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Modeling errors in daily precipitation measurements: Additive
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[1] The definition and quantification of uncertainty depend
on the error model used. For uncertainties in precipitation
measurements, two types of error models have been widely
adopted: the additive error model and the multiplicative
error model. This leads to incompatible specifications of
uncertainties and impedes intercomparison and application.
In this letter, we assess the suitability of both models for
satellite-based daily precipitation measurements in an effort
to clarify the uncertainty representation. Three criteria were
employed to evaluate the applicability of either model: (1)
better separation of the systematic and random errors; (2)
applicability to the large range of variability in daily
precipitation; and (3) better predictive skills. It is found
that the multiplicative error model is a much better choice
under all three criteria. It extracted the systematic errors
more cleanly, was more consistent with the large
variability of precipitation measurements, and produced
superior predictions of the error characteristics. The
additive error model had several weaknesses, such as
nonconstant variance resulting from systematic errors
leaking into random errors, and the lack of prediction
capability. Therefore, the multiplicative error model is a
better choice. Citation: Tian, Y., G. J. Huffman, R. F. Adler,
L. Tang, M. Sapiano, V. Maggioni, and H. Wu (2013), Modeling
errors in  daily precipitation measurements: Additive or
multiplicative?, Geophys. Res. Lett., 40, do1:10.1002/grl.50320.

1. Introduction

[2] Quantifying uncertainties in Earth science data records
is becoming increasingly important, especially as the
volume of available data is growing rapidly and as many
science questions need to be answered with higher degrees
of confidence. This is particularly true for precipitation
measurements, whose uncertainties affect many fields, such
as climate change, hydrologic cycle, weather and climate
prediction, data assimilation, as well as the calibration and
validation of Earth-observing instruments.

[3] Uncertainty definition and quantification rely on the
underlying error model, either implicitly or explicitly. An
error model is a mathematical description of a measurement’s
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deviation from the truth, and many choices of such descrip-
tions are available, as they are not necessarily related to the
error mechanisms or sources [Lawson and Hanson, 2005].
An error model’s behaviors and parameters can be deter-
mined through validation studies, and the model can then
be used to predict measurements and their associated uncer-
tainties when only ground references are available, or vice
versa, in which case it is called “inverse calibration.”

[4] Two types of error models are commonly used for the
study of precipitation measurements: the additive error
model and the multiplicative error model. For example,
many studies of satellite-based precipitation data products
have used the additive error model [ Ebert et al., 2007; Habib
et al., 2009; Roca et al., 2010; AghaKouchak et al., 2012],
while other studies such as Hossain and Anagnostou
[2006], Ciach et al. [2007], and Villarini et al. [2009] have
used the multiplicative model to quantify or simulate errors
in radar- or satellite-based measurements. The use of
different error models leads to different definitions and
calculations of uncertainties, which impede direct compari-
sons between them and confuse end users. This raises the
question of which model is more suitable. This letter
addresses this question for daily precipitation measurements,
in order to unify and simplify uncertainty quantification and
representation.

2. Two Error Models and Test Data
[s] The additive error model is defined as
Yi=a+bXi+& §)]

where 7 is the index of a datum; X; is the reference data,
assumed error free; Y; is a measurement; « is the offset; b
is a scale parameter to represent the differences in the
dynamic ranges between the reference data and the measure-
ments; and g; 1s an instance of the random error which has
zero mean and variance of o”. Thus, this model is defined
by three parameters, namely, a, b, and . Both ¢ and b
specify the systematic error, which is deterministic. There-
fore, once ¢ and b are determined, the uncertainty in the
measurements Y; is quantified by o.

[6] On the other hand, the multiplicative model is defined
as

Y, — aXe". )

[7] In this model, the random error €% is a multiplicative
factor, with the mean of ¢; being zero and the variance o°.
The systematic error, defined by a and b, is a nonlinear func-
tion of the reference data. Though less frequently used in
precipitation error models, (2) has been widely adopted in
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many other fields, such as biostatistics [e.g., Baskerville,
1972]. Apparently, the values of o in the additive model
(1) and in the multiplicative model (2) will be different from
one another, illustrating that the uncertainty definition de-
pends on the error model formulation.

[8] Both models (1 and 2) have three parameters (a, b,
and ©), which can be estimated with the generic
maximum-likelithood method or the Bayesian method [e.g.,
Carroll et al., 2006]. However, since the additive model
(1) is a simple linear regression, the parameters can be
estimated easily with the ordinary least squares (OLS) as
well, assuming the random errors (or “residuals” in the case
of OLS) are uncorrelated with a constant variance o [e.g.,
Wilks, 2011]. Usually, the random errors are also assumed
normally distributed, but this is not necessary as indicated
by the Gauss-Markov theorem [e.g., Graybill, 1976]. How-
ever, a normal distribution for the random errors is highly
desirable from a well-behaved error model, because this is
the maximum entropy distribution [Jaynes, 1957] for a
given mean and variance o°. All other distributions will have
lower entropy and indicate extra information in the random
errors, inconsistent with the definition of uncertainty.

[¢9] Meanwhile, if we perform a natural logarithm transfor-
mation of the variables in (2), the multiplicative model becomes

In(¥;) = In(a) + bIn(X7) + & 3)

which is also a simple linear regression in the transformed
domain, and the parameters can be estimated with the same
OLS procedure.

[10] Essentially, the additive error model defines the error as
the difference between the measurement and the truth, while the
multiplicative error model defines the error as the ratio between
the two. Neither is wrong theoretically, but each needs to be
evaluated. In order to evaluate an error model for a given mea-
surement data set, we used three criteria:

(1) Can the model adequately partition the systematic and
random errors?

(2) Can the model represent the large dynamical range typ-
ical in precipitation data?

(3) Can the model predict the errors outside the calibration
period?

[11] We used two daily precipitation data sets for the study.
For the ground reference data (X;), we used the daily gauge
analysis for the contiguous United Sates (CONUS), produced
by the Climate Prediction Center (CPC), referred to as the
CPC Unitfied Daily Gauge Dataset [Chen et al., 2008]. For the
measurements (Y;), we used the Tropical Rainfall Measuring
Mission Multisatellite Precipitation Analysis (TMPA) Version
6 real-time product, 3B42RT [Huffinan et al., 2007], aggregated
to daily accumulation (127 to 12Z) from its native three-hourly
amount. Both data sets have a 0.25° spatial resolution.

[12] We studied a period of 3 years, from September 2005
through August 2008. We used the first 2 years as the cali-
bration period to fit the model and the last year for the
validation of the model’s predictive skills. In estimating
the parameters, we only used the “hit” events, i.c., those
reference-measurement data pairs both reporting a precipita-
tion rate of 0.5 mm/d or more, as we deem the lighter events
to be statistically unreliable for either the gauge-based

reference data [Barnston and Thomas, 1983] or satellite
estimates [Tian and Peters-Lidard, 2007).

3. Results

3.1. How Well Does the Model Separate the Systematic
and Random Errors?

[13] This is equivalent to asking “can the model separate
the signal from the noise well?” Since the systematic error
is the part that can be deterministically described and
predicted, this component should capture as much of the
total deviation as possible, leaving a minimum amount of
unexplainable deviation to blame on the random error, or un-
certainty. In other words, a better error model should be able
to extract more signal (systematic error) from the noise.

[14] Under this criterion, the additive error model (1) and
the multiplicative error model (3) behave quite differently.
To illustrate this, we fitted both models over a 1.5°-by-1.5°
area in Oklahoma (centered at 94.25°W, 35.0°N) for the
first 2 years of data (Figures la and 1b) and produced their
respective plots for the residuals normalized by their
respective standard deviations (standardized residuals;
Figures Ic and 1d) as functions of the gauge data. The
additive error model’s fitting now appears as a curve in
the log-log scale (Figure la), is strongly influenced by the
higher rain rates, and does not fit well in the low and
medium ranges. The multiplicative error model fits the
whole range of the data much better (Figure 1b). However,
at the high end (~64—128 mm/d), there is some clustering in
the satellite data which the model does not capture well.
This clustering is probably caused by the saturation of the
satellite data’s dynamic range, and it is reasonable to expect
that the linear model will miss this nonlinear behavior.

[15] The residuals, or random errors, for the additive
model (Figure 1c¢) exhibit a systematic increase in scattering
with higher rain rates. The residuals for the multiplicative
model (Figure 1d), on the other hand, show a fairly constant
range of variation. The standard deviation of the residuals
within each binned subsets along the X axis confirm this:
the one for the additive model (Figure lc, thick red curve)
has a very systematic upward slope, while its counterpart
for the multiplicative model (Figure 1d, thick blue curve)
remains fairly constant. The slight drop at the very high
end is likely resulted from the clustering of the satellite data
mentioned above.

[16] Clearly, the random errors produced from the additive
model do not have a constant variance (heteroscedasticity).
This implies at least two issues with the model. First, the
systematic increase in the variance indicates that some sys-
tematic errors were not removed by the model and have
“leaked” into the random errors, thus inflating the uncertainty
and proving the model underfits. Second, the nonconstant
variance violates the assumption of constant variance for
OLS parameter estimation, which leads to inconsistencies
in the estimation of the two parameters (a and ). The multi-
plicative model produces random errors with a nearly
constant variance and is thus a better fit.

[17] The “leak™ of the systematic errors into the random
ones can also be seen in Figure 2, which compares the
spatial distribution of o, the standard deviation of the ran-
dom errors, from both the additive (Figure 2a) and the
multiplicative (Figure 2b) model with the time-averaged
daily precipitation from 3B42RT (Figure 2c). Apparently,
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Figure 1. Comparison of model fitting for (a) the additive error model and (b) the multiplicative error model. Residuals of
(c) the additive error model and (d) the multiplicative error model, normalized by their standard deviation, as a function of the
predictor X (gauge value). The colored lines in Figures 1c and 1d represent the standard deviations of the residuals binned by
X. Since log-log scales are used in Figures 1a and 1b, the additive model appears as a curve, while the multiplicative model
appears as a straight line. The data are for the 1.5°-by-1.5° region in Oklahoma, from September 2005 through August 2007.

the random errors in the additive model (Figure 2a) exhibit a
strong correlation with the time-averaged precipitation
(Figure 2¢). This systematic dependence should be captured
by the systematic errors in the first place. The same plot for
the multiplicative model (Figure 2b) shows much more uni-
form standard deviation, with very slight correspondence to
the averaged precipitation pattern, if at all.

[18] Such a “leak™ originates from the assumption that
the systematic errors are a linear function of the reference
data (1), while many existing studies have indicated other-
wise [e.g., Gebremichael et al., 2011]. Barnston and
Thomas [1983] cxplained this effect in their comparison
of gauge and radar measurements.
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3.2. Can the Model Represent the Large Dynamical
Range in Precipitation Data?

[19] This is a simple argument in favor of the multiplica-
tive model [e.g., Kerkhoff and Enquist, 2009]. At the current
(daily, 0.25°) or finer spatial and temporal scales, precipita-
tion variation can span 2 or 3 orders of magnitude and so
can the errors in the measurements. As pointed out by
Galton [1879], the additive error model (1) essentially
assumes that positive random errors and negative ones are
equally probable, to make their arithmetic mean zero. While
a positive random error of 10 mm/d in a measurement of 100
mm/d is acceptable, a negative error of the same amplitude
in a measurement of 5 mm/d is simply inconceivable, and
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Figure 2. Comparison of the standard deviation (stdev) of the random errors between (a) the additive model and (b) the mul-
tiplicative model over CONUS for 2005-2007. Each stdev value is normalized by the CONUS spatial average to facilitate direct
comparisons between Figures 2a and 2b. (c) The time-averaged daily rainfall for the same period is also shown as a reference.
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b) Prediction by additive model
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Figure 3. Evaluating the models” prediction. The first row shows (a) the scatterplots from the actual data, (b) the model predicted
data, and (c) the comparison of PDFs between the actual data and the predicted data, by the additive model. The second row shows
the respective plots (d—f) for the multiplicative model. The model fitting from the historical data is shown as the thick red and blue
lines, respectively, in the first two columns. The additive model’s prediction also produces some negative values, but they were
ignored in the plots. The data are for the 1.5°-by-1.5° region in Oklahoma, from September 2007 through August 2008.

the model will be forced to produce predictions of negative
measurements for precipitation amount. On the other hand,
the multiplicative model (2 or 3) describes the error as a
proportion to the measurements, which is more sensible
and is key to produce the constant variance seen in
Figures 1d and 2b.

3.3. Can the Model Predict the Errors Beyond the
Calibration Period?

[20] The ultimate test of a model is its predictive capa-
bility: outside the validation period, can the model reproduce
the same error characteristics in the measurements? To test,
we used the data from the third (last) year of our study
period over the Oklahoma region. These data were not used
in the validation and parameter estimation of the models.
The scatterplots for the actual gauge and satellite data, with
the additive and multiplicative models fitted with the histo-
rical data, are shown in Figures 3a and 3d, respectively.

[21] In the prediction test, the satellite data were withheld,
and we used the models and the gauge data (X;) to generate pre-
dictions of the measurements (Y;). The scatterplots thus
obtained are shown in Figures 3b and 3¢ for the two models,
respectively. In addition, the probability density functions
(PDFs) of the predicted measurements and the actual 3B42RT

data are compared for both models (Figure 3c and 3f).
Apparently, the multiplicative model has much better predictive
capability than the additive model, judging from the similarity
of its scatterplots and PDFs between predicted and actual data.
The additive model suffered several issues, including the
unrealistically low uncertainty at higher rain rates (Figure 3b)
and the shifted and distorted PDFs (Figure 3c).

4. Summary and Discussions

[22] Uncertainty definition, representation, and quantifica-
tion are determined by the error model used. Two types of
error models have been widely adopted to quantity the errors
in precipitation measurements: the additive error model (1)
and the multiplicative error model (2 or 3). They will pro-
duce incompatible uncertainties from the same measurement
data set. In this letter, we evaluated both models with
measurements from satellite-based TMPA 3B42RT and with
CPC’s daily gauge analysis as the reference data. Three
criteria were used to assess the applicability of each model:
(1) systematic and random errors are well separated; (2)
the model is applicable to the large magnitude of variability
in daily precipitation; and (3) the model has predictive skills.
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Figure 4. Conceptual illustration of the additive model’s
underfitting. The solid curve is assumed to be the true
systematic crror of the data (circles). The additive model
tries to fit a straight line (dashed line) through the data, and
the difference between the two (shaded area) will be treated
by the additive model as part of the random error. This is the
cause of the “leaking” of the systematic error into the ran-
dom error with an underfitting model.

[23] We found that the multiplicative error model is a
much better choice under all three chosen criteria. The
additive error model exhibits several weaknesses, such as
heteroscedasticity, failure to account for all systematic
errors, inconsistencies in the wide range of precipitation
variability, and lack of predictive capability. The multiplica-
tive model is clearly a more suitable choice. Therefore, we
recommend this model for uncertainty quantification in daily
precipitation measurements. This will unify the definition of
uncertainties, facilitate intercomparisons among different
data scts, and, eventually, benefit the end users.

[24] The fundamental cause of the additive model’s issues
is underfitting. Many existing studies have shown that the
systematic error (sometimes referred to as “conditional bias™)
is a nonlinear function of the reference rain rate [e.g.,
Gebremichael et al., 2011; Kirstetter et al., 2012] and can
be well fitted with the form aX? [Ciach et al., 2007].
However, the additive model tries to fit with the linear func-
tion @ + bX;. Thus, it does not capture all the systematic error,
and then, it treats the “leaked” systematic error as a random
error. Figure 4 conceptually illustrates this situation. The true
systematic error is assumed to be nonlinear (solid curve). The
additive model’s linear fit (dashed line) does not capture all
the true systematic error, and the shaded area is the part of
the systematic error treated by the additive model as part of
the random error [Barnston and Thomas, 1983]. This is
why one sees strong “systematic” features in the random
errors (Figures 1c and 2). Therefore, the “random error” in

the additive model is not 100% random and 1s thus not a
truthful representation of the uncertainty.

[2s] However, the selection of an error model is dictated
by the data. We speculate that at coarser spatial and temporal
resolutions (scasonal or longer), the magnitude of precipita-
tion variability is much suppressed and both precipitation
and the measurement errors are closer to the normal distribu-
tion [e.g., Sardeshmukh et al., 2000], and the additive model
may become more viable. On the other hand, at finer spatial
and temporal resolutions, the probability distributions of
precipitation and the errors are highly skewed and closer to
the Gamma or lognormal distribution, and the multiplicative
model may prevail. How the error modeling transitions with
the spatial and temporal scales requires further study. Never-
theless, the three criteria proposed in this paper are general
and rational enough to be applicable to other data sets and
models as well.

[26] In this study, we only used 3B42RT data for the test.
We have also examined many other data sets, satellite-based
or not, and found that the multiplicative model works
equally well at the same 0.25°/daily scale. These results will
be published elsewhere. We also used a radar-based data set
(Stage 1V) as the reference, and the results are qualitatively
the same, because on the daily scale, the difference between
the gauge and radar data is about an order of magnitude
smaller than that between either one and the satellite data
[Tian et al., 2009].

[271 We treated the gauge data as error free, which is
not absolutely true. However, in practice, the errors in
the gauge data arc believed to be much smaller than those
in the satellite-based measurements [Tian et al., 2009], so
this assumption should not change the nature of the
conclusions. Moreover, once the errors in the reference
data are available, it is straightforward to take them into
account [Krajewski et al., 2000]. There are also theoretical
treatments to the modeling of errors in both the measure-
ments and the reference data (errors-in-variables theories)
[e.g., Carroll et al., 2006], which are beyond the scope
of the current study.

[28] Both models also assume that the errors are only func-
tions of the reference rain rate and are not designed to handle
errors related to other features such as spatial patterns. Thus,
they are more suitable for gridbox-by-gridbox or small region-
by-region studies. This is reasonable for satellite-based
measurements that are mostly retrievals on a footprint-by-
footprint basis. The dependence of the errors on other
geophysical parameters, such as topography, will be reflected
in the spatial variations of the parameters (a, b, and o) from
gridbox-by-gridbox modeling fitting.

[29] Despite the demonstrated advantages, the multiplica-
tive error model is certainly not perfect, simply because
not all the underlying assumptions can be met in reality.
These assumptions include, for example, the stationarity of
the measurement process and the systematic error’s depen-
dence on the precipitation alone. Also, the possible satura-
tion of the dynamic range at high rain rates in the satellite
data introduces some nonlinearity, which cannot be repre-
sented by the linear model. More elaborate error models
can certainly be developed, with more complex formulations
and more parameters, but there is always the risk of
overfitting, and the models may quickly lose predictive
skills. A complex error model also implicates ill-designed
measurement instruments or product algorithms. Judging
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from its predictive skills and its conceptual simplicity, we
suggest that the multiplicative model (3) should suffice for
most studies in practice.

[30] It is also worth noting that the model parameters are
estimated with only “hit” events, which only include preci-
pitation rates of (0.5 mm/d or larger in both measurement
and gauge data, and which more often dominate the errors.
We believe that data points with lower rates in either the
gauge data or the satellite data are statistically unreliable,
being more susceptible to noise and artifacts [e.g., Barnston
and Thomas, 1983; Tian and Peters-Lidard, 2007]. How-
ever, since both models (1 and 3) are linear, the model
parameters estimated with the “hit” events can certainly be
used to extrapolate to lower precipitation rates, albeit there
is no guarantee of performance. In addition, we did not
attempt to model the “missed” or “false alarm” events [Tian
et al., 2009]; they should be modeled as separate error
components [e.g., Hossain and Anagnostou, 2006; Villarini
et al., 2008], and their contribution to total rainfall could be
significant [Behrangi et al., 2012]. Again, since these events
usually involve very light rain rates in either the reference
data or the measurements, and they are more prone to
nonrandom effects such as snow cover on the ground
[Ferrara et al., 1998] or inland water bodies [Tian and
Peters-Lidard, 2007], how well one can characterize them
with a stochastic model 1s an open question.
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