Investigation of structure and transport in Li-doped ionic liquid electrolytes

\([\text{pyr}14][\text{TFSI}], [\text{pyr}13][\text{FSI}],\) and \([\text{EMIM}][\text{BF}_4]\)

Justin B. Haskins,1 William R. Bennett,2 James J. Wu,2
Dionne M. Hernández,2 Oleg Borodin,3 Joshua D. Monk,1
Charles W. Bauschlicher Jr.,4 John W. Lawson5

1ERC, Inc., NASA Ames Research Center, Moffett Field, CA 94035
2Electrochemistry Branch, NASA Glenn Research Center, Cleveland, OH 44135
3Electrochemistry Branch, U.S. Army Research Laboratory, Adelphi, MD 20783
4Entry Systems and Technology Division, NASA Ames Research Center, Moffett Field, CA 94035
5Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, CA 94035
Outline

• Li-doped ionic liquids for electrochemical applications

• Atomistic computational modeling of ionic liquids

 • Influence of Li$^+$ on ionic liquid structure
 – Li$^+$/Anion binding and solvation
 – Li$^+$... Li$^+$ network statistics

• Transport properties of Li-doped ionic liquids

• Kinetics of Li$^+$ transport in ionic liquids
 – Li$^+$/Anion residence times
 – contribution of anion exchange to diffusion
Ionic liquids for electrochemical applications

- **Li-ion batteries**: possible safer alternative to organic electrolytes

- **Advanced electrodes**: helps stabilize cycling against Li-metal

- **Supercapacitors**: double layer capacitor electrolyte

- **Electrodeposition**: wide electrochemical window solvent

- **Biofuel cells**: replace water as more stable solvent

F. Orsini et al., J. Power Sources 76, 19-29 (1998)
Computational models and molecular dynamics (MD)

• Newton’s law $F=ma$ for atoms
 \[F = -\nabla U \]

• Atomistic polarizable potential for liquids, electrolytes and polymers (APPLE&P)
 \[
 U^{RD} = \sum_{i<j} \left(A_{ij} \exp(-B_{ij}r_{ij}) - C_{ij}r_{ij}^{-6} \right)
 \]
 \[
 U^{ES} = \sum_{i<j} \left(\frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}} \right) - \frac{1}{2} \sum_i \bar{\mu} \cdot \bar{E}_i^0
 \]

• Includes many body polarization
• System sizes: $\sim 10^4$ atoms
• Time scales: 50-200 ns

Ionic liquids of interest

[pyr14]+ N-methyl-N-butylpyrrolidinium+

[pyr13]+ N-methyl-N-prolylpyrrolidinium+

[EMIM]+ 1-methyl-3-ethylimidazolium+

[TFSI]: bis(trifluoromethylsulfonyl)imide

[FSI]: bis(fluorosulfonyl)imide

[BF₄]: boron tetrafluoride
Influence of Li$^+$-doping on anion distributions

Small anion separation around Li$^+$

- [pyr14][TFSI]
- 0.85[pyr14][TFSI] + 0.15Li[TFSI]
- 0.67[pyr14][TFSI] + 0.33Li[TFSI]

- [pyr13][FSI]
- 0.85[pyr13][FSI] + 0.15Li[FSI]
- 0.67[pyr13][FSI] + 0.33Li[FSI]

- [EMIM][BF$_4$]
- 0.85[EMIM][BF$_4$] + 0.15Li[BF$_4$]
- 0.67[EMIM][BF$_4$] + 0.33Li[BF$_4$]
Li$^+$-Li$^+$ distributions

Li$^+$ Li$^+$ clustering at low-r and high doping levels

![Graphs showing Li$^+$-Li$^+$ distributions for different electrolytes.](image)
Li⁺/Anion bonding structures

- Li-[TFSI] bonding dependence on Li-doping level
- More monodentate at high doping levels
Li⁺/Anion solvation shells

- 4-5 anion neighbors in Li⁺ solvation shell: [TFSI] (3-4), [BF₄] (4), [FSI] (3-5)
Li⁺ … Li⁺ networks

- Networks at all levels of Li-doping
- 5-6 Li-ions in largest networks
- Structural impact on anions
Influence of Li\(^+\) ... Li\(^+\) networks on structure

- cis-[TFSI] and cis-[FSI] conformers in Li\(^+\) solvation shell
- Monodentate binding in [TFSI] networks
Computational measures of thermodynamics and transport

<table>
<thead>
<tr>
<th></th>
<th>[pyr14][TFSI]</th>
<th>[pyr13][FSI]</th>
<th>[EMIM][BF₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>1421.5</td>
<td>1367.9</td>
<td>1296.9</td>
</tr>
<tr>
<td>D⁺</td>
<td>0.097</td>
<td>0.118</td>
<td>0.326</td>
</tr>
<tr>
<td>D⁻</td>
<td>0.081</td>
<td>0.121</td>
<td>0.228</td>
</tr>
<tr>
<td>D^{Li}</td>
<td>0.046</td>
<td>0.069</td>
<td>0.101</td>
</tr>
<tr>
<td>μ</td>
<td>150</td>
<td>89</td>
<td>107</td>
</tr>
<tr>
<td>λ</td>
<td>1.67</td>
<td>3.35</td>
<td>11.45</td>
</tr>
</tbody>
</table>

- Greater ion mobility with decreasing density and ion size
- High accuracy of predicted properties:
 - density within ~1%
 - diffusion within 10-25%
 - conductivity within 10-20%
Comparison of room-T Li transport

- $T = 298$ K properties computationally expensive (~200 ns)
- Li$^+$ ionic conduction order of magnitude lower in [pyr14][TFSI]
- Plateau in ionic conduction at high Li-doping
Experimental comparison of ionic conductivity to that of Li-ion battery organic electrolytes

Mid-T ionic conductivity comparable to conventional electrolytes
Exchange of anions in the Li solvation shell

Li[BF₄] ↔ Li[TFSI]
Li⁺/Anion residence times

- Longer residence times at higher Li-doping levels
- Times follow \([\text{TFSI}] > [\text{BF}_4] > [\text{FSI}]\)
Contribution of anion exchange to diffusion

<table>
<thead>
<tr>
<th>x_{Li^+}</th>
<th>[pyr14][TFSI]</th>
<th>[pyr13][FSI]</th>
<th>[EMIM][BF_4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>D_{bax}^{Li^+}/D_{Li^+}^{Li^+} = 0.69</td>
<td>D_{bax}^{Li^+}/D_{Li^+}^{Li^+} = 0.81</td>
<td>D_{bax}^{Li^+}/D_{Li^+}^{Li^+} = 0.89</td>
</tr>
<tr>
<td>0.10</td>
<td>4.4</td>
<td>3.7</td>
<td>6.1</td>
</tr>
<tr>
<td>0.33</td>
<td>0.66</td>
<td>4.2</td>
<td>1.07</td>
</tr>
<tr>
<td>3.5</td>
<td>2.4</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

- Anion exchange a secondary factor in Li$^+$ diffusion
- Anion exchange more important with larger anions and higher Li-doping
Conclusions

• Lithium networks present at all levels of doping

• Li/anion binding tends to prefer monodentate at all high levels of doping

• Transport properties in good agreement with experiment
 – density follows $[\text{BF}_4] < [\text{FSI}] < [\text{TFSI}]$
 – lithium diffusion follows $[\text{BF}_4] > [\text{FSI}] > [\text{TFSI}]$

• Anion exchange secondary to net motion of lithium with the solvation shell
Acknowledgements

NASA Aeronautics Research Institute (NARI)
Density

(a) Density as a function of temperature (T) for different mol fractions of Li-salt.

(b) Density as a function of mol fraction (x_{Li^+}) for different electrolyte solutions.
Viscosity

2.6 2.8 3 3.2 3.4

1000 \(/T (K^{-1})\)

\(\eta_{xy} (cP)\)

(a) [pyr14][TFSI]
- \(x_{Li^+} = 0.10\)
- \(x_{Li^+} = 0.10\) (luc)
- \(x_{Li^+} = 0.10\) (exp)
- \(x_{Li^+} = 0.00\)
- \(x_{Li^+} = 0.00\) (exp)

(b) [EMIM][BF₄]
- \(x_{Li^+} = 0.10\)
- \(x_{Li^+} = 0.10\) (exp)
- \(x_{Li^+} = 0.00\)
- \(x_{Li^+} = 0.00\) (exp)

(c) [pyr13][FSI]
- \(x_{Li^+} = 0.10\)
- \(x_{Li^+} = 0.00\)
- \(x_{Li^+} = 0.00\) (exp)
Diffusion

\[D \times 10^{-10} \text{ (m}^2\text{s}^{-1}) \]

(a) [pyr14][TFSI]

(b) 0.9[pyr14][TFSI] + 0.1Li[TFSI]

(c) [EMIM][BF_4]

(d) 0.9[EMIM][BF_4] + 0.1Li[BF_4]

(e) [pyr13][FSI]

(f) 0.9[pyr13][FSI] + 0.1Li[FSI]

\[\frac{1000}{T} (K^{-1}) \]

\[\text{Diffusion/nor-marking/return} \]
Ionic conductivity

\[\lambda (\text{mS/cm}) \]

- **[pyr14][TFSI]**
 - \(x_{Li^+} = 0.0 \)
 - \(x_{Li^+} = 0.0 \) (exp)
 - \(x_{Li^+} = 0.20 \)
 - \(x_{Li^+} = 0.18 \) (exp)

- **[EMIM][BF_4]**
 - \(x_{Li^+} = 0.0 \)
 - \(x_{Li^+} = 0.0 \) (exp)
 - \(x_{Li^+} = 0.10 \)
 - \(x_{Li^+} = 0.09 \) (exp)

- **[pyr13][FSI]**
 - \(x_{Li^+} = 0.0 \)
 - \(x_{Li^+} = 0.0 \) (exp)
 - \(x_{Li^+} = 0.15 \)
 - \(x_{Li^+} = 0.13 \) (exp)