An experimental and theoretical study of nitrogen-broadened acetylene lines

Franck Thibault a,*, Raúl Z. Martínez b, Dionisio Bermejo b, Sergey V. Ivanov c, Oleg G. Buzynkin d, Qiancheng Ma e

a Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, Campus de Beaulieu, Bât. 11B, F-35042 Rennes, France
b Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, 28006 Madrid, Spain
c Institute on Laser and Information Technologies, Russian Academy of Sciences, 2 Pionerskaya Str., 142190 Moscow, Troitsk, Russia
d Central Aerohydrodynamic Institute (TsAGI), 140160 Zhukovski, Moscow Region, Russia
e NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025, USA

ARTICLE INFO

Article history:
Received 7 January 2014
Received in revised form 10 March 2014
Accepted 12 March 2014
Available online 21 March 2014

Keywords:
Ethyne
Acetylene
Nitrogen
Pressure broadening coefficients
Stimulated Raman spectroscopy
Dynamical methods

ABSTRACT

We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the \(\nu_2 \) band of acetylene (\(\text{C}_2\text{H}_2 \)) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon’s approach, two kinds of semi-classical calculations based on Robert–Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same \textit{ab initio} potential energy surface for the \(\text{C}_2\text{H}_2–\text{N}_2 \) system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of \(\text{C}_2\text{H}_2 \). The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert–Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Q- and R-lines. The refined semi-classical Robert–Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many experimental infrared studies have been devoted to the nitrogen broadening of acetylene lines of various fundamentals or combination bands [1–9]. Table 1 of the recent studies of Predoi-Cross and collaborators [8,9] gives an exhaustive summary. In the present work, we complete...
these studies by performing the very first broadening measurement of isotropic Raman Q-branch lines in the v_2 band at 150 K and 298 K. The motivation of this and similar works are well known, with the data obtained being of interest to (and finding application in) fields as diverse as the study of planetary atmospheres—including the Earth—combustion processes or pollution control.

Due to the interest of the $C_2H_2-N_2$ system many theoretical calculations of the nitrogen broadening of acetylene lines have also been performed [1,3,4,8-11]. However, these calculations were almost all conducted with the semi-classical method of Robert and Bonamy [12] using semi-empirical potentials. For instance, in Ref. [8] various isotropic parts of this system were tested in order to get a good agreement with the experimental data. A few calculations were also performed on the basis of the energy corrected sudden approximation, for which no adjusting coefficients but to compare the methods we have used starting with the same PES.

2. Theoretical methods

2.1. Potential energy surface

The calculations have been performed on the four-dimensional ab initio PES of Thibault et al. [15]. This PES has been expanded over bipherical harmonics (see Refs. therein [23]):

$$V(R, \theta_1, \theta_2, \Phi) = \sum_{l_1,l_2,j} V_{l_1l_2j}(R) \times A_{l_1l_2j}(\theta_1, \theta_2, \Phi)$$

where $(\theta_1, \theta_2, \Phi)$ are the three angular Jacobi coordinates which describe the relative orientation of the two monomers. R is the distance between the two monomer centers of mass and defines the intermolecular z axis, $\theta_{1,2}$ defines the bending angle of the monomer axis relative to the intermolecular axis (the indices “1” and “2” refer to the acetylene and nitrogen molecules respectively) and Φ is the rotational angle around the collisional z axis oriented from “1” to “2”. The values l_1, l_2 and L are even because the colliding pair is formed of centrosymmetric molecules and $|l_1 - l_2| \leq L \leq |l_1 + l_2|$. In Eq. (1) 85 terms have been used, up to $(l_1,l_2,L) = (8,8,16)$. The angular functions $A_{l_1l_2j}(\theta_1, \theta_2, \Phi)$ are defined in the case of two linear molecules by a normalized product of spherical harmonics for monomers 1 and 2 as

$$A_{l_1l_2j}(\theta_1, \theta_2, \Phi) = \left(\frac{2L+1}{4\pi}\right)^{1/2} \sum_m (l_1m_1, l_2m_2, 0) Y_{l_1}^m(\theta_1, 0) Y_{l_2}^{-m}(\theta_2, \Phi)$$

where $Y_{l_1}^m$ and $Y_{l_2}^{-m}$ are the ordinary spherical harmonics, (\ldots) is a Clebsch–Gordan coefficient, and $|m| \leq \min(l_1, l_2)$.
The radial coefficients $V_{l_1,l_2}(R)$ were extrapolated, using C_{v}/R^n functions, from 16 to 30 Å since the $ab\ initio$ points end at 16 Å.

Such an expansion of the PES is suitable for the MOLSCAT quantum dynamical code [28] and for the classical calculations. However, in order to be used in conjunction with the RB method, in a fixed reference frame (Fig. 5 of [12]), a transformation has to be performed, leading to

$$U_{l_1,l_2,M}(R) = \frac{1}{(4\pi)^{1/2}} \sum_{l} (2l+1)^{1/2} \begin{pmatrix} L_1 & L_2 & L \cr M & -M & 0 \end{pmatrix} V_{l_1,l_2,L}(R).$$

(3)

2.2. Pressure broadening cross-sections and coefficients

Considering C$_2$H$_2$ (index “1”) in mixtures with natural N$_2$ (index “2”) composed of a 2:1 ratio of ortho-(oN$_2$) and para-(pN$_2$) species associated with even and odd rotational quantum number j_2, the broadening coefficient $\gamma_{j_1,T}(\text{in cm}^{-1}\text{atm}^{-1})$ at a given temperature T can be expressed as weighted sums of partial pressure broadening coefficients [22,23,29,30]:

$$\gamma_{j_1,T} = \frac{2}{3} \sum_{\text{even}} \rho_{j_2} \gamma_{j_1,j_2,T} + \frac{1}{3} \sum_{\text{odd}} \rho_{j_2} \gamma_{j_1,j_2,T}.$$

(4)

In Eq. (4) ρ_{j_2} is the normalized rotational population and

$$\gamma_{j_1,j_2,T} = f(g\sigma^{(m)}_{j_1,j_2,E_{kin}}),$$

(5)

where $g\sigma^{(m)}_{j_1,j_2,E_{kin}}$ is the Boltzmann average [29] over kinetic energy of the partial pressure broadening cross sections $\sigma^{(m)}_{j_1,j_2,E_{kin}}$ (in Å2) and $f = (D/2\pi cK_B T)$, where D is the number density at standard temperature and pressure ($D = 2.69 \times 10^{13}$ molecule cm$^{-3}$) and c is the speed of light (in cm s$^{-1}$). γ is the mean relative speed associated to the thermal speed distribution: $\gamma = \sqrt{8k_B T/\mu m}$, where μ is the reduced mass of the colliding pair in u units. Finally, the “exponent” (n) denotes the order of the tensor of the interaction between matter and light ($n=0$ for isotropic Raman lines and 1 for IR transitions).

An approximation often employed for the semi-classical method (for technical reasons) but also for CC (due to the prohibitive cost of such calculations) as well as for the full-classical methods consists of providing pressure broadening coefficients without performing the thermal average over the distribution of relative kinetic energy of collisions. Within this approximation we consider that cross-sections are independent of translational energy and approximate the partial pressure broadening coefficient $\gamma_{j_1,j_2,T}$ by its value at the mean relative speed γ, leading to [30]:

$$\gamma_{j_1,j_2,T} = f\left(\frac{2}{3} \sum_{\text{even}} \rho_{j_2} g\sigma^{(m)}_{j_1,j_2,E_{kin}}\right)$$

(6)

with E_{kin} the kinetic energy associated with γ. Omitting the thermal average, Eq. (4) now reads

$$\gamma_{j_1,j_2,T} = f\left(\frac{2}{3} \sum_{\text{even}} \rho_{j_2} g\sigma^{(m)}_{j_1,j_2,E_{kin}}\right) + \frac{1}{3} \sum_{\text{odd}} \rho_{j_2} g\sigma^{(m)}_{j_1,j_2,E_{kin}}.$$

(7)

In the following paragraphs, calculated values obtained through the use of Eq. (5) will be denoted as ThAv, while values obtained with Eq. (7) will be denoted as MThAv for mean thermal velocity.

2.3. Quantum dynamical methods

Both the close-coupling [31–33] and coupled-states (centrifugal sudden approximation) [34] methods were used. The Appendix A provides the link between the diffusion scattering matrix and the pressure broadening cross-sections. We also refer the reader to Ref. [23] for technical details about dynamical calculations which are very similar to the one used in the present study.

Because of the relatively large reduced mass of the C$_2$H$_2$–N$_2$ system, the small rotational constants ($B_1 = 1.1766$ cm$^{-1}$, $B_2 = 1.998$ cm$^{-1}$), in particular that of acetylene, and the large number of terms of the PES, quantum dynamical calculations turned out to be very time consuming and demanded a large amount of memory. Consequently, we were unable to perform CC calculations for total energies ($E_{kin} + E_{rot}(J_1) + E_{rot}(J_2)$) greater than 350 cm$^{-1}$, and CS calculations were performed up to only 700 cm$^{-1}$. It is worth comparing this situation with our recent studies of C$_2$H$_2$–H$_2$ [21] and N$_2$–H$_2$ [22], where the same problems of computational capacity were present but – due to the nature of these systems – to a lesser extent and higher energies could be reached. Also, simple extrapolation functions were used in these works when even higher energies needed to be accessed.

In order to compute the pressure broadening coefficients of the R(0) line we have only computed the partial pressure cross-sections $\sigma^{(m)}_{j_1,j_2,E_{kin}}$ for $j_2 < 8$ and in Eq. (4) used averaged values determined from the first 8 ones to take into account higher populated J_2 states. Fig. 1 shows these partial pressure broadening cross-sections for $j_2 < 8$ and illustrates the defects of the coupled states approximation (CSA); this problem is well known, see e.g. [35–38]. Thus, and although our quantum dynamical pressure broadening coefficients cannot be qualified as benchmarks for other methods, the comparison with selected experimental values shown in Table 1 illustrates that our calculation indeed provides good values for these coefficients. We also note that the use of Eq. (7) instead of Eq. (4) does not lead to significant changes.

The same S-matrix files, used to calculate the partial pressure broadening cross-sections for the R(0) lines, were used to calculate cross-sections for Q lines $\sigma^{(m)}_{j_1,j_2,E_{kin}}$. For instance, for the $\sigma^{(m)}_{j_1,j_2,E_{kin}}$ (7, $j_2 = 0, E_{kin}$) the thermal averaging was performed over 62 CC values between 0 and 310 cm$^{-1}$ and 9 CS values between 342 and 667 cm$^{-1}$ and an extrapolation was made up to about 2500 cm$^{-1}$. As in [30] for N$_2$–N$_2$, one may define an ortho- and para-pressure broadening cross-sections. As already observed in [29,30] these two contributions are very close at 150 and

1 For instance, at a kinetic energy of 250 cm$^{-1}$ for $j_2 = 2$ and $j_1 = 0$, the duration of a MOLSCAT run is about 10 days with 8 cores working in parallel on two quad-core processors (Intel Xeon X5550). Recall that 2 runs are necessary to obtain the right S-matrix elements which contribute to the partial pressure broadening cross section of the R(0) line.
the one used in Ref.[18] for N2, whatever the type of transition operators, is well
lines the above condition is not valid. As a result, one has
wardly adapted for R- or P-infrared lines because for such
lines whose initial and final quantum numbers are iden-
tical. The method developed in[20] cannot be straightfor-
wardly adapted for Raman Q-lines of a linear molecule.

Fig. 1. Partial pressure broadening cross-sections \(\sigma^{R}(j_1, j_2; E_{kin}) \), in A^2, for the R(0) line and \(j_1=0 \) to 7 as a function of the relative kinetic energy in cm^{-1}; CC values, small symbols, CS values, big symbols. Rotational quantum numbers \(j_1 \) and \(j_2 \) correspond to C_2H_2 and N_2 molecules respectively.

298 K. This may be useful for subsequent authors to avoid unnecessary calculations.

2.4. Semi-classical Robert–Bonamy method

Dynamical calculations were performed, at the mean thermal speed associated to the room temperature, using the exact trajectory model determined only by the isotropic part of the PES and potential terms given by Eq. (3) up to \(L_i = L_j = 4 \) (see for instance Refs. [11,18–20,22] and references therein). We have checked that higher multipolar components of the PES do not provide any significant contributions to such calculations of the pressure broadening coefficients.

The way to determine pressure broadening cross-sections from the standard Robert–Bonamy formalism [12], whatever the type of transition operators, is well established. The method employed here is very similar to the one used in Ref. [18] for N_2–N_2 and therefore will not be repeated again.

Ma and coauthors [20] have refined the above mentioned formalism by considering effects from the line coupling for isotropic Raman Q-lines of a linear molecule. More specifically, by correctly evaluating the cumulant expansion of the Liouville scattering operator \(\hat{S} \) = exp(-\(\hat{S}_1 - \hat{S}_2 \)) up to the second order, they are able to take into account the line coupling for isotropic Raman Q-lines whose initial and final quantum numbers are identical. The method developed in [20] cannot be straightforwardly adapted for R- or P-infrared lines because for such lines the above condition is not valid. As a result, one has to develop a new method to evaluate the matrix elements

of the operator \(\exp(iS_1 + S_2) \). Since this subject merits a separate derivation that will not be detailed here. This new method and its application to the present system are presented somewhere else [26]. Finally, let us simply mention that in the present study, we have not considered the imaginary part of \((iS_1 + S_2) \). Because the interaction PES has no vibrational dependence, the \(S_1 \) term becomes zero. Given the fact that \(iS_1 \) term is the main component of \(\text{Im} (iS_1 + S_2) \) and \(\text{Im}(S_2) \) is much smaller than \(\text{Re}(S_2) \), [4,8,26], we have decided to neglect \(\text{Im}(S_2) \) in our calculations.

2.5. Full classical method

The half-widths of isotropic Raman scattering and IR (electric dipole absorption) spectral lines of C_2H_2 perturbed by N_2 were also calculated in the frame of the classical impact approach first proposed by Gordon [16,17]. Translational and rotational motions of C_2H_2 and N_2 molecules were modeled using truly exact three-dimensional classical (3D) equations describing the collision of two rigid linear molecules (17 first-order Hamilton differential equations in body-fixed coordinates [39]). Hence, the trajectories are driven by the isotropic and the anisotropic parts of the PES. Spin statistical weights of perturbing N_2 molecules were taken into account in the usual way. The initial intermolecular distance was set to a large enough figure (15 Å) to exclude starting interaction between molecules. Other collision parameters (initial conditions for trajectory calculations) were selected via a Monte Carlo procedure. Uniform sampling was applied to the directions of rotation and initial orientations of both molecules in three-dimensional space. The statistical error of calculated linewidths (i.e., RMS error of Monte Carlo averaging over initial conditions of collisions) was kept for different values of temperature \(T \) and rotational quantum number \(j \) generally at a level less than 1%. The impact parameter was bracketed within the range 0–12 Å. To verify that 12 Å was a large enough upper limit, we conducted additional test calculations at \(T = 150 \) K with somewhat larger values of the maximum impact parameter, namely \(b_{\text{max}} = 13 \) Å and 15 Å. They gave nearly identical results to \(b_{\text{max}} = 12 \) Å, confirming the fact that collisions with \(b > 12 \) Å have little influence on line broadening in our case.

The majority of calculations were performed only at the mean thermal velocity \(\bar{v} \), which greatly reduces CPU time (see Eq. (6)). Several tests were conducted confirming the validity of MThV approximation in the cases considered. At 150 K, for instance, for both R and Q lines, relative differences between pressure broadening coefficients obtained using the MThV approximation with thermally averaged values are no more than about 4%. This percentage diminishes as the temperature increases (see Fig. 2). This behavior is confirmed by quantum dynamical calculations and allows the use of Eq. (7) for the SC calculations.

As a second application of these calculations, Fig. 2 shows that pressure broadening coefficients for isotropic Raman spectral lines become closer and closer to IR electric dipole absorption lines as \(j \) and \(T \) increases. This fact is well known (see for instance Refs. [21,29] and references therein).
The frequency difference of the two laser sources thus covered the range between 1972.5 and 1974.5 cm\(^{-1}\) rather large due to the noise that prevents us from deriving the narrowing parameter different from zero. Thus, a Voigt profile was finally deemed adequate for our analysis. Any possible underestimation of the collisional line widths derived from disregarding the narrowing effect should be well within their uncertainty intervals, since these are rather large due to the noise that prevents us from observing the narrowing in the spectra.

Another concern regarding the use of Voigt profiles is the possible presence of line mixing in the spectra. However, any line mixing effect that may affect the lineshape can be safely disregarded for two reasons. First, as shown by Bouanich et al. [13,14] in Q-branhes of \(\Sigma\rightarrow\Pi\) IR transitions for pressures below 0.1 atm line mixing is negligible, a condition fulfilled by our experiments. Secondly, since adjacent lines belong to ortho- and para-species, interferences are only possible between second (or higher) neighboring lines.
4. Intercomparisons of pressure broadening coefficients

4.1. Isotropic Raman lines

Fig. 3 provides a comparison of experimental pressure broadening coefficients of Q-lines of C$_2$H$_2$ in N$_2$ baths at 150 and 298 K with calculated values. Only CC/CS and FC calculations were performed at 150 K while the three types of calculations were performed at 298 K. At 150 K the FC values are inside the large errors bars while the quantum dynamical calculations seem to underestimate the experimental values. For the latter kind of calculations the MThV values obtained at the kinetic energy of 133 cm$^{-1}$, using Eq. (6), are slightly larger than the thermally CC/CS values (not shown). This may be partly due to the fact that the latter are more affected by the default of the CS approximation but also by the average integration. This difference between MThV and ThAv values diminishes at room temperature (our CC/CS values tend to be more and more CS values as the collision kinetic energies involved are larger and, generally speaking, the thermal average is less important as the kinetic energies and therefore the temperature increase, see Fig. 2). At room temperature, both the CC/CS and FC values are in quite good agreement with the experimental data. Now, considering the semi-classical values provided by the traditional RB method, we see that they are largely overestimated by about 20%. If line coupling effects are included in the calculations (see RB method modified by Ma et al. [20,26]) the results are drastically improved.

4.2. IR lines

Experimental data at room temperature are numerous (see [9]). We have chosen to compare first our calculated values with the smoothed ones obtained from measurements in the R- and P-branches of the ν_5 band [1] and which are reported in Fig. 4. We remind the reader that we were unable, for technical and CPU time reasons, to calculate pressure broadening coefficients for such lines except for the R(0) line. Here again, we note that the full classical values are in quite good agreement with the experimental values, especially for the highest j values. The traditional RB semi-classical method strongly overestimates the pressure broadening coefficients whereas the new method of Ma et al. [20,26] gives the results in between the FC values (or the experimental ones) and the traditional RB values.

5. Conclusions

We have provided new experimental pressure broadening coefficients for isotropic Raman lines of acetylene in nitrogen at 150 and 298 K. Based on these results we can claim that the quantum dynamical and full classical calculations performed on the ab initio PES of Ref. [15] lead to a good agreement with these experimental data. The pressure broadening coefficients calculated with the full classical method for IR R-lines in our rigid rotor approximation as compared with various experimental data for such lines are also quite good and confirmed previous calculations performed in [9]. Unfortunately, for such lines even for a simple system like C$_2$H$_2$–N$_2$, with a quite large reduced mass and small rotational constant, it...
is still too difficult to routinely handle computationally

close-coupling calculations to allow a complete intercom-

This paper ends a series of our articles [21–23] devoted

to an intercomparison of quantum dynamical, full classical

traditional semi-classical (Robert and Bonamy) form-

isms. The standard Robert–Bonamy formalism [12] is

unable to provide accurate pressure broadening coef-

ficients without adjusting the PES. It is well known [18–

23,26] that the standard Robert–Bonamy formalism suf-

fers from several weaknesses. Among them, there are two

particularly severe ones. The first is to treat the transla-

tional motion and the internal motion separately. More

specifically, the exchanges of their translational kinetic

and internal rotational energies are not considered during a

collision process and trajectories are assumed to be inde-

pendent of anisotropic potential models. The second one is

to neglect effects from the line coupling in calculations. In

order to improve the semi-classical method such that it

can serve as a well-qualified alternative to the quantum

dynamical formalisms for considering any kind of inter-

acting molecular pairs, one must directly address these

weaknesses. As shown in the previous study for self-

broadening coefficients of N2 lines [20] and in the cur-

rently going study for the C2H2 molecule [26] whose

rotational constant is even smaller than that of N2, taking

into account the line coupling significantly improves

results derived from the traditional semi-classical calcu-

lations. This implies that the refinement effort goes in the

right direction.

Acknowledgments

D.B. and R.Z.M. acknowledge the financial support of the Ministry of Economy and Competitiveness through

Research Grant FIS2012-38175. Q.M. acknowledges the financial support from NSF under Grant 1228861.

D.B., R.Z.M and F.T. acknowledge financial support from the European GDRI HIRESMIR (high resolution microwave,

infrared and Raman molecular spectroscopy).

Appendix A

Since CC or CS computations of pressure broadening
cross-sections are very scarce [21–23,29,30,32,41–46] for

the case of two linear molecules, this appendix recalls a

few formulæ. Following Ben-Reuven [27] and later on

Coome et al. [31], Green [32] and Monchick et al. [33], the

internal motion of the active molecule is disentangled

from the bath. The rotational motion of the perturbing

molecule “2” is first coupled with the relative kinetic

angular momentum ℓ to form J and then j_1 is coupled to

it to provide the total angular momentum $J (J = J_1 + J_2)$.

This choice is more natural when one is interested to

relaxation phenomena tied to the active molecule. In this

coupling scheme the CC generalized pressure broadening

cross-section is given by

$$
\sigma^{\text{m}}(J_{D1}J_{D2}J_{b1}J_{b2}; E_{\text{kin}}) = \left(\frac{\pi}{k^2} \right) \frac{1}{(2j_1+1)(2j_2+1)} \sum_{j_0} \frac{\left| \langle j_0 | J_a | j_b \rangle \right|^2 \left(-1 \right)^{j-a}}{j_a} \times \frac{\left| \langle j_0 | J_b | j_a \rangle \right|^2 \left(-1 \right)^{j-a}}{j_b} \times \left[\delta_{j_0 j_1} \delta_{j_a j_1} \delta_{j_2 j_2} \right] \\
- \left< j_a | J_a \rho \left| j_b \right| \right> \left< j_b | J_b \rho \left| j_a \right| \right> \left< j_a | J_a \rho \left| j_b \right| \right> \left< j_b | J_b \rho \left| j_a \right| \right>
$$

(A1)

where j_a, j_b characterize a spectroscopic transition with rank n of the radiation, k is the wavevector of the relative

motion: $E_{\text{kin}} = 2\mu k^2$.

To be compared with experimental values, these cross-

sections must be summed over final perturber levels j_2

and averaged over initial bath conditions:

$$
\sigma^{\text{m}}(j_1; T) = \sum_{j_2} \rho_{j_2} \sigma^{\text{m}}(j_1, j_2; T),
$$

(A2)

where we have used a shortcut notation $j_1 = j_a$, $j_b = j_a + 1$ for R lines and $j_a = j_b$ for isotropic Raman lines and

$$
\sigma^{\text{m}}(j_1, J_2; T) = \sum_{j_2} \rho_{j_2} \sigma^{\text{m}}(j_1, j_2, J_2; T).
$$

(A3)

The MOLSCAT code [28] does not provide generalized
cross-sections (Eq. (A1)) except the full diagonal term
($j_2 = j_a$). Moreover, the S-matrix elements are given in

the traditional scattering scheme where j_1 and j_2 are first
terminated to couple j_12. Therefore we have written a post-

processor code starting with $S(j_1j_2j_1'j_2'; j_1j_2j_1'j_2')$ as given by the MOLSCAT code to obtain $S_j(j_1, j_2, j_1', j_2')$ matrix elements.

Such cross-sections calculations are not at all imple-

mented in the MOLSCAT code for diatomic–diatomic

(linear–linear) molecules within the CSA. To this end we

have used S-matrix elements, $S^{\text{m}}(j_1j_2j_1'j_2'; j_1j_2j_1'j_2')$, as given by the MOLSCAT code and coded Eq. (96) of Gold-

flam and Kouri [34] in another post-processor program.

References

ening coefficients of C2H2 IR lines. J Mol Spectrosc 1990;140:

[2] Pine AS. Self-, N2- and Ar-broadening and line mixing in HCN and

ening of acetylene lines in the v5 band at low temperature. J Mol

frequency shifting in the v5 band of C2H2. J Quant Spectrosc Radiat

et al. Line broadening and shift coefficients of acetylene at 1550 nm.

dence of the N2-broadening coefficients of acetylene. J Quant

and shift coefficients of lines in the v14+v15 band of 12C2H2 diluted in

N2 from low to room temperatures. J Quant Spectrosc Radiat

Transf 2010;111:973–89.

parameters in the v1 + v3 band over a range of temperatures. Mol Phys

OG, Thibault F. Low pressure line shape study of nitrogen perturbed
acycylene transitions in the $\nu_3 + \nu_6$ band over a range of temperatures. Can J Phys 2013;91:896–905.

