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ABSTRACT

The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic
Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the
Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we
discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever
Q-band bolometric polarimeter array.
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1. INTRODUCTION

The cosmic microwave background (CMB) radiation consists of photons emitted ∼13.8 billion years ago. Photons
and charged particles in the early Universe were tightly coupled in a hot, dense plasma; as the universe expanded
and cooled, the free electrons and protons combined to form neutral hydrogen, allowing the photons to decouple
from matter and free stream throughout the Universe. Today, we observe this radiation in all directions as an
almost perfect 2.725 K blackbody.1 The near isotropy of the CMB poses a pressing question, how can two regions
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of the Universe that were not in causal contact at decoupling yield the same CMB radiation temperature to an
observer today?

The theory of Inflation2,3 explains our isotropic and homogeneous Universe by postulating a period of ex-
ponential expansion that took place in the first fraction of a second, smoothing inhomogeneities to scales much
larger than the observable Universe. Only small inhomogeneities sourced from quantum fluctuations are left once
inflation ends. These quantum fluctuations are believed to produce the nearly scale-invariant spectrum of per-
turbations observed in the CMB anisotropies. Inflation theory predicts both scalar (over- and under-densities)
and tensor perturbations (gravitational waves) to the space-time metric. These perturbations generate both
temperature and polarization anisotropy in the CMB. The CMB polarization anisotropy can be decomposed
into E-mode and B-mode rank-2 tensor fields. While both scalar and tensor perturbations contribute to the
E-mode signal, only tensor perturbations contribute to the B-modes.4,5 Detection of B-modes provides one of
the cleanest tests of Inflation. Nevertheless it is a challenging task given an expected signal amplitude hundreds
of times smaller than the CMB temperature anisotropies.

The small primordial B-mode signal is easily obscured by multiple foregrounds. At angular scales smaller
than half a degree, the B-mode signal is dominated by gravitational lensing of E-modes into B-modes.6,7 Galactic
synchrotron emission dominate the sky’s polarized signal at frequencies below ∼65 GHz,8 while polarized dust
dominates at higher frequencies. The amount of Galactic foreground contamination depends strongly on the
Galactic latitude of the observation. One strategy is to observe regions of expected low foreground emission, in
the hope that the primordial B-mode signal dominates; another is to measure the sky polarization at multiple
frequencies, and use the spectral information to subtract the foreground contribution. Experiments that have
measured or are aiming to measure the CMB polarization signal include QUAD,9 CBI,,10 BOOMERANG,11

DASI,12 WMAP,13 CAPMAP,14 BICEP,15 QUIET,16 BICEP2,17 KECK,18 PLANCK,19 POLARBEAR,20 SPI-
DER,21 EBEX,22 ABS,23 ACTPOL,24 SPTPOL,25 SPT3G,26 GROUNDBIRD,27 LITEBIRD,28 QUIJOTE,29

BICEP3,30 PIPER31 and CLASS.32 In March 2014 the BICEP2 team,33 claimed a detection of primordial B-
modes consistent with a tensor-to-scalar ratio r of 0.2, in tension with r < 0.1134 upper limit from temperature
anisotropy measurements. Confirmation of this claim requires better understanding of the polarized foregrounds
in the BICEP2 patch, information that Planck data may provide in the near future. Also critical are follow-
up measurements from multiple experiments targeting the same and/or other sky regions with different sets of
systematic issues.

Going forward, an ideal B-mode measurement would strive for high-sensitivity full-sky polarization maps at
multiple frequencies. Multi-frequency observations are required for foreground subtraction. Full sky maps would
provide access to the lowest multipoles, which are expected to contain an enhancement in the B-mode power
spectrum generated from primordial gravitational waves entering the horizon during the reionization epoch. The
Cosmology Large Angular Scale Surveyor (CLASS) is designed to achieve these survey goals. From the Atacama
desert of Chile it will map over 65% of the sky (45% after masking the Milky Way) at 38, 93, 148, and 217 GHz,
employing Transition Edge Sensor (TES) bolometer arrays with �K

√
s sensitivity. Each frequency band has a

Variable-delay Polarizer Modulator (VPM) that converts the detector’s polarization sensitivity between Stokes
parameters Q and V. This modulation allows the signal band to be placed at ∼ 10 Hz, away from instrumental
and atmospheric 1/f noise. For a detailed description of the CLASS project see [35] in these proceedings.

In the following sections we present details of the design and construction of the CLASS 38GHz (Q-band)
camera. See Table 1 for a summary of the CLASS Q-band survey characteristics. This article is divided as
follows: Section 2 describes the focal plane optics and mechanical layout. Section 3 discusses the TES bolometer
design, the detector SQUID readout, and estimates of the final array sensitivity. Section 4 summarizes the
camera’s current status and future path.

2. FOCAL PLANE OPTICS AND MECHANICAL DESIGN

The CLASS Q-band focal plane (FP) mounts through copper rods onto the 100mK stage of a Bluefors∗ dilution
refrigerator, which provides in excess of 300�W of cooling power at this temperature. A low FP operating
temperature is required by the low noise transition edge sensor (TES) bolometers described in the following

∗Bluefors Cryogenics, Arinatie 10, 00370 Helsinki, Finland +358 9-2245110
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Table 1. CLASS Q-band survey characteristics

Frequency 33 GHz to 43 GHz
Beam FWHM 1.5◦

Field of view 14◦ × 19◦

Number of polarimeters 36
Observing site Cerro Toco in the Atacama desert
Fraction of sky observed 65%
Polarization Modulation VPM
Detectors Feedhorn-coupled Planar OMT TES bolometers
Cryogenics Dilution fridge with Tmin = 30 mK
Mount Azimuth, elevation, and boresight axis.

section. A 24 cm by 33 cm gold-plated copper monolithic FP baseplate minimizes thermal gradients. It contains
36 detector-mounting locations, each with a light-coupling waveguide machined through the baseplate. The
cross-section of these waveguides transitions in one step from a circle of 3.14 mm radius to a square with 5.7 mm
side length and 1 mm corner radius. Space on the edge of the baseplate is reserved for mounting the cold readout
electronics.

A smooth-walled copper feedhorn36,37 bolts to each waveguide on the baseplate, thus coupling light onto the
detectors mounted on the opposite side. The feedhorn’s flange bolts to the baseplate aligning a cylindrical boss at
the bottom of the feedhorn to a matching (slightly oversized) cylindrical extrusion on the baseplate. This setup
aligns the feedhorn and baseplate waveguides to 25�m tolerance. A photonic choke joint38 is used to define the
interface between the integrated silicon detector and the baseplate. On the baseplate side the interface consists
of a 7x7 grid of square pillars machined into the plate. The pillars are 2.28 mm on a side, spaced 3.88 mm apart
and rotated 45◦ with respect to the detector waveguide. The pillar height is set to 0.18 ± 0.01 mm. Figure 1
shows a model of the feedhorn-baseplate-detector stack.

Thirteen detector chips are fabricated on one 100mm silicon wafer39. Each detector is then diced and
attached to a metalized silicon “choke” chip that provides the other half of the photonic choke joint. Cooling
the focal plane to 100 mK shrinks the copper baseplate by 0.33%. On the other hand, the silicon chips contract
by a negligible amount. The baseplate’s contraction is compensated for in the machining dimensions, while the
differential contraction with respect to the detectors is solved with a mounting scheme that accurately aligns the
detector pixel to the waveguides without over-constraining the silicon. The mounting scheme shown in Figure 1
employs two pins located on the baseplate (10 �m tolerance) to constrain the pixel’s displacement and rotation.
A spring-loaded jig applies ∼ 0.1 N on the pixel (∼ 20× its weight) in the direction of the pins and downward
toward the baseplate. This jig is composed of two pieces called the “clip” and the “tensioner.” The clip bolts to
the baseplate, while the tensioner is attached to the clip via a titanium alloy (Ti-6AL-4V) wire that acts as the
spring. A “V”-shape feature on each pixel aligns with one of the pins constraining its location on the baseplate,
while a flat edge on the other side of the pixel is registered by the second pin to constrain rotation.

The dominant TE01 and TE10 modes of the square waveguide are separated by a planar orthomode transducer
(OMT)41–43 that utilizes magic-T44 and via-less crossover45 designs. The symmetry in the OMT circuit enables
broadband operation over the 2:1 waveguide bandwidth. After the OMT, a reactive filter defines the desired
bandwidth of 33-43 GHz for the CLASS Q-band focal plane. This bandpass range is optimized for maximum
signal-to-noise based on the atmospheric emission at the CLASS observing site in the Atacama desert. To
minimize dielectric loss, the OMT is fabricated on 5�m single-crystal silicon,39 which serves as the low-loss
dielectric as well as the support membrane for the TES bolometers.43 Preliminary measurements of the optical
efficiency of the entire polarimeter, from OMT to TES bolometers, is 90% in each polarization.43

Optical power coupling through each polarization channel (2 channels per pixel, 72 total in the Q-band
array) is dissipated on a matched resistive element that is thermally connected to a TES bolometer. Individual
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Figure 1. The picture on the left shows the CLASS Q-band focal plane with feedhorns, Al circuit boards, mounting jigs,
and choke chips installed. The magnified section shows a choke chip aligned by the two-piece spring-loaded jig. The 3D
model on the right depicts a detector pixel mounted on the focal plane baseplate. The backshort cap (brown), detector
chip (fuchsia), and interface chip (yellow) are hybridized and mounted as a single assembly. In this view the detector and
alignment jig are cut down the middle, while one quarter of the baseplate is removed, exposing the circular to square
waveguide transition.

bolometers are voltage-biased by a ∼250 Ω shunt resistor and noise bandwidth limited by a Nyquist inductor
of ∼310 nH. Both components are located on the “interface chip” fabricated by NIST, and mounted at the edge
of the focal plane. Connections between the detectors and the interface chip are composed of superconducting
aluminum (Al) bonds to aluminum traces fabricated on silicon and on FR4 substrates. Aluminum silicon circuits
are fabricated in-house and then laser-diced, while 0.25 mm thick aluminum FR4 circuits backed by 0.51 mm thick
copper surfaces for good thermal conductivity are fabricated by Tech-etch†. Trace lengths between the detectors
and the shunt resistors range from 2 cm to 15 cm, increasing the inductance of the TES loop by as much as
200 nH.

The TES bolometers are read out by superconducting quantum interference devices46 (SQUID) mounted
next to the interface chips, and connected via Al bonds. Eight SQUID multiplexing chips are mounted on the
FP, sandwiched between 0.51 mm thick Niobium (Nb) sheets for magnetic shielding. Each chip may read out
11 channels for a total of 88, divided as follows: 72 optical bolometers, 4 optically-isolated dark bolometers for
detecting light leaks and monitoring the stability of the bath temperature, and 12 dark SQUIDS to monitor
readout noise and magnetic pick-up. SQUID channels on the FP are connected to a 4K stage of SQUID
series array (SA) amplifiers via NbTi superconducting cables and multi-layer copper circuit boards with MDM‡

connectors. A 4 K circuit board holds the SA and serves as interface between the NbTi cable launched towards
the FP, and two low-thermal-conductivity Manganin MDM cables that carry signal and bias lines to the warm
readout electronics. All wires are twisted pair to reduce pick-up; MDM connectors are strain-relieved with
low-profile epoxy back-shells; and wires are wound with aramid fiber for durability. The NbTi and manganin
cables are fabricated by Tekdata cryoconnect§. The warm readout Multi-Channel Electronics (MCE) designed
for Time Domain Multiplexing (TDM) of SQUIDS is provided by the University of British Columbia (UBC).
Similar systems are operated successfully in the field by multiple CMB experiments.17,21,23,24

3. TES BOLOMETERS

TES bolometers measure the optical power that couples through the planar OMT antennas of the Q-band
detector pixels. These TESs are based on a MoAu superconducting bilayer with a critical temperature (Tc)
target of ∼ 150 mK, a normal resistance (Rn) of ∼ 10 mΩ and a typical operating resistance (Rtes) of ∼ 5 mΩ.39

The bilayer sits on an island that is thermally isolated from the supporting structure through silicon legs of
†Tech-etch, 45 Aldrin Road, Plymouth, MA 02360, (508)747-0300
‡Glenair, 1211 Air Way, Glendale, CA 91201-2497, (818)247-6000
§Tekdata Interconnections Limited, Festival Way Stoke-on-Trent, Staffordshire, ST1 5SQ, UK, +44 (0) 1782-254-700
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Figure 2. NEP components of CLASS Q-band pixel operated at Tb = 70 mK with a backshort cover. The expected
NEP from thermal fluctuations is 8.5 aW

√
s, but measurements imply total detector NEP of 11 aW

√
s at 10 Hz. This

difference is accounted for through three components: SQUID readout noise, detector Johnson noise, and 1/f noise. In
the data above, the detectors were read-out by a mux09 SQUID multiplexing chip, in the final focal plane mux11d chips
will be used at a higher multiplexing rate, which provides a factor of root two reduction in SQUID NEP (see section 3.4).
Detector Johnson noise is suppressed through electro-thermal feedback (ETF) at lower frequencies, but increases lower
on the transition as β gets larger.47,48 Optimal ETF requires TES bias power greater than the expected optical loading,
hence the requirement Psat = Pload + Pbias ≥ 2Pload. In the data above no temperature servo was applied, therefore
improved Tb stability should further reduce the 1/f noise component.

thermal conductivity G. It is voltage-biased by a shunt resistor (Rsh), such that changes in TES resistance may
be measured as a current signal through a SQUID connected in series with the TES. For example, consider an
optical signal that deposits power on the TES island through the OMT’s microstrip circuitry. This signal raises
the island’s temperature, and hence also the resistance of the bilayer. This change in resistance is converted to
a change in current by the voltage bias circuit, which is then read-out by the SQUID amplifier. The following
sections discuss the optimization of the TES bolometer design for sensitivity, stability, and uniformity across the
array.

3.1 TES Design Choices, and Results
The thermal fluctuation or phonon noise of a TES bolometer is given by:

NEPG =
√

2kbT 2
c GFlink, (1)

Flink =
1 + (Tb/Tc)n+1

2
, (2)

where NEPG is the phonon noise equivalent power with units W
√

s, Tb is the temperature of the heat bath
supporting the TES legs, n is the exponent governing power flow between the TES and the heat bath, and kb

is Boltzmann’s constant. Flink depends on the nature of the energy transport between the TES and the bath.
Equation 2 is valid in the ballistic limit when the mean free path of the phonons is larger than the length of the
thermal link.49 It applies to the CLASS bolometers, for which the thermal conductivity is dominated by a short
silicon leg.50

The detector’s saturation power (Psat) is defined as the amount of power required to raise the island temper-
ature to Tc and can be computed from:

Psat = κ(Tn
c − Tn

b ), (3)
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where κ is a constant given by the geometry of the TES legs, and n is equal to four in the limit of ballistic
phonons. Psat is equivalent to the largest signal a TES bolometer can measure.

The expected background optical loading in the field for the CLASS Q-band camera is 1.7 pW,35 while the
expected background optical noise is 12 aW

√
s.35 To achieve background-noise-limited detectors, the CLASS

Q-band camera requires TES bolometers with low Tc and G values. On the other hand, the bolometer’s Psat has
to be larger than the expected optical loading (typically a factor of two or more for optimal performance), hence
this limits how low G and Tc can be, given a target operating Tb. G is related to the Psat parameters through:

G =
dPsat

dT

∣∣∣∣
Tc

= nκTn−1
c . (4)

Equation 1 can be expressed in terms of the target Psat, Tb, and Tc through equations 3 and 4. NEPG is then
minimized for an optimal Tc (T opt

c ) given a target Tb:

T opt
c = 1.65 × Tb when n = 4. (5)

Once the optimal Tc target is known, κ is chosen to satisfy the Psat ≥ 2Pload condition, where Pload is the
expected optical loading.

Tests of the first CLASS dilution refrigerator without the cryostat window reach a minimum Tb of 27mK.
Including the expected optical loading through the window implies a Tb as low as 50 mK. The Tc targets for the
Q-band detector wafers were conservatively chosen based on a Tb target of 90mK, which implies a T opt

c target
of ∼ 150 mK. The average Tc of the science-grade detectors fabricated so far is 156mK.

CLASS TES detectors have been fabricated and tested with multiple leg designs.50 The optimal design for the
38 GHz detectors contains a 10 �m long, 12 �m wide leg that dominates the thermal conductance to the island.
This design has yielded detectors with an average κ = 12.1 nW/Kn and a standard deviation across a detector
wafer of ∼5%. This average κ value implies a Q-band Psat of 6.8 pW and NEPG of 8 aW

√
s at Tb = 70 mK

and Tc = 156 mK. This scenario provides an attractive ratio of Psat/Pload = 4, which would allow some excess
loading and variation in the detector parameters without great detriment to the detector performance.

Detector wafers consistently yield devices with Tc values between 140mK and 165 mK. Furthermore the
standard deviation of individual detector Tc within a wafer is only ∼ 3.4 mK (see Figure 4). The total dark NEP
of a bolometer on a fully assembled pixel has been measured directly from the power spectra of time-ordered data
acquired during dark tests, achieving values as low as 11 aW

√
s (see Figure 2). This value is consistent with the

detector’s parameters (Tc = 162mK, G = 193 pW) when including the SQUID readout and detector Johnson
noise. Detectors from lower Tc wafers are expected to have detector NEP in the field of 9 aW

√
s, excluding

photon noise.

3.2 TES stability

In the simplest TES model there are two time constants: L/Rtes and C/G
1+LI/(1+β) . L is the inductance of the

TES loop, C the heat capacity of the TES, β = Ites

Rtes

dRtes

dItes
and LI the loop gain of the negative electro-thermal

feedback (ETF) loop created by voltage-biasing the TES. LI can be calculated from:

LI =
Ptesα

GTc
, (6)

where alpha is equal to α = Ttes

Rtes

dRtes

dTtes
.

If the electrical time constant (L/Rtes) becomes comparable to the thermal time constant ( C/G
1+LI/(1+β) ) then

the TES becomes unstable and oscillates, making the detector inoperable. The inductance of the TES loop (Ltes)
is approximately 500 nH, dominated by a Nyquist inductor included in the interface chip to limit the detector
noise bandwidth, such that it can be sampled at 20 kHz without aliasing more than 2% of the noise in the signal
band. Assuming Rsh � Rtes , and LI � 1, the stability condition of the TES given in [47] is equivalent to:

L

Rtes
<

TcC(1 + β)
Ptesα

, (7)
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Figure 3. On the left is a plot of the TES T vs R transition (extracted from I-V curves) for bilayers with and without gold
Au-stripes. Note that the transitions do not reach zero resistance because the TES becomes unstable at lower resistance,
due partly to the high L value used during these measurements. The right plot shows the parameter α/(1 + β) across the
transition (estimated from I-V curves) for the two types of TES detectors. The TES with stripes has a gentler R-T curve
slope and lower α/(1 + β) throughout the transition, hence adding stripes improves the stability of the detector.

where Ptes = Psat − Pload. This implies that a TES detector cannot operate low on the transition where Rtes is
small, unless C is large enough and α/(1 + β) is small enough for the target Tc and Ptes.

The 2.5 pJ K−1 heat capacity of the TES island is dominated by a 400 nm palladium layer.50 By adding three
gold bars (Au-stripes) that partially span the bilayer perpendicular to the direction of the bias current,47,51,52

α/(1 + β) is suppressed below 100 (the estimated threshold for stability) across the TES transition. For com-
parison, a TES design without Au-stripes broke the α/(1 + β) > 100 stability mark around 60% Rn (see Figure
3). Lowering α/(1 + β) translates into stable detectors over a wider range of the TES transition, an important
factor when multiple detectors share one bias line, and are typically biased at different points on the transition.
It is also expected to reduce non-equilibrium TES noise that is correlated to high α devices.53

3.3 TES Uniformity

So far we have described tuning of individual detector parameters to optimize performance; equally important to
maximizing the final instrument sensitivity is the uniformity of the detector fabrication. Good wafer uniformity
is required to achieve the optimal TES parameter targets on all detectors, or at the very least necessary to
produce detectors that can operate at the same bias voltage, optical loading, and bath temperature.

The Q-band camera will run eight detector bias line groupings of up to 11 TESs each. The Tc uniformity
within a Q-band wafer is shown in Figure 4. The standard deviation of Tc within a science-grade wafer is only
3.4 mK, while average Tc of these wafers falls in the 140 mK to 165mK range.

The uniformity of the thermal conductance is probed by measuring the thermal conductivity parameter κ with
I-V curves at multiple Tb temperatures. Thirty-six such measurements are included in the second histogram of
Figure 4 yielding a κ standard deviation across detectors of ∼5%.50 This small fluctuation in κ is sub-dominant
to the Tc fluctuation, which is amplified by a factor of 4 when considering its effect on Psat. By grouping
the detectors in Tc ranges of 3 mK while discarding outliers, the effects on Psat due to Tc variations become
comparable to those from the κ distribution.

The standard deviation of Psat is less than 10% across a wafer and should be lower within a bias group. At
this level the Psat disparities are comparable to those expected from differences in optical loading across the focal
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Figure 4. From left to right are histograms of ΔTc, Δκ, and ΔPsat respectively, where Δ denotes the difference of the
individual detector parameter value to the average within its wafer. The histograms include measurements of science
grade detectors from four Q-band CLASS wafers. Each MCE detector bias line will group bolometers from the same
wafer, hence good wafer uniformity translates to optimal TES biasing.

plane due to coupling efficiency variations, or elevation-dependent atmospheric loading. The ability to group
similar TES bolometers will allow for fine-tuning of the detector bias voltage based on observing conditions. The
optimal bias point of operation for these detectors is found low on the transition where ETF strongly reduces
the TES Johnson noise, but not so low that they become unstable. See Table 2 for a summary of the CLASS
Q-band TES bolometer parameters.

3.4 SQUID readout

Low-noise current amplifiers are necessary (∼ 30 pA
√

s) to readout the CLASS TES bolometers. A single-channel
SQUID would be able to achieve this task with ease, but since the array holds many detectors, TDM is used to
reduce the number of wires reaching the cold stages. TDM increases the SQUID readout noise through aliasing
by a factor that scales with the number of multiplexed channels and the time spent reading each. CLASS utilizes
the latest generation of 11 channel flux-activated54 mux11d55 chips fabricated by NIST, which can be multiplexed
faster than the earlier mux09 version. The mux11d readout only uses two stages of SQUIDs, a stage one (SQ1)
to readout the detector signal, and a 4K series array (SA) of SQUIDs for further amplification before the warm
readout electronics. The previous mux09 version used a second stage SQUID (SQ2) in between the SQ1 and SA
to aid with the multiplexing scheme. The SQ2 voltage bias circuit typically limited the multiplexing speed of
the system.

The MCE readout electronics runs on a 50MHz clock, with the Q-band mux11d readout set to wait as little
as 50 clock cycles per row switch, and acquire between 10 and 50 clock cycles of data before the next row switch.
Currently the plan is to run a 50-50 cycle of wait-sample for each channel. This translates to a SQUID noise
aliasing factor of 22, with an individual detector sampling frequency of 45 kHz, large enough to avoid aliasing of
high-frequency detector noise. Initial noise measurements of the Q-band mux11d readout place its amplitude at
∼ 20 pA

√
s. A typical detector responsivity of 150 nV then implies a SQUID NEP of 3 aW

√
s. Note that it adds

in quadrature to the detector NEP (∼ 11 aW
√

s) and photon NEP (∼ 12 aW
√

s). Hence the SQUID readout
only contributes a few percent to the total noise.

3.5 Sensitivity projections

The total detector NEP (NEPtot) during observations can be estimated by adding (in quadrature) the nominal
detector dark NEP (NEPdark) measured in section 3.1 (∼ 11 aW

√
s) to the expected NEP contribution from

optical loading (NEPγ) due to the intrinsic telescope emissions, the atmosphere, and the CMB. The total optical
loading (Popt) on the detector during observations is expected to be 1.7 pW, generating an NEPγ ∼ 12 aW

√
s.

We expect 69% coupling efficiency to the sky signal (ε) , while the conversion factor from sky power to CMB
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temperature ( dP
dTcmb

) is equal to 0.13 pW K−1. For more details on the optical loading and efficiency estimates
see [35]. A noise-equivalent CMB temperature (NETcmb) of 181 �K

√
s is obtained for a single Q-band bolometer

from:
NETcmb =

NEPtot

ε

dTcmb

dP
. (8)

Depending on the detail of the VPM modulation, the time spent measuring Stokes parameter Q or V can be split
50/50 (εQ = 0.5) or possibly up to 85/15 (εQ = 0.85). This translates to noise equivalent Q (NEQ) range from
363 �K

√
s to 214 �K

√
s. Assuming 85% of the time is spent measuring Q and ∼ 90% of the detectors operating,

then the expected total array NEQ is 27�K
√

s. This array NEQ means CLASS can map 65% of the sky to
WMAP Q-band sensitivity (280�K arcmin13) with 249 hours of observations, and to the expected final Planck
Q-band sensitivity (142�K arcmin56) in 969 hours. The low emissivity of the atmosphere at Q-band even for
relatively high precipitable water vapor (PWV), combined with the continuous dilution refrigerator cycle should
permit an observing efficiency from the Atacama similar to the 60% efficiency achieved by the QUIET Q-band
receiver.57 Therefore in a three-year survey CLASS can obtain ∼15000 hours of data, yielding a Q-band map
sensitivity four times greater than Planck.

Table 2. Q-band detector parameters

Parameter Value Parameter Value
Tc 156 mK C 2.5 pJ K−1

Tb 70 mK LI/(1 + β) 4-18
Rn 10 mΩ F3db 40 Hz-190Hz
G@Tc 184 pW/K NEPG 8 aW

√
s

κ 12.1 nW/K4 Pload 1.7 pW
n 4 NEPtot 16 aW

√
s

Psat 6.8 pW dP/dTcmb 0.13 pW K−1

Rsh 250 �Ω ε, εQ 0.69, 0.85
Ltes 500 nH NEQarray 27 �K

√
s

4. CONCLUSIONS

The CLASS Q-band camera is the first-ever bolometric polarimeter array in its frequency band. The focal
plane is constructed around a monolithic copper baseplate that serves as the interface between smooth-walled
feedhorns and planar OMT circuitry coupled to TES bolometers. The baseplate provides mechanical support
for the superconducting wiring of the detector readout and includes a set of spring-loaded jigs used to mount
and align individual silicon detector pixels. We have validated the TES bolometer design yielding 11 aW

√
s dark

detector NEP with 6.8 pW saturation power, while maintaining stability across most of the transition. Detector
Tc and κ statistics show a well-constrained fabrication process that has led to a uniform detector set, optimally
biasable to achieve an array NEQ of ∼27 �K

√
s. Within a year of the 2015 observing start date, the CLASS

Q-band array should provide the most sensitive polarization data at 38 GHz across 65% of the sky. The Q-band
camera will be the first deployed by the CLASS experiment, with the main goal of gathering information on
low-frequency CMB foregrounds such as synchrotron. Its final Q-band maps are a critical element necessary to
disentangle the primordial CMB B-mode signal from dominant foreground polarized emissions.
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