATERIALS EXPO
with End-doublers
and Stress Relief 88.4 =217

Features




Test Article

» Made to the recommended specifications
* The joint was inspected without any flaws ( Also, made NDE standard)

. End-dolibler . ¢

Core Splice |= = = =/ =|= = = =

Stress Relief Feature
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Surface Non-uniformities to FE Model

* Prior to testing, surface imperfections were measured
on both the IML and OML surfaces, individually
» Used single feature point inspection to create point

P34

clouds on both the IML and OML surfaces

» The point clouds were then traced along the length of
the panel at six different width locations (two on each left,

center and right sides) to obtain an imperfection profile on

each surface

> °
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3-D Core

2-D Face-sheet

Stress Relief Aluminum Frame

Potting Compound

the maximum bow magnitude was " ==
incorporated into the FE model for FE
analysis et



Buckling Test

Buckling Test # 1

Test was Conducted (by S. Kellas) at LaRC

The jointed panel reached buckling load of 79.3
K-pounds without joint failure

— Panel buckled toward IML

Test Details:
o 600-kip test frame

o Photogrammetry (VIC system) on both
surfaces to obtain full-field
strains/displacements

o Four displacement transducers to measure
end shortening

o Total of 20 back-to-back strain gages on
OML/IML for local strain measurements,
specimen alignment and controlling the test




Surface Imperfection Affected Linear
Buckling Response

Predicted buckling loads vs. test data
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Surface Imperfection Affected Non-linear
Buckling Response

» Out-of-plane deformation at 0.25” imposed axial displacement

Surface imperfection NOT included in FEM
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Bow Affected Buckling Critical Load

Surface imperfection NOT included in FEM Surface imperfection included in FEM
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» Critical buckling load decreases as a result of including the surface—g =

Imperfections _— CAM ;
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Load, Ib

x 10

Onset of Buckling Determination

NASTRAN, SOL 106

—-OML - without Bow
—&-|ML - without Bow
-@-0OML - with Bow
~©--|ML - with Bow

-8 -6 -4 -2 0
Axial Strain, in/in

>

Back-to-back /
2D elements

Monitoring back to back elements’ axial strains, in the
panel’s middle edge to determine the onset of buckling
analytically — Analogous to what determines when the
buckling event has occurred during the experlment
prior to unloading the panel, without
cartographically failing the specimen—
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Axial Deformation/ End Shortening
Correlation

Test correlatlon at buckllng load of ~79.3 kips Test correlation at buckling load of ~79.3 kips
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Out-of-plane Deformation Correlation

0.05

Test correlation at buckling load of ~79.3 kips 0

Test correlation at buckling load of ~79.3 kips
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Axial Strain Correlation
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 Qualitative and qualitative
comparison

* The ~4% stiffness difference
causes the FEA to show slightly
higher axial strains

000333
-0.00286

4000343
-0.00309

-0.00358
-0.00331

-0.003eg
0.00354

000377
-0.00377

000387
-0.004

-0.00336
0.00422

-0.00406
-0.00445

000475

-0.00468

000425
-0.0043

0.00133 -0.00278

000156 -0.00286

0.00179 -0.00294

-0.00202 -0.00302
0.00225 -0.0031
-0.00247 -0.00316
-0.0027 -0.00326
0.00293 -0.00334
000316 -0.00342
0.00339 -0.00343
-0.00362 -0.00357

0.00384 -0.00365

-0.00381

-0.00407

-0.0043

0.00453 -0.00383

0.00476 -0.00357

-0.00499 -0.00405




Hoop Strain Correlation

Test correlation at buckling load of ~79.3 kips
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Damaged Jointed Panel Buckling Test

Pre-Test Impact Damage - UT
Inspection Results

Post Test - UT Inspection :
Results of the Same Damage ¥
Area

Joint damage does not grow after buckling Test
(80K Ibs-f)
« 5.5 ft-lbs Impact Energy

Impact and UT inspections by W. Jackson & M. Czabaj at NASA/LaRC— g



Edge-Supported Damaged Jointed Panel
Tests: Impacted OML - Off Joint Centerline

Buckling Test # 3 Objectives: To evaluate —
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The evolution of impacted damage
with compressive load; the axial VIC

strain at different loads/frames

pedw| oyy

X::rasour;tdI:PE Result The catastrophic failure at average center
er 5.5 ft-lb impact strain of +6000 pe (~123 kips)




Next Steps

* Correlate the edge-supported panel compression

test to failure
— Modeling the impacted initial damage
— Study the panel’s response without and with the initial damage

— And ultimately, model and analyze the damage propagation
leading to the catastrophic failure at ~123 kips
« Objective: To adapt a practical/general analysis
approach for analyzing similar progressive failures

In composite joints
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