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Overview
The objective of this work was to exercise an out-of-autoclave all-bonded joint 

design concept for a Space Launch System (SLS) fairing during the 
Composites for Exploration (CoEx) effort

This presentation aims to:
• Report the buckling test and analysis correlation results for 
the 54” x 29” CoEx IM7/977-3 jointed panel. The analyses 
include:

� Pre-test analyses to obtain a baseline buckling load and the 
stress state
� A trade study to look at design changes to lower the panel 
ends/corners stresses
� Correlating the buckling test data:

o Using linear vs. non-linear analysis 
o Investigating surface (shape) imperfections on the jointed 
panel buckling behavior

• Present a summary results of the damaged jointed panel 
buckling and edge-supported compression tests, and to 
discuss the next steps to correlate the observed behaviors



Background
• The parent material:

– The Hitco demonstration HC sandwich panel, 1/16th arc segment of 33-ft diameter 
cylinder, made under the CoEx program

• 8-ply [45º/90º/-45º/0º]s face-sheets (IM7/977-3) with 1 in thick 3.1 pcf Al 
honeycomb core

Note: The final trimming reduced the overall size of the “jointed panel” to 52 in. x 27.8 in.
(The panel still to be referred to as 54 in x 29 in)



Bonded Joint Configuration

2 in

• Cured ply thickness:0.008 in 
• Dominant mechanical properties were obtained through 
testing
• Joint out-of-autoclave cured to H/C panel in a co-bond
operation
• The joint was made and inspected without 
any flaws

5-ply out of autoclave cured plain weave 
(T40-800/5320-1) laminate

IM7/977-3 Potting compound
0.1” Max. width



The Baseline FE Model Description

• ~0.5-in. element size with finer mesh at 
the joint region and at the fixed ends
- Total of 61,146 elements and 56,444 
nodes

• Face-sheets and bonded joint were 
modeled using 2-D elements 
(CQUAD4/PCOMP) with proper off-
setting

• RBE2s were used to apply load and 
boundary conditions at the top and 
bottom
o Top: Applied nodal load/displacement  

while constraining all degrees of 
freedom except for the axial translation

o Bottom: Fixed 

RBE2s (Top & Bottom)

4 in. Wide Bonded Joint

52
 in

27.8 in

1 in



The Baseline FE Model Description – Cont.

Aluminum Frame
Potting Compound

2-D Face-sheet

3-D Core

Panel Cross Section

4 in. Wide Bonded Joint

Adhesive Paste
Joint Laminate

• Core was modeled using solid 
elements (5 elements through 
the thickness)
- 2-D plate elements share nodes 
with the most inner/outer core solid 
elements

• Potting region and the Al frame 
(fixture) were modeled using 
solid elements

• Cut (potting) was modeled 
~0.24 in wide to avoid a very 
fine mesh

3.5 in



Buckling and Strength Baseline Analyses
NASTRAN linear SOL 105 
Euler eigenvector buckling contour 
Pcritical = 85.1 kips 

Core Through Thickness Stress, psiCore Shear (xz) Stress, psi

3D Core
Shear stress: 459 psi

Potted

3D Core
TT stress: -289 psi
                 +391 psi

Max. Failure Index, Max. Strain Failure Criterion

2D F/S-Joint
Max FI = 0.61

Strength (SOL 101):
• Stress concentration in
F/S and core at ends/
corners
• FI = 1 indicates failure

Hexcel Core Stress Allowables:
Shear (xz): ~145 psi
Compressive stabilized strength: 
215 (min) - 300 (typ) psi
Crush strength: 130 psi
Note: For stress components: x indicates axial, y hoop, and z 
through thickness directions.



Panel End-Condition Improvement 

To address the high stress concentration issue at the ends/corners the 
following modifications were examined:

• Adding doublers to panel ends
• Including stress relief features into the potting compound 
• Having both, the end-doublers, and the stress relief features



Adding End Doublers

FS

2.5 in Wide Doubler
End frame is not shown

2.5 in 

Potted

Aluminum Frame

Doublers
• Plain weave
• A 4-ply laminate
• Co-bonded to panel at same time 
as joints 
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Adding Stress Relief Features

Aluminum Frame

2-D Face-sheet

3-D Core

Stress Relief

Potting Compound

• The potting compound at the 
corners was removed, as 
shown, to release the stresses 
at the corners/edges 



Face-sheet/Joint/Doubler Failure Index

Base-line Configuration

with End-doublers (only)

with Stress Relief Features (only)

Failure Index Contour, Max. Strain Failure Criterion
with End-doublers and Stress Relief Features

Max FI = 0.61

Max FI = 0.54

Max FI = 0.50

Max FI = 0.49

Failure Index Contour
(Max. Strain Failure Criterion)
at the critical buckling load, for 
each configuration

P critical = 85.1 kips

P critical = 88.7 kips

P critical = 84.9 kips

P critical = 88.4 kips

Selected Design 



Core Stresses
Core Through Thickness Stress at Panel Ends, psi

Base-line Configuration

with End-doublers and Stress Relief Features 

Base-line Configuration
Potted

with End-doublers (only)

Min: -255, Max: 149 psi

Min: -217, Max: 135 psi

Min: -289, Max: 301 psi

with Stress Relief Features (only) 

Min: -287, Max: 115 psi

Selected configuration 

P critical = 85.1 kips

P critical = 88.7 kips

P critical = 84.9 kips

P critical = 88.4 kips

Configuration
SOL 105

Buckling Critical 
Load (kips)

Face-Sheet and Joint Honeycomb Out-of-Plane Stresses, psi

Max. FI Min �� Max �� |���|

Base-line 85.1 0.61 -289 301 459
with End-doublers 88.7 0.50 -255 149 478
with Stress Relief 

Features 84.9 0.54 -287 115 101

with End-doublers 
and Stress Relief 

Features
88.4 0.49 -217 135 75

 



Test Article
• Made to the recommended specifications
• The joint was inspected without any flaws ( Also, made NDE standard)

Joint Seam

27.8”



Surface Non-uniformities to FE Model
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2-D Face-sheet

3-D Core

Stress Relief

End-doubler

• Prior to testing, surface imperfections were measured 
on both the IML and OML surfaces, individually
• Used single feature point inspection to create point 
clouds on both the IML and OML surfaces
• The point clouds were then traced along the length of 
the panel at six different width locations (two on each left, 
center and right sides) to obtain an imperfection profile on 
each surface

• An estimate of the worst case profile with 
the maximum bow magnitude was 
incorporated into the FE model for FE 
analysis



Buckling Test
Buckling Test # 1

• Test  was Conducted (by S. Kellas) at LaRC

• The jointed panel reached  buckling load of 79.3 
K-pounds without joint failure
– Panel buckled toward IML

• Test Details:
o 600-kip test frame
o Photogrammetry (VIC system) on both 

surfaces to obtain full-field 
strains/displacements 

o Four displacement transducers to measure 
end shortening 

o Total of 20 back-to-back strain gages on 
OML/IML for local strain measurements, 
specimen alignment and controlling the test 



Surface Imperfection Affected Linear 
Buckling Response
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Test
Buckling Load - Nastran SOL 105 - without Bow
Buckling Load - Nastran SOL 105 - with Bow

86.6 kips

88.4 kips

Predicted buckling loads vs. test data

NASTRAN linear SOL 105 Euler 
eigenvector buckling contour 

• ~11% over predicting the buckling load
when surface imperfections are not included
• ~8% over predicting when the surface 
imperfections are included
• ~4% difference in stiffness between test and 
analysis



Surface Imperfection Affected Non-linear 
Buckling Response

Surface imperfection NOT included in FEM Surface imperfection included in FEM
• Out-of-plane deformation at 0.25” imposed axial displacement

Panel buckles towards OML Panel buckles towards IML
Consistent with experimental
observation



Bow Affected Buckling Critical Load
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Test
Nastran SOL 106 - without Bow
ABAQUS - without Bow

NASTRAN SOL 106: 83.9 kips

ABAQUS: 84.8 kips
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Test
Nastran SOL 106 - with Bow
ABAQUS - with Bow

ABAQUS: 82.1 kips

NASTRAN SOL 106: 81.2 kips

Surface imperfection NOT included in FEM Surface imperfection included in FEM

• Critical buckling load decreases as a result of including the surface 
Imperfections

�From within 5% the test value to about 2%



Onset of Buckling Determination
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NASTRAN, SOL 106 Back-to-back
2D elements 

Monitoring back to back elements’ axial strains, in the 
panel’s middle edge to determine the onset of buckling 
analytically – Analogous to what determines when the 
buckling event has occurred during the experiment,
prior to unloading the panel, without 
cartographically failing the specimen.



Axial Deformation/ End Shortening 
Correlation

IML VIC Results IML FEA ResultsOML VIC Results OML FEA Results

12,589 lb 25,177 lb 50,350 lb

71,422 lb 79,871 lb 87,036 lb

12,589 lb 25,177 lb 50,350 lb

71,422 lb 79,871 lb 87,036 lb

Test correlation at buckling load of ~79.3 kips Test correlation at buckling load of ~79.3 kips

Buckling/ post buckling analysis results Buckling/ post buckling analysis results



Out-of-plane Deformation Correlation

OML VIC Results OML FEA Results IML VIC Results IML FEA Results

Test correlation at buckling load of ~79.3 kips Test correlation at buckling load of ~79.3 kips



Axial Strain Correlation

Test correlation at buckling load 
of ~79.3 kips

IML

OML

• Qualitative and qualitative 
comparison 
• The ~4% stiffness difference
causes the FEA to show slightly
higher axial strains

in/in

in/in



Hoop Strain Correlation

OML VIC Results OML FEA Results IML VIC Results IML FEA Results

Test correlation at buckling load of ~79.3 kips Test correlation at buckling load of ~79.3 kips



Damaged Jointed Panel Buckling Test
Impacted OML – Off Joint Centerline

Jointed Area 
Damage Site

Buckling Test # 2

Pre-Test Impact Damage - UT
Inspection Results

Post  Test  - UT Inspection 
Results of the Same Damage 
Area

Impact and UT inspections by W. Jackson & M. Czabaj at NASA/LaRC

Joint damage does not grow after buckling Test 
(80K lbs-f)

• 5.5 ft-lbs Impact Energy



Edge-Supported Damaged Jointed Panel 
Tests: Impacted OML – Off Joint Centerline
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Test, Un-damaged - to Buckling
Test, Damaged - to Buckling
Test - Damaged/Edge Supported, to Failure

Objectives: To evaluate –
• Damage tolerance        
capability
• Ultimate strain capacity

Buckling Test # 3

The catastrophic failure at average center 
strain of +6000 �� (~123 kips)

Ultrasound NDE Result
After 5.5 ft-lb impact

The evolution of impacted damage 
with compressive load; the axial VIC 
strain at different loads/frames



Next Steps

• Correlate the edge-supported panel compression 
test to failure
– Modeling the impacted initial damage
– Study the panel’s response without and with the initial damage
– And ultimately, model and analyze the damage propagation 

leading to the catastrophic failure at ~123 kips

• Objective: To adapt a practical/general analysis 
approach for analyzing similar progressive failures 
in composite joints 
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