Effects of dopant on depoling temperature in modified \(\text{BiScO}_3 - \text{PtTiO}_3 \)
Introduction

• Piezoelectrics for high temperature applications
 – Fuel/gas modulation, ultrasonic drilling, etc.
• Tolerance factor \(t \) acts as guide for selection of non-PT member
• BiScO\(_3\) – PbTiO\(_3\):
 – \(T_c \): 450°C, \(d_{33} \): 460 pm/V for morphotropic phase boundary (MPB) composition

– A-site modification: La, Ba
– B-site modification: Ga, Mn, Zr, Zn\(_{0.5}\)Ti\(_{0.5}\), Nb, etc.
– DC conductivity, tan\(\delta \), \(d_{33} \), \(T_c \), \(T_d \), etc.
A different metric

- Curie temperature (T_c) doesn’t tell whole story
- Many piezoelectric materials depole before T_c
- Why do they depole? Domain rotation, phase transitions, inhomogeneities
- Dope to change depoling temperature

Dopant effects on depoling temperature in BS-PT
Compositions

• Previous success with aliovalent Zr\textsubscript{Sc} and compensated Zn\textsubscript{0.5}Zr\textsubscript{0.5} on Sc
 – 2\% Zr\textsubscript{Sc} increases T\textsubscript{d} by 20\textdegree C for 37BS – 63PT, with a decrease in T\textsubscript{c}
• Compositions chosen from rhombohedral and tetragonal regions around MPB
• Aliovalent Zn\textsubscript{Sc} chosen for high ferroelectric activity; hybridizes similarly to Ti
• Conventional solid state processing
 – Calcine: 3hrs @ 750\textdegree C
 – Sinter: 1hr @ 1100\textdegree C

Zr\textsubscript{Sc} doping – Sehirlioglu et al., J. Am. Cer. Soc., 2010
Zn\textsubscript{0.5}Zr\textsubscript{0.5} doping – Kowalski et al, J. Am. Cer. Soc., 2013
X-ray Diffraction Comparison

- BSPT62: Shifting rhombohedral/tetragonal ratio
- BSPT64: Increasing c/a ratio (1.011 to 1.013) with Zn addition
- ★: \(\text{Pb}_x \text{Bi}_{(1-x)} \text{O} \) phase
Optical Microscopy

- Density: > 96%; dense structures with low porosity
- Grain Size: tends to increase with Zn addition
- Size distribution: possible promotion of abnormal grain growth with Zn addition
- $\text{Pb}_x\text{Bi}_{(1-x)}\text{O}$ observed in clusters at grain boundaries
Weak Field Measurements

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r 50°C</td>
<td>550</td>
<td>659</td>
<td>633</td>
<td>865</td>
</tr>
<tr>
<td>ε_r 300°C</td>
<td>1448</td>
<td>1686</td>
<td>1635</td>
<td>2686</td>
</tr>
<tr>
<td>tanδ 50°C</td>
<td>0.01</td>
<td>0.009</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>tanδ 300°C</td>
<td>0.730</td>
<td>0.586</td>
<td>0.526</td>
<td>0.389</td>
</tr>
<tr>
<td>ε'' 50°C</td>
<td>5.5</td>
<td>5.93</td>
<td>4.43</td>
<td>6.92</td>
</tr>
<tr>
<td>ε'' 300°C</td>
<td>1058</td>
<td>989</td>
<td>860</td>
<td>1046</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r 50°C</td>
<td>1349</td>
<td>836</td>
<td>675</td>
<td>643</td>
</tr>
<tr>
<td>ε_r 300°C</td>
<td>3854</td>
<td>3071</td>
<td>2686</td>
<td>2408</td>
</tr>
<tr>
<td>tanδ 50°C</td>
<td>0.009</td>
<td>0.006</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>tanδ 300°C</td>
<td>0.49</td>
<td>0.782</td>
<td>0.844</td>
<td>0.952</td>
</tr>
<tr>
<td>ε'' 50°C</td>
<td>12.14</td>
<td>5.02</td>
<td>4.73</td>
<td>3.22</td>
</tr>
<tr>
<td>ε'' 300°C</td>
<td>1888</td>
<td>2402</td>
<td>2267</td>
<td>2292</td>
</tr>
</tbody>
</table>
Weak Field Measurements

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r 50°C</td>
<td>550</td>
<td>659</td>
<td>633</td>
<td>865</td>
</tr>
<tr>
<td>ε_r 300°C</td>
<td>1448</td>
<td>1686</td>
<td>1635</td>
<td>2686</td>
</tr>
<tr>
<td>tan(\delta) 50°C</td>
<td>0.01</td>
<td>0.009</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>tan(\delta) 300°C</td>
<td>0.730</td>
<td>0.586</td>
<td>0.526</td>
<td>0.389</td>
</tr>
<tr>
<td>ε'' 50°C</td>
<td>5.5</td>
<td>5.93</td>
<td>4.43</td>
<td>6.92</td>
</tr>
<tr>
<td>ε'' 300°C</td>
<td>1058</td>
<td>989</td>
<td>860</td>
<td>1046</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r 50°C</td>
<td>1349</td>
<td>836</td>
<td>675</td>
<td>643</td>
</tr>
<tr>
<td>ε_r 300°C</td>
<td>3854</td>
<td>3071</td>
<td>2686</td>
<td>2408</td>
</tr>
<tr>
<td>tan(\delta) 50°C</td>
<td>0.009</td>
<td>0.006</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>tan(\delta) 300°C</td>
<td>0.49</td>
<td>0.782</td>
<td>0.844</td>
<td>0.952</td>
</tr>
<tr>
<td>ε'' 50°C</td>
<td>12.14</td>
<td>5.02</td>
<td>4.73</td>
<td>3.22</td>
</tr>
<tr>
<td>ε'' 300°C</td>
<td>1888</td>
<td>2402</td>
<td>2267</td>
<td>2292</td>
</tr>
</tbody>
</table>
High Field Measurements

- Poled at 100°C under 40kV/cm for 30 min.
- BSPT62: Increased E_c, P_r with Zn addition
- Assymetric hysteresis
 - Doesn’t fully depole upon switching; Possible pinning from defects
Phase angle (θ) – BSPT58

- Phase angle: 100Hz to 3MHz
- Width in phase angle peak related to coupling coefficients
Phase angle (θ) – BSPT58

- Phase angle: 100Hz to 3MHz
- Width in phase angle peak related to coupling coefficients
Phase angle (θ) – BSPT

The diagram shows the phase angle (θ) versus temperature (T) for different BSPT samples (BSPT58, BSPT60, BSPT62, BSPT64, BSPT66). The color scale indicates the dopant effects on depoling temperature in BS-PT (200). The inset graphs display the corresponding 2D plots for each sample, highlighting the frequency distribution of the 2θ peaks.
Phase angle (θ) - Transitions

- T_c
- $T_{d_{\text{final}}}$
- $T_{d_{\text{onset}}}$

Transition effects on depoling temperature in BS-PT (200)
Phase angle (θ) - Transitions

\[\tau, \psi \]

Transitions

14 Dopant effects on depoling temperature in BS-PT (200)

\[T_c, T_{d_{\text{final}}}, T_{d_{\text{onset}}} \]

Phase angle (θ) - Comparison

Dopant effects on depoling temperature in BS-PT
Phase angle (θ) - Transitions

Dopant effects on depoling temperature in BS-PT
Zn_{0.5}Zr_{0.5} for Sc

- BZZ2: 60PbTiO_3 – 40Bi[0.9375Sc,0.0625(Zn_{0.5}Zr_{0.5})]O_3
- BZZ5: 62.5PbTiO_3 – 37.5Bi[0.933Sc,0.066(Zn_{0.5}Zr_{0.5})]O_3

Zn_{0.5}Zr_{0.5} doping – Kowalski et al, J. Am. Cer. Soc., 2013
Zn$_{0.5}$Zr$_{0.5}$ for Sc

- BZZ2: 60PbTiO$_3$ – 40Bi[0.9375Sc,0.0625(Zn$_{0.5}$Zr$_{0.5}$)]O$_3$
- BZZ5: 62.5PbTiO$_3$ – 37.5Bi[0.933Sc,0.066(Zn$_{0.5}$Zr$_{0.5}$)]O$_3$

Zn$_{0.5}$Zr$_{0.5}$ doping – Kowalski et al, J. Am. Cer. Soc., 2013
Conclusions

- We looked at the effects of dopants on T_d and relevant properties.
- ZnSc increases T_d, $\tan \phi$, and relevant properties, also slightly enhancing electromechanical properties.
- Zn$^{0.5}$Zr$^{0.5}$ increases electromechanical properties.
- Structure-specific trend behavior for Zn$^{\infty}$.
- Combine with other aliovalent dopants to tailor properties further.
- We looked at the effects of Zn$^{\infty}$ on T_d and relevant properties.

Dopant effects on depoling temperature in Bi-Sn-PT
Would like to thank:
Fred Dynys, Tom Sabo – NASA GRC
Jon Mackey – University of Akron

Funded by:
NASA GSRP Fellowship: NNX11AL17H
AFOSR: FA9550-0601-1-0260