Xilinx Virtex-5QV (V5QV) Independent SEU Data

Melanie Berg, AS&D Inc. in support of NASA/GSFC

Melanie.D.Berg@NASA.gov
Kenneth LaBel: NASA/GSFC
Jonathan Pellish: NASA/GSFC

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
NASA Goddard Radiation Effects and Analysis Group (REAG) FPGA Testing
Supporters and Collaborators

• **Supporters:**
 – Defense Threat Reduction Agency (DTRA)
 – NASA Electronics Parts and Packaging (NEPP) Program

• **Collaborators:**
 – Xilinx
 – GSFC Satellite Servicing Capabilities Office (SSCO)
Acronyms

- **Block random access memory (BRAM)**
- **Built-in-self-test (BIST)**
- **Combinatorial logic (CL)**
- **Configurable Logic Block (CLB)**
- **Device under test (DUT)**
- **Digital Clock Manager (DCM)**
- **Digital Signal Processing Block (DSP)**
- **Distributed triple modular redundancy (DTMR)**
- **Dual interlocked storage cell (DICE)**
- **Edge-triggered flip-flops (DFFs)**
- **Field programmable gate array (FPGA)**
- **Global triple modular redundancy (GTMR)**
- **Input – output (I/O)**
- **Linear energy transfer (LET)**
- **Local triple modular redundancy (LTMR)**
- **Look up table (LUT)**
- **Low cost digital tester (LCDT)**
- **Mitigated DCM (MITDCM)**
- **Power on reset (POR)**
- **Probability of logic masking \(P_{\text{logic}}\)**
- **Radiation Effects and Analysis Group (REAG)**
- **Single-event effects Immune Reconfigurable FPGA (SIRF)**
- **Single event functional interrupt (SEFI)**
- **Single event latchup (SEL)**
- **Single event transient (SET)**
- **Single event upset (SEU)**
- **Single event upset cross-section \(\sigma_{\text{SEU}}\)**
- **Static random access memory (SRAM)**
- **System on a chip (SOC)**
- **Universal Serial Bus (USB)**
- **Virtex-5QV (V5QV)**
- **Windowed Shift Register (WSR)**
Virtex-5QV Investigation Overview

• This is an independent study to determine the single event destructive and transient susceptibility of the Xilinx Virtex-5QV (SIRF) device.

• The DUT is configured to have various test structures that are geared to measure specific potential susceptibilities of the device.

• Design/Device susceptibility is determined by monitoring DUTs for Single Event Transient (SET) and Single Event Upset (SEU) induced faults while exposing them to a heavy ion beam.

Characterizing SEUs: Radiation Testing and SEU Cross Sections

SEU Cross Sections (σ_{seu}) characterize how many upsets will occur based on the number of ionizing particles to which the device is exposed.

$$\sigma_{\text{seu}} = \frac{\# \text{errors}}{\text{fluence}}$$

Terminology:
- Flux: Particles/(sec-cm\(^2\))
- Fluence: Particles/cm\(^2\)

σ_{seu} is calculated at several LET values (particle spectrum)

Testing with a low flux is imperative with the Xilinx V5QV due to the complexity of the device versus the accelerated rate of exposure.
Understanding SEU Data and Their Applications to Complex Designs

• Along with providing σ_{SEU} data, aspects of how the data were obtained are discussed, such as:
 – Related test structure(s),
 – Speed of operation, and
 – Reasoning of test strategy.

• A goal of SEU radiation testing is to eventually extrapolate SEU data to critical applications (designs).

• Designs are complex. Without an understanding of how and why data are obtained, extrapolation will be inaccurate and can be detrimental to the success of a mission.
FPGA Structure Categorization as defined by NASA Goddard REAG

σ_{SEU} Differentiation:

\[P(f_s)_{\text{error}} \propto P_{\text{Configuration}} + P(f_s)_{\text{functional Logic}} + P_{\text{SEFI}} \]

Design \(\sigma_{SEU} \)
Configuration \(\sigma_{SEU} \)
Functional logic \(\sigma_{SEU} \)
SEFI \(\sigma_{SEU} \)

Sequential and Combinatorial logic (CL) in data path
Global Routes and Hidden Logic

SEU Testing is required in order to characterize the \(\sigma_{SEU} \) **for each of FPGA categories**

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
V5QV Accelerated SEU Testing
Best Practice for Radiation Test Setups: Functional Control

- Types of DUT functional input control: clocks, resets, and data inputs.

- Concerns:
 - Synchronizing inputs and managing skew between inputs. Challenging with high frequencies.
 - Operating the device in a realistic manner:
 - Do not over-load the device with unrealistic stimulus during radiation testing. If the device is operating in states that would never occur, then radiation data will not be characteristic.
 - Do not under-load the device during radiation testing. If the device is underperforming, this means that a large amount of circuitry is not operating. This produces operational states with a large amount of logic masking; consequently, radiation data will not be characteristic.
Best Practice for Radiation Test Setups: Power Control

- Types of voltage controllers: power supplies and special on-board voltage regulation circuitry.

- Concerns:
 - Device may draw a larger amount of current than originally expected. Cooling apparatus may be necessary during operation.
 - Power glitching or Single Event Latch-up (SEL) can cause the system to cease operation or be damaged. Hence it is best practice to separate test vehicle power from DUT power. It is also ideal to have current limiting circuitry for the test vehicle and the DUT.
Best Practice for Radiation Test Setups: Monitoring Functional Upsets

• Compare DUT outputs to expected values. This can be done:
 – Visually (only recommended as a supplement); i.e., watching the error indication on the error detection equipment (e.g., logic analyzer or oscilloscope);
 – Using equipment event triggers; or
 – Custom comparison circuitry.

• Differentiate upset types: e.g., clock tree SET, DFF SEU, CL captured SET, or configuration faults.

• Count SEUs (upset statistics): After the upsets have been detected and differentiated, they need to be counted. The higher the number of upsets, the better the statistics.
Best Practice for Radiation Test Setups: Automated Data Capture and Messaging

• Reliably capture data:
 – Follow synchronous design rules – which include how to capture asynchronous signals.
 – Determine minimal sampling frequency (when applicable).
 – Understand the limitations of the automated test equipment with respect to the DUT (e.g., memory (storage) space and speed).

• Once erroneous data are captured, they should be packaged and stored (e.g., sent to a host PC).
 – Timestamp
 – Expected value
 – Received value
Example of a V5QV Error Record

<table>
<thead>
<tr>
<th>Field</th>
<th># of Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Value</td>
<td>24</td>
<td>Current captured data (cycle N)</td>
</tr>
<tr>
<td>Previous Value</td>
<td>24</td>
<td>Previous captured data (cycle N-1)</td>
</tr>
<tr>
<td>Data Pattern</td>
<td>2</td>
<td>Unused: data pattern is always checkerboard</td>
</tr>
<tr>
<td>Error Flag</td>
<td>1</td>
<td>Unused</td>
</tr>
<tr>
<td>Time Stamp</td>
<td>32</td>
<td>Cycle counter. Must multiply by the DUT frequency to convert to time. Used to determine error burst sequences</td>
</tr>
<tr>
<td>Status</td>
<td>3</td>
<td>Indicates type of error record:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“001” is a timeout – one of the shift clocks not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“011” Out of timeout – all shift clocks are recovered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“000” Error or non-error – current value does not equal previous value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“010” Debug check – command was sent to check value settings</td>
</tr>
</tbody>
</table>

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Best Practice for Radiation Test Setups: Monitoring Power

• Use of power supply monitors or specialized on-board (tester) circuitry.

• Use of an automated monitor/capture system is beneficial. Provides the ability to perform post processing on power data and to identify particular error signatures.

• As previously mentioned, the ability to automatically power down or limit current if the DUT current gets too high is beneficial.

For accelerated V5QV SEU testing, we used all of the above.
Test Structure Configuration Mitigation: Scrubbing Specifics

Scrubbing is the act of simultaneously writing into FPGA configuration memory as the device’s functional logic area is operating with the intent of correcting configuration memory bit errors.

- Too many upsets in the system (due to accelerated flux) can cause unrealistic behavior... unrealistic σ_{SEU}s!
- Can manage the accelerated upset rate by varying flux.
- Make sure scrubbing can keep up with your upset rate.
- During irradiation, our scrub rate for the Xilinx V5QV is once every 100 ms (10 Hz).
- Read-back after a test with scrubbing should have a minimal number of configuration-bit upsets (excluding un-scrubbable bits).

FPGA: field programmable gate array
σ_{SEU}: SEU cross-section
V5QV Test Set-up
Configuration and BRAM Testing
Procedures for Configuration and BRAM Testing

• Basic Configuration and BRAM Static Test:
 – Load FPGA configuration;
 – Irradiate device while the device is in a static state (no scrubbing of configuration memory);
 – Stop radiation beam and read back the configuration;
 – Count configuration and BRAM upsets; and
 – Normalize the upsets by the number of particles of exposure (Configuration and BRAM SEU cross section – \(\sigma_{\text{SEU}} \)).

• All tests (regardless of type) include configuration read-back after each beam-run.
Commercial versus Hardened Configuration Memory Heavy-ion SEU Data

σ_{SEU}s of Virtex-5 Configuration Bits: Commercial (V5) versus Hardened (V5QV)
Commercial versus Hardened BRAM Heavy-ion SEU Data

σ_{SEU}s of Virtex-5 BRAM Bits: Commercial (V5) versus Hardened (V5QV)
Investigating SEFIs

We look for particular error signatures to determine SEFI occurrence:

• Read-back of configuration is mostly logic ‘0’ – assume a Power On Reset (POR) glitch.

• Unable to connect to the device to read-back – assume problem in the configuration interface.
 – Hidden (to user) state machines
 – Configuration registers

• Global upsets in functional logic – not performed during static readback.
 – Reset correction: clock tree or reset tree (global routing)
 – Configuration correction: configuration bit upset – not considered a SEFI
V5QV Configuration SEFIs

Most SEFI error signatures were large areas of the configuration bits forced to ‘0’. This resembles a power on reset (POR) hit.
Xilinx V5QV Heavy Ion Accelerated Testing: Functional Data Path (dynamic operation) and Functional SEFIs (i.e., global routes)
Xilinx V5QV Heavy Ion Accelerated Testing:
Test Structure Development

- We start with simple test structures.
- We increase complexity per test structure.
- We study trends.
- We try to make sense out of the convoluted data obtained from complex test structures.

Test Structure Considerations Taken from the NASA Goddard REAG FPGA SEU Test Guidelines:

V5 is a commercial Xilinx field programmable gate array device; V5-QV is a radiation-tolerant device
To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Best Practice for Radiation Testing: Logic Replication for Statistics

Best-Practice for DUT Test Structure Development

Test structures should contain a large number of replicated logic in order to increase statistics.

SEU testing with hundreds of counters versus only one

100’s or 1000’s of DFF stages in a shift register
Best Practice for Radiation Testing: State Space Traversal

Best-Practice for DUT Test Structure Development

A test structure’s state space should be traversable such that it can be covered within one radiation test run. Otherwise:

• A significant amount of circuitry and system states are not tested.
• The result is SEU data that are uncharacteristic of the design.
Best Practice for Radiation Testing: Logic Masking

Best-Practice for DUT Test Structure Development

Logic masking should be minimized or controllable (i.e., taken into account).

Any logic gate with more than one input will have logic masking except for XOR or XNOR gates.

\(P_{\text{logic}} \) is the probability that an upset will be masked from being captured by the system.

\(P_{\text{logic}} = 0 \) : path is 100% masked

\(P_{\text{logic}} = 1 \) : path has no masking
Best Practice for Radiation Testing: Avoiding Unrealistic SEU Accumulation

<table>
<thead>
<tr>
<th>Best Practice characteristics of a DUT design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid unrealistic SEU accumulation from accelerated testing:</td>
</tr>
<tr>
<td>• Use flush through test structures; e.g., shift-registers.</td>
</tr>
<tr>
<td>• Small number of gates per sub-test structure; e.g., testing hundreds of counters.</td>
</tr>
</tbody>
</table>

SRAM Based FPGAs: Scrubbing (correcting) configuration SEUs. Extremely important during accelerated testing... must keep up with the particle flux to avoid accumulation.
Best Practice for Radiation Testing: Increasing Visibility

Best Practice characteristics of a DUT design

All (or a significant percentage of) potential upsets should be observable during testing.

Test structures can be designed to enhance observable nodes; e.g., shift-registers, counters, scan rings, internal logic taps.

If an SEU occurs, will it propagate to I/O before the test is complete?

Output = Visibility
Difference between Test Structure and Application Specific Design

- A **test structure** is a design implemented in a DUT that is created specifically for SEU testing.
- An **application-specific design** is circuitry implemented in a DUT that is either the final design targeted for space or a subset of the final design.
Use of Test Structures versus Application Specific Designs for Acquiring σ_{SEU} Data

• Although error rates and error responses are design dependent, useful information can be extrapolated from test structures versus application specific designs.

• Why use test structures?
 – By the time the final design is complete, it is usually too late to perform radiation testing on it.
 – It can be too difficult to apply input-stimuli to an application specific design.
 – It can be too difficult to monitor DUT responses of application specific designs.

Test Structures can be constructed to meet SEU-testing best practice guidelines.
Additional Challenges using Application Specific Designs for SEU Testing

- Statistics are poor, usually because there is not a significant amount of replication.
- In addition, trends for specific elements are not able to be clearly identified/established.
- The state space of a complex design cannot be traversed within one radiation test run.
- Application-specific designs contain a significantly higher number of masked data paths than test structures.
- It is difficult to control SEU accumulation in an accelerated test environment.

Many best practice considerations are violated.
Benefits of Testing Application Specific Designs

- Increase observation error responses specific to the application.
- However, the user must be aware of the following:
 - Unrealistic SEU accumulation in an accelerated environment,
 - Limited visibility due to masking and fractional state space traversal,
 - Poor statistics due to the variance in design circuits, and
 - σ_{SEU}s will most likely have a large variance if circuits are not able to be isolated and controlled.
Test Structures used for Dynamic V5QV SEU Testing

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Frequency Range</th>
<th>Additional Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift registers</td>
<td>2 kHz – 300 MHz</td>
<td>Yes</td>
</tr>
<tr>
<td>Counters</td>
<td>2 kHz – 150 MHz</td>
<td>Yes</td>
</tr>
<tr>
<td>Global routes</td>
<td>2 kHz – 150 MHz</td>
<td>Yes</td>
</tr>
<tr>
<td>MicroBlazeTM</td>
<td>50 MHz</td>
<td>Yes</td>
</tr>
<tr>
<td>Digital Signal Processors (DSP blocks)</td>
<td>2 kHz – 150 MHz</td>
<td>No</td>
</tr>
</tbody>
</table>
Test Structures: Shift Registers

- Shift registers are great for baselining σ_{SEUs}.
- Simple architecture with no masking.
- Large number of stages are easily implemented to achieve good statistics.

Caveats to traditional shift register SEU testing	NASA Goddard REAG’s solution
High speed data input synchronization | Internal data generation
High speed data output capture | Windowed shift registers
Use of built-in-self-test (BIST) counter for SEUs | With the use of WSRs, no need for a BIST counter
Test Structures: Windowed Shift Registers (WSRs)

N levels of Inverters between DFF stages: N = 0, 8, and 18

DFF = D flip flop
4-bit Window Output

\[\tau_{dly_{wsr_8}} > \tau_{dly_{wsr_0}} \]

\[\tau_{dly} = \text{path delay from DFF to DFF} \]

Combinatorial Logic: Inverters

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Structures: Inserting Mitigation

• V5QV embedded SEU Filter option: not available in the commercial FPGA device (it is V5QV specific).

• LTMR: user implemented. Do not use in the Virtex commercial family of devices…it is useless. However, it might be an option in the V5QV...see data section.

• DTMR: user implemented.
 – Implemented with and without area constraints
 – Can be used in the commercial device

• GTMR: user implemented.
 – Implemented with and without area constraints
 – Can be used in the commercial device

• Configuration memory scrubbing: user implemented and can be used in the commercial and the V5QV devices.
Test Structures: V5QV Embedded Single Event Transient (SET) Filters

- The V5QV has embedded SET filters placed on the data input and clock input of each DFF. Usage is optional.
- Filters are expected to reduce the effects and the capture of SETs.
- Xilinx reports that the SET filters reduce susceptibility.
- NASA Goddard REAG has verified this claim.

SET: Single Event Transient; DFF: flip-flop
REAG = Radiation Effects and Analysis Group is part of Code 561 at NASA/GSFC
Test Structures: Local Triple Modular Redundancy (LTMR)

Masks upsets from DFFs
Corrects DFF upsets if feedback is used

Only the DFFs are triplicated and mitigated

LTMR is a mitigation strategy that can can only be used in FPGAs with hardened configuration. It cannot be used in the commercial Virtex family of devices

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Structures: Distributed Triple Modular Redundancy (DTMR): DFFs + Data Paths
All DFFs with Feedback Have Voters

\[P(f_s)_{error} \propto P_{configuration} + P(f_s)_{functionalLogic} + P_{SEP} \]

DFF = D flip flop

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Structures: Global Triple Modular Redundancy (GTMR): DFFs + Data Paths + Global Routes

All DFFs with Feedback Have Voters

\[\begin{align*}
P(f_s)_{error} & \leq P_{configuration} + P(f_s)_{functional\ Logic} + P_{SFPT} \\
& \text{Low} \quad \text{Lowered}
\end{align*} \]

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
σ_{SEU} DATA: Investigating Frequency Effects with WSRs at 5.7 MeV-cm²/mg

WSR Strings Ar 0° 5.7 MeV-cm²/mg

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
σ_{SEU} DATA: Investigating Frequency Effects with WSRs at 20.6 MeV-cm²/mg

WSR Strings Kr 0° 20.6 MeV-cm²/mg

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
WSR₀ with respect to LET

WSR₀ : Top Speeds

WSR₀ 100 MHz

WSR₀ 10 kHz

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
WSR₈ with respect to LET

WSR₈ 10 kHz

σₑₑₑɐ
WSR$_{16}$ with respect to LET

WSR$_{16}$ 10 kHz

- **DTMR Area 10KHz**
- **LTMR Filter 10KHz**
- **No TMR 10KHz**
- **No TMR Filter 10KHz**

WSR$_{16}$ 10 MHz

- **DTMR Area 10MHz**
- **LTMR Filter 10MHz**
- **No TMR 10MHz**
- **No TMR Filter 10MHz**

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
WSR SEU Testing: Conclusions

- WSR test structures were used to analyze: DFF, SET Filter, frequency effects, and efficacy of various mitigation strategies.
- SEU data illustrate the following:
 - Utilization of SET Filters provide approximately a decade of improvement of DFF SEU susceptibility when not using DCMs.
 - Frequency effects show that DFF SEUs dominate SETs in the functional data path. Hence, the embedded DICE mitigation strategy for the DFFs are not as strong as embedded LTMR.
 - Implementing LTMR with filtering does not produce benefits over foregoing LTMR while using the filter option.
 - Implementing DTMR does decrease overall σ_{SEU}s, but at an expensive price for area, power, and timing.
Test Structures and Heavy Ion SEU Results:

No DCM

Scrubber always turned on

Lowest LET Tested = 1.8 MeV·cm²/mg

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Frequency Range</th>
<th>Additional Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters</td>
<td>50 MHz</td>
<td>No</td>
</tr>
<tr>
<td>Global routes</td>
<td>50 MHz</td>
<td>No</td>
</tr>
<tr>
<td>DCM</td>
<td>50 MHz</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Counter Test Structures

In order to study global structures, various clocking schemes are connected to all of the counters (and snap-shot array) via a clock tree:
input Clock (no DCM) versus DCM.

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Why Counter Arrays versus a String of Counters?

<table>
<thead>
<tr>
<th>Counter Array</th>
<th>String of Counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upsets are isolated per counter unless the upset is from a global route.</td>
<td>Counters are co-dependent – hence it can be difficult to differentiate between a multiple bit upset, single bit or global route.</td>
</tr>
<tr>
<td>A custom tester can resynchronize with a counter that incurs an SEU. Built-in-self-test (BIST) is not necessary.</td>
<td>Implementing a string of counters is complex arithmetic. It can be difficult to resynchronize with an error consequently BIST is usually necessary.</td>
</tr>
<tr>
<td>Full state space traversal</td>
<td>Usually implemented with simple data patterns due to the complexity – hence state space traversal is extremely limited.</td>
</tr>
</tbody>
</table>

String of Counters

Counter Arrays

Counters accumulate

Output to Tester

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Differentiating SEUs: Upset types for SEU Analysis

- **Global Upsets:** σ_{SEU}s for a sequence of upsets that last greater than a snap shot cycle $\ldots > 100\text{'s } \mu\text{s}$:
 - Upsets are from the clock or reset and stem from the top of the global routing tree.
 - Could be clock, DCM, or buffer located high in the global routing tree.
 - Error signature is sporadic — and does not resemble a stuck fault as with a configuration bit SEU induced error.

- **Burst:** σ_{SEU}s for a sequence of upsets that occur within a snap shot cycle ($<100\text{'s } \mu\text{s}$):
 - Upsets are from low in the global routing tree.

- **Single Bit:** σ_{SEU}s for DFF (bit) flips in a counter.

- **Snap Shot:** σ_{SEU}s for DFF (bit) flips in the snap shot array.
Comparison of Various Component σ_{SEUs} with SET Filter Off

Upsets start to converge at higher LETs. However, DFF upsets are dominant.

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Comparison of Various Component SEUs with SET Filter On

No DCM: SET Filter ON

Upsets start to converge at higher LETs. DFF upsets are less dominant than with the SET Filter off.

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Counter σ_{SEUs}: SET Filter Off versus SET Filter On

No DCM: SET Filter Off versus SET Filter On Full LET Range

SET Filter On only makes a difference at low LET values.

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Counter σ_{SEU}'s: SET Filter Off versus SET Filter On: Zooming in on Low LET Values

No DCM: SET Filter Off versus SET Filter On - Low LET Range

- **Single Bit SET Filter Off**
- **Single Bit SET Filter On**

SET Filter On decreases σ_{SEU}'s approximately 1.5 decades. SET Filter On also increases on-set LET.

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Counters have a higher cross section than Snap Shot. Counters are active every cycle; Snap Shot is only active every 4 cycles. Counters have more complex circuitry than Snap Shot.
Comparing Global σ_{SEUs} SET Filter Off versus SET Filter On

No DCM: Global SEUs: SET Filter On versus SET Filter Off

SET Filter On increases the on-set LET for Global σ_{SEUs}.
Global versus Burst σ_{SEUs}

Bursts are prevalent at Low LETs with SET Filter On or Off. However, Bursts slightly decrease at Low LET values with the SET Filter On.
Test Structures and Heavy Ion SEU Results: With DCM Scrubber always turned on
Lowest LET Tested = 5.7 MeV-cm2/mg

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Frequency Range</th>
<th>Additional Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters</td>
<td>50 MHz</td>
<td>No</td>
</tr>
<tr>
<td>Global routes</td>
<td>50 MHz</td>
<td>No</td>
</tr>
</tbody>
</table>

Additional data on counters will be provided in the test report and future papers

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
We are testing DCM susceptibility by connecting the block to a design with a state space with feedback.
σ\textsubscript{SEU}s for DCM Utilization versus No DCM Utilization with SET Filter On

DCM: SET Filter On

- Global/Device
- Counter/Bit
- Snap Shot/Bit
- Burst/Device

No DCM: SET Filter ON

- Global/Device
- Counter/Bit
- Snap Shot/Bit
- Burst/Device

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Mitigated DCM (MITDCM) versus DCM

MITDCM SET Filter ON

DCM SET Filter On

SEU Cross Section cm2/device

Effective LET MeV-cm2/mg

Global/Device

Counter/Bit

Snap Shot/Bit

Burst/device

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Counter SEU Testing: Conclusions

- Counter-array test structures were used to analyze: DFF, SET Filter, global route, and DCM SEU susceptibility.

- SEU data illustrate the following:
 - Utilization of SET Filters provide approximately a decade of improvement of DFF SEU susceptibility when not using DCMs.
 - Utilization of SET filters increase LET on-SET for global routes; however do not do much for bursts.
 - Usage of DCMs significantly increase SEU susceptibility and may make SET filter utilization impractical.
 - DCM mitigation strategy did not help σ_{SEU}s and proved to be an unworthy choice.

- Differentiating σ_{SEU}s is used to investigate SEU dominance and can be applied to determining component usage.

- Additional data and how they correlate to the σ_{SEU}s illustrated in this presentation will be provided in the final test report.
Test Structures and Heavy Ion SEU Scrubber always turned on

Lowest LET Tested = 5.7 MeV-cm²/mg

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Frequency Range</th>
<th>Additional Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP48E</td>
<td>10 MHz – 150 MHz</td>
<td>No</td>
</tr>
<tr>
<td>Global routes</td>
<td>10 MHz – 150 MHz</td>
<td>No</td>
</tr>
</tbody>
</table>

Additional data on counters will be provided in the test report and future papers.
Virtex 5 Family Digital Signal Processing Blocks (DSPs): DSP48E

There are a total of 320 DSP48E blocks in the Virtex-5QV (XC5VFX130T).

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Structures: Strings of DSP48Es with TMR’d BIST

A = Constant
B = Registered (delayed) input
C = input from last stage for accumulation

BIST: Built in Self Test
TMR: Triple Modular Redundancy

DSP Processing

DSP0 = A*B + C
DSP1 = A*B + C
DSP22 = A*B + C
DSP23 = A*B + C

Nonzero
Nonzero
Nonzero
Nonzero

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Test Structures: String of DSP Logistics

- DSP48E’s are programmed to perform: AB + C.
 - A string of DSP48Es accumulate each of the products to form a polynomial:

 \[Y(n) = A_0B(n) + A_1B(n-1) + \ldots + A_N(n-N) = \sum_{i=0}^{N} A_iB(n-i) \]

- String of DSPs are widely used in Finite Impulse Response (FIR) filters and image processing.

- Although prior slides suggested not to use BIST, when dealing with complex circuitry, BIST is advantageous.

- Note that the BIST compares are triplicated. Voting is done in the tester. Minimal circuitry.
DSP48E σ_{SEU} Data

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
DSP48E SEU Testing: Conclusions

- SEU data illustrate the following:
 - Frequency does not seem to affect σ_{SEU}.
 - Configuration upsets have little affect on DSP48Es.
 - σ_{SEU}s are fairly low for the amount of processing power.

- Additional data and how they correlate to the σ_{SEU}s illustrated in this presentation will be provided in the final test report.
Test Structures and Heavy Ion SEU Scrubber always turned on
Lowest LET Tested = 5.7 MeV-cm²/mg

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Frequency Range</th>
<th>Additional Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze™</td>
<td>50 MHz</td>
<td>No</td>
</tr>
<tr>
<td>Global routes</td>
<td>50 MHz</td>
<td>No</td>
</tr>
<tr>
<td>Caching</td>
<td>50 MHz</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Additional data on counters will be provided in the test report and future papers.
To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.

Processor and SRAM Communication

SRAM: Static random access memory
BRAM: Block random access memory

• Processors talk to memory.

• Most processor radiation tests detect errors by erroneous SRAM memory writes.

• Visibility is significantly limited.

• We increase visibility by replacing external SRAM with the REAG low-cost digital Tester (LCDT).
More on Increasing Visibility with Microprocessor Testing (1)

- As previously stated, the embedded SRAM in the tester (BRAM) takes the place of normal memory accesses.
- In addition, each memory access is time-stamped and logged in alternate bank of BRAM. Only the last 512 accesses are kept.
- After each test run, the time stamped logs are output to the user.

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>WR</th>
<th>ADDR</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
<td>Read</td>
<td>Address</td>
<td></td>
</tr>
</tbody>
</table>
More on Increasing Visibility with Microprocessor Testing (2)

DUT: device under test

Halted
Error
Trace Instruction
Trace Valid Instruction
Trace Exception Taken
Trace Exception Kind
Trace Register Write
Trace Register Address
Trace data cache Request
Trace data cache Hit
Trace Data cache Ready
Trace Data cache Read
Trace Instruction cache Request
Trace Instruction cache Hit

TESTER

Watchdogs

Send watchdog errors to host PC

TESTER

DUT

Send watchdog errors to host PC

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
MicroBlaze™ SEU Testing: Conclusions

• Visibility was increased by isolating memory accesses as follows:
 – Moving the instruction and data storage to the LCDT for traffic observation.
 – Performing tests with and without cache to determine the influence cache has on upsets.

• Differentiating global upsets from the normal data set:
 – Helped to understand which upsets are prominent.
 – Gave insight to how the use of cache will affect σ_{SEU}.

• Monitoring internal Micro-blaze™ signals:
 – σ_{SEU}s are not reliant on detecting erroneous memory read and writes anymore. Data are too limited and uninformative with sole reliance on memory reads and writes.
 – Can now determine when a processor crashes and how.
Comparing Micro-blaze™ σ_{SEUs} and Global Clock σ_{SEUs}

SEU Cross Sections:
Cache vs. No Cache with Global Routes

Configuration 6: Cache
Configuration 5: No Cache
Global Routes

To be published on nepp.nasa.gov previously presented by Melanie D. Berg at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 17-19, 2014.
Summary

• We presented a framework for evaluating complex digital systems targeted for harsh radiation environments, such as space.

• If performing accelerated SEU testing on an application specific design:
 – Understand limitations in testing resultant data;
 – Be prepared for complex data de-convolution;
 – Pay attention to global structures;
 – Use basic-test structures to obtain an underlying understanding of DUT SEU behavior; and
 – Maximize visibility – especially when testing application-specific designs.