
Use of the NetBeans Platform for
NASA Robotic Conjunction Assessment

Risk Analysis

Nick Sabey
a.i. solutions, Inc.

JavaOne 2014

Note: These slides will be moved into the JavaOne template prior to presentation

NASA Robotic Conjunction Assessment
Risk Analysis (CARA)

• CARA is the process and team for:
– Determining the risk of collision between two orbiting objects
– Assisting with risk mitigation (typically, via an orbital

maneuver)
• The NASA Robotic CARA group at NASA GSFC provides this

support to all operational NASA robotic (unmanned)
missions
– Started in January 2005
– Over 65 missions in total
– Over 1,000 close approach messages received per day
– Maneuver recommendations result in as many as 30 realized

maneuvers each year

NASA Robotic Conjunction Assessment
Risk Analysis (CARA)

NASA Robotic Conjunction Assessment
Risk Analysis (CARA)

• The Joint Space Operations Center (JSpOC) is a USAF operational
unit that is responsible for maintaining the locations of all objects
in space
– For NASA, the JSpOC identifies close approaches between those

objects and provides data to CARA to enable the collision risk
assessment

– The JSpOC operates in a secure environment
• i.e. only accredited or in-house software; accreditation can take more than 6

months
• CARA has an analyst/developer resident at the JSpOC to access

data which cannot be sent to NASA
– Able to develop NASA-specific products and services

• i.e. development of space weather risk trade space, orbit quality data product
– Symbiotic relationship between NASA and USAF/JSpOC

• i.e. developed automation and improvements to legacy software components

NetBeans for CARA JSpOC Support
• JSpOC development & support provided by a single

developer
– Scope of project would not have been possible without the

use of a Rich Client Platform (RCP)
– NetBeans was intuitive, and provided excellent support

• Initially developed using NetBeans 7.3.1
– Provided significant UI features with little to no code
– Scalability from plugin architecture
– Platform API reduced coding time substantially

• Nodes, Module, Lookup, and FileSystems APIs used extensively
– Reused existing platform modules developed for other a.i.

solutions projects
– Interfacing with legacy and supporting software very easy

Upgrading to Java 8 / JavaFX 8

• No software changes required to update to JDK8
– i.e. nothing broke

• We are adding some of the new JDK 8 features to
our application as part of the upgrade:
– Stream API and Lambdas

• Reduction in code / simplified syntax
• Simplifies our use of collections
• In the process of adding substantially more parallelism

– JavaFX 8
• No prior access to JavaFX on our system
• JavaFX has been approved along with JDK 8
• Experimenting with both 3D and 2D visualizations

JFX 8 OD Quality Visualization Demo*

*Note: This will be an interactive demo, with all data being simulated

