Effects of dopant on depoling temperature in modified BiScO$_3$ – PbTiO$_3$

Ben Kowalski
Alp Sehirlioglu
Introduction

• Piezoelectrics for high temperature applications
 – Fuel/gas modulation, ultrasonic drilling, etc.
• Tolerance factor \((t)\) acts as guide for selection of non-PT member
• BiScO\(_3\) – PbTiO\(_3\):
 – \(T_c: 450^{\circ}C\), \(d_{33}: 460\ \text{pm/V}\) for morphotropic phase boundary (MPB) composition

– A-site modification: La, Ba
– B-site modification: Ga, Mn, Zr, Zn\(_{0.5}\)Ti\(_{0.5}\), Nb, etc.
– DC conductivity, \(\tan\delta\), \(d_{33}\), \(T_c\), \(T_d\), etc.

Dopant effects on depoling temperature in BS-PT
A different metric

- Curie temperature (T_c) doesn’t tell whole story
- Many piezoelectric materials depole before T_c
- Why do they depole? Domain rotation, phase transitions, inhomogeneities
- Dope to change depoling temperature

Compositions

- Previous success with aliovalent Zr$_{Sc}$ and compensated Zn$_{0.5}$Zr$_{0.5}$ on Sc
 - 2% Zr$_{Sc}$ increases T_d by 20°C for 37BS – 63PT, with a decrease in T_c
- Compositions chosen from rhombohedral and tetragonal regions around MPB
- Aliovalent Zn$_{Sc}$ chosen for high ferroelectric activity; hybridizes similarly to Ti
- Conventional solid state processing
 - Calcine: 3hrs @ 750°C
 - Sinter: 1hr @ 1100°C

Nomenclature

<table>
<thead>
<tr>
<th>Zn Concentration</th>
<th>BSPT58</th>
<th>BSPT60</th>
<th>BSPT62</th>
<th>BSPT64</th>
<th>BSPT66</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% Zn</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1% Zn</td>
<td>--</td>
<td>--</td>
<td>BSPT621</td>
<td>BSPT641</td>
<td>--</td>
</tr>
<tr>
<td>2% Zn</td>
<td>--</td>
<td>--</td>
<td>BSPT622</td>
<td>BSPT642</td>
<td>BSPT625</td>
</tr>
<tr>
<td>5% Zn</td>
<td>--</td>
<td>--</td>
<td>BSPT625</td>
<td>BSPT645</td>
<td>--</td>
</tr>
</tbody>
</table>

Zr$_{Sc}$ doping – Sehirlioglu et al, J. Am. Cer. Soc., 2010
Zn$_{0.5}$Zr$_{0.5}$ doping – Kowalski et al, J. Am. Cer. Soc., 2013
X-ray Diffraction Comparison

- BSPT62: Shifting rhombohedral/tetragonal ratio
- BSPT64: Increasing c/a ratio (1.011 to 1.013) with Zn addition
- ★: Pb$_x$Bi$_{(1-x)}$O phase
Optical Microscopy

- Density: > 96%; dense structures with low porosity
- Grain Size: tends to increase with Zn addition
- Size distribution: possible promotion of abnormal grain growth with Zn addition
- Pb$_x$Bi$_{(1-x)}$O observed in clusters at grain boundaries
Weak Field Measurements

1kHz

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r, 50°C</td>
<td>550</td>
<td>659</td>
<td>633</td>
<td>865</td>
</tr>
<tr>
<td>ε_r, 300°C</td>
<td>1448</td>
<td>1686</td>
<td>1635</td>
<td>2686</td>
</tr>
<tr>
<td>tanδ 50°C</td>
<td>0.01</td>
<td>0.009</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>tanδ 300°C</td>
<td>0.730</td>
<td>0.586</td>
<td>0.526</td>
<td>0.389</td>
</tr>
<tr>
<td>ε'', 50°C</td>
<td>5.5</td>
<td>5.93</td>
<td>4.43</td>
<td>6.92</td>
</tr>
<tr>
<td>ε'', 300°C</td>
<td>1058</td>
<td>989</td>
<td>860</td>
<td>1046</td>
</tr>
</tbody>
</table>

100kHz

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r, 50°C</td>
<td>1349</td>
<td>836</td>
<td>675</td>
<td>643</td>
</tr>
<tr>
<td>ε_r, 300°C</td>
<td>3854</td>
<td>3071</td>
<td>2686</td>
<td>2408</td>
</tr>
<tr>
<td>tanδ 50°C</td>
<td>0.009</td>
<td>0.006</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>tanδ 300°C</td>
<td>0.49</td>
<td>0.782</td>
<td>0.844</td>
<td>0.952</td>
</tr>
<tr>
<td>ε'', 50°C</td>
<td>12.14</td>
<td>5.02</td>
<td>4.73</td>
<td>3.22</td>
</tr>
<tr>
<td>ε'', 300°C</td>
<td>1888</td>
<td>2402</td>
<td>2267</td>
<td>2292</td>
</tr>
</tbody>
</table>
Weak Field Measurements

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon_50^\circ C$</td>
<td>1349</td>
<td>836</td>
<td>675</td>
<td>643</td>
</tr>
<tr>
<td>$\epsilon_300^\circ C$</td>
<td>3854</td>
<td>3071</td>
<td>2686</td>
<td>2408</td>
</tr>
<tr>
<td>$\tan\phi_{50^\circ C}$</td>
<td>0.009</td>
<td>0.006</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>$\tan\phi_{300^\circ C}$</td>
<td>0.49</td>
<td>0.782</td>
<td>0.844</td>
<td>0.952</td>
</tr>
<tr>
<td>$\tan\phi_{50^\circ C}$</td>
<td>12.14</td>
<td>5.02</td>
<td>4.73</td>
<td>3.22</td>
</tr>
<tr>
<td>$\tan\phi_{300^\circ C}$</td>
<td>1888</td>
<td>2402</td>
<td>2267</td>
<td>2292</td>
</tr>
</tbody>
</table>

ϕ and $\tan\phi$ values at 50°C and 300°C for different dopant concentrations.
High Field Measurements

- Poled at 100°C under 40kV/cm for 30 min.
- BSPT62: Increased E_c, P_r with Zn addition
- Assymetric hysteresis
 - Doesn’t fully depole upon switching; Possible pinning from defects
Phase angle (θ) – BSPT58

- Phase angle: 100Hz to 3MHz
- Width in phase angle peak related to coupling coefficients
Phase angle (θ) – BSPT58

- Phase angle: 100Hz to 3MHz
- Width in phase angle peak related to coupling coefficients
Phase angle (θ) – BSPT

Phase angle (θ) – BSPT
Phase angle (θ) - Transitions

Temperature (T) vs. frequency (F_{freq}) graphs for different samples (BSPT58, BSPT60, BSPT62, BSPT64, BSPT66) showing the transition temperatures (T_c, $T_{d_{\text{onset}}}$, $T_{d_{\text{final}}}$). The graphs display the temperature at which different frequencies (F_{freq}) are observed, with color intensity indicating the magnitude of the signal. The insets show the 200 peaks at different frequencies for each sample, indicating the phase transition behavior.
Phase angle (θ) - Transitions

Phase angle (θ) - Comparison

Dopant effects on depoling temperature in BS-PT
Phase angle (θ) - Transitions

Dopant effects on depoling temperature in BS-PT
Zn\textsubscript{0.5}Zr\textsubscript{0.5} for Sc

- **BZZ2**: $60\text{PbTiO}_3 - 40\text{Bi}[0.9375\text{Sc},0.0625(\text{Zn}_{0.5}\text{Zr}_{0.5})]\text{O}_3$
- **BZZ5**: $62.5\text{PbTiO}_3 - 37.5\text{Bi}[0.933\text{Sc},0.066(\text{Zn}_{0.5}\text{Zr}_{0.5})]\text{O}_3$

Zn\textsubscript{0.5}Zr\textsubscript{0.5} doping – Kowalski et al, J. Am. Cer. Soc., 2013
Zn$_{0.5}$Zr$_{0.5}$ for Sc

- **BZZ2**: $60\text{PbTiO}_3 - 40\text{Bi}[0.9375\text{Sc},0.0625(Zn_{0.5}Zr_{0.5})]O_3$
- **BZZ5**: $62.5\text{PbTiO}_3 - 37.5\text{Bi}[0.933\text{Sc},0.066(Zn_{0.5}Zr_{0.5})]O_3$

Zn$_{0.5}$Zr$_{0.5}$ doping – Kowalski et al, J. Am. Cer. Soc., 2013
Conclusions

• We looked at the effects of Zn$_{Sc}$ on T_d and relevant properties
• Zn$_{Sc}$ increases $T_{d,\text{onset}}$ for BSPT62 compositions while also slightly enhancing electromechanical properties
• Structure specific tanδ behavior for Zn$_{Sc}$
• Zn$_{0.5}Zr_{0.5}$ increases electromechanical properties and $T_{d,\text{onset}}$
• Combine with other aliovalent dopants to tailor properties further
Would like to thank:
Fred Dynys, Tom Sabo – NASA GRC
Jon Mackey – University of Akron

Funded by:
NASA GSRP Fellowship: NNX11AL17H
AFOSR: FA9550-0601-1-0260