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Abstract This study assesses the skill of boreal winter Arctic Oscillation (AO) predictionswith state-of-the-art
dynamical ensemble prediction systems (EPSs): GloSea4, CFSv2, GEOS-5, CanCM3, CanCM4, and CM2.1.
Long-term reforecasts with the EPSs are used to evaluate how well they represent the AO and to assess the
skill of both deterministic and probabilistic forecasts of the AO. The reforecasts reproduce the observed
changes in the large-scale patterns of the Northern Hemispheric surface temperature, upper level wind,
and precipitation associated with the different phases of the AO. The results demonstrate that most EPSs
improve upon persistence skill scores for lead times up to 2months in boreal winter, suggesting some
potential for skillful prediction of the AO and its associated climate anomalies at seasonal time scales. It is
also found that the skill of AO forecasts during the recent period (1997–2010) is higher than that of the
earlier period (1983–1996).

1. Introduction

The Arctic Oscillation (AO) [Thompson and Wallace, 1998], characterized by a periodic exchange of the
atmospheric mass field between the Arctic and the rest of high latitudes, is an important mode of
climate variability in the Northern Hemisphere. When the Arctic region has anomalously higher
atmospheric mass, the negative phase of the AO, the circumpolar jet stream weakens and shifts
southward, causing abnormally severe winters in midlatitudes [Thompson and Wallace, 2000; Higgins
et al., 2002; Wettstein and Mearns, 2002]. For example, the negative AO in the winter of 2009/10 was
unprecedentedly strong, suggesting a possible role of the rapid retreat of sea ice and the warming in
the Arctic. This extreme negative AO was accompanied by severe winter storms over midlatitudes and
has been analyzed in a number of diagnostic studies [Cattiaux et al., 2010; Cohen et al., 2010; Fereday
et al., 2012]. The profound impact of the AO on the surface climate over the Northern Hemisphere
midlatitudes and high latitudes suggests that the accuracy of seasonal predictions in these regions is
strongly tied to our ability to predict the AO. This calls for a systematic assessment of the prediction skill
of the AO using forecasts made with operational forecast systems.

While the nature of the AO and the physical mechanisms underlying the phenomenon have been extensively
studied [Limpasuvan and Hartmann, 2000; Lorenz and Hartmann, 2003; Polvani and Waugh, 2004; Cohen et al.,
2010; Kim and Ahn, 2012, among many others], studies focusing on the seasonal predictability or the
prediction skill of the AO are surprisingly rare in the literature. Johansson [2007], Arribas et al. [2011], and Kim
et al. [2012] assessed the forecast skill of the North Atlantic Oscillation (NAO)—a related mode of internal
climate variability. They found the skill of NAO forecasts at intraseasonal time scales to be negligible. This
contrasts with a more recent study by Scaife et al. [2014], which showed that the NAO in boreal winter is
highly predictable at several months lead time, using the UK Met Office Global Seasonal forecasting system
version 5 (GloSea5). To our knowledge, only one study examined the seasonal prediction skill of the AO
exclusively [Riddle et al., 2013]. That study found that the National Centers for Environmental Prediction
(NCEP) climate forecast system version 2 (CFSv2) [Saha et al., 2013] is capable of producing skillful
forecasts of the wintertime AO for lead times exceeding 2months. They examined the possibility that the
model skill was related to a stratospheric pathway initiated by October Eurasian snow cover anomalies, but
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found that these processes were poorly represented in the model. Other studies reported that the forecast of
stratosphere-troposphere dynamical coupling, including stratospheric sudden warming and the AO, is
improved by including an orographic drag parameterization [Kim and Flatau, 2010; Kim et al., 2011].

Motivated by the previous studies, this study evaluates the AO prediction skill for six state-of-the-art seasonal
forecast models: GloSea version 4 (GloSea4) [Arribas et al., 2011], NCEP CFSv2, National Aeronautics and Space
Administration Goddard Earth Observing System version 5 (GEOS-5) [Rienecker et al., 2011], the Canadian
Centre for Climate Modeling and Analysis (CCCma) Coupled Climate Model versions 3 and 4 (CanCM3 and
CanCM4, respectively; the data set was obtained from the North American national multimodel ensemble
project phase-1), and the Geophysical Fluid Dynamics Laboratory coupled model version 2.1 (CM2.1). These
models have been developed independently with quite different formulations and initialization processes.
The reforecasts (retrospective forecast or hindcast) from themodels are independently initialized with several
ensemble members in each month. The different model formulations and initialization processes are likely
to affect prediction skill. By carefully examining multidecadal reforecasts produced by each forecasting
system, we aim to (1) quantify the current level of AO prediction skill in modern seasonal forecast systems
and (2) identify differences in skill between the systems, presumably due to differences in model formulation
and initialization processes.

Section 2 describes the data and methodology. The reproducibility of AO variability in the reforecasts is
presented in section 3. The prediction skill of the AO in the reforecast data sets is presented in section 4.
The summary and conclusions are given in section 5.

2. Data and Methodology
2.1. Reforecast Data Set and Reanalysis

The primary data used in this research are the reforecasts from GloSea4 (1996–2009), CFSv2 (1982–2009),
GEOS-5 (1981–2012), CanCM3 (1981–2010), CanCM4 (1981–2010), and CM2.1 (1982–2009). Detailed
descriptions and ensemble generation methods of the systems are given in Table S1 (supporting information).

For this study, only ensemble members that were initialized on specific dates between 1 November and
1 December (2 December for CFSv2 and GEOS-5) were used to evaluate the prediction skill of the boreal
winter AO. For convenience, the year of reforecast is indicated as the following year from initialization after
this paragraph, for example, the 1997 forecast for the run initialized in November or December in 1996. Note
that the number of ensemble members is different in the different systems (Table S1 in the supporting
information). The numbers of ensemble members used are 15 for GloSea4, 28 for CFSv2, 19 for GEOS-5,
and 20 for the others.

For validation, we used the Modern Era Retrospective-Analysis for Research and Applications (MERRA)
[Rienecker et al., 2011] atmospheric reanalysis. MERRA has a spatial resolution of 1/2°(latitude) × 2/3°
(longitude), with 72 vertical levels. While the GEOS-5 model is initialized with MERRA (which itself was
produced with an earlier version of the GEOS-5 atmospheric general circulation model) and so perhaps
giving that model an unfair advantage, we found that our results are not sensitive to the choice of reanalysis
data sets. Almost identical results for the AO loading vector and the index derived from an empirical
orthogonal function (EOF) analysis using sea level pressure (SLP) are obtained using the European Centre for
Medium-Range Weather Forecasts global reanalysis, ERA-Interim. The correlation coefficient of the
December-January-February (DJF) AO index between ERA-Interim and MERRA is larger than 0.99.
Additionally, data from Global Precipitation Climatology Project [Adler et al., 2003] are used to validate
precipitation from the reforecasts.

2.2. Methodology

The EOF analysis is performed with seasonal mean (DJF), area-weighted Northern Hemispheric (north of 20°N)
SLP anomalies from MERRA for three periods to match the reforecasts periods (1983–2010, 1983–1996, and
1997–2010). The first EOF represents the AO mode. The associated principle component (PC) time series
exhibit a large interannual variation of the AO mode. The AO index is defined in this study as the normalized
PC time series by its standard deviation. The AO pattern is then obtained by regressing the SLP anomalies
onto the AO index. The reforecast data sets are used to assess (1) the ability of the models to reproduce the
observed AO pattern and (2) the AO forecast skill of the models.
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In order to evaluate the AO patterns reproduced by the prediction systems, the same EOF analysis
was applied to each ensemble member. In most cases, an AO-like pattern emerged as the first EOF. In
some cases the second mode was used. This was done if the pattern correlation between the second
EOF and the AO pattern from MERRA is higher than that of the first EOF (this never occurred for GloSea4,
it occurred once for GEOS-5, CanCM3, and CM2.1, six times for CFSv2, and three times for CanCM4). We
compared the AO patterns only for 1997–2010 because all model reforecasts are available for that
period. After obtaining the AO mode (i.e., first or second EOF) from each ensemble member, we took
an ensemble average of the AO patterns. Anomalous patterns of other variables associated with the
AO were obtained by regressing the variables onto the AO index for each ensemble member, and
then averaged.

To assess the prediction skill of the AO using the reforecast data sets, either seasonal or monthly averaged
forecasted SLP anomalies are projected onto the observed AO loading vector in each period. The resulting
ensemble-averaged and individual ensemble time series (i.e., AO indices) are normalized by the ensemble
mean standard deviation for each model. We use the ensemble mean AO indices for the forecast skill
assessment. Temporal correlation coefficients between the observed and forecast AO indices represent the
prediction skill in this study. The persistence forecast using the November AO index provides a baseline
forecast for each period, and we consider a prediction skill useful only when it exceeds that of the
persistence forecast.

The Relative Operating Characteristic (ROC) score [Mason, 1982] is used as a probabilistic forecast skill metric.
The ROC score is computed as the area under the ROC curve, which involves the probability of detection
(hit rate) and false alarm rate for a particular event. The observed AO indices for each 14 year period are
grouped into three terciles. On the basis of the observed tercile threshold, both the observed and forecast
ensemble AO indices are categorized as an event or nonevent for each tercile. The ROC scores for the upper
tercile event (i.e., positive AO) and lower tercile event (i.e., negative AO) were evaluated with probability
thresholds ranging from 0% to 100% with a 20% interval, using forecasted AO indices from ensemble
members of each reforecast. In other words, high ROC scores indicate the ability to discriminate tercile events
and nonevents successfully in the ensemble members. In general, a ROC score above 0.5 indicates skill better
than climatological probabilities.

Figure 1. DJFmean sea level pressure anomaly regressed onto the AO index for 1997–2010 for (a) MERRA, (b) GloSea4, (c) CFSv2, (d) GEOS-5, (e) CanCM3, (f ) CanCM4,
and (g) CM2.1 (unit is hPa). Contour lines indicate 3 hPa and �3 hPa. Percentages indicate explained variance (averaged explained variance from each ensemble
member) from the pattern.
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3. Model Representations of the AO and Its Impacts

Figure 1 compares the AO SLP patterns represented in the prediction systems and MERRA. MERRA
shows a zonally symmetric pattern with clear opposite signed anomalies between the Arctic and the
midlatitude oceans (North Pacific Ocean and North Atlantic Ocean). While all prediction systems are
able to reproduce this pattern fairly well, they tend to overestimate the variability of the North Pacific
compared to that of the North Atlantic. The pattern correlations between MERRA and each forecast
have comparable values higher than 0.83. Compared to the other prediction systems, GEOS-5 and
CanCM models exhibit more realistic SLP anomaly patterns over the Kara Sea and the northern Siberia.

Figure 2. DJF mean (a) surface temperature (2m temperature for CanCM3 and CanCM4) anomaly (unit is K) and (b) zonal wind anomaly at 200 hPa (unit is m/s)
regressed onto the AO index of each forecast for 1997–2010. The dotted grids indicate statistical significance at the 10% level.
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The AO mode explains about 37–44% of total interannual variability in the models, except for CFSv2
(31%) which is much lower than the observed value (41%). This might be due to the greater frequency
of mixing the AO signal with the second EOF mode.

Spatial patterns of surface temperature, 200 hPa zonal wind, and precipitation anomalies associated with the
AO mode from each reforecast are shown in Figures 2 and S1. The north-south oriented patterns of
anomalous surface temperature are represented over Eurasia and North America in MERRA (Figure 2a). This
surface temperature anomaly pattern is reasonably reproduced in the reforecasts over land, although its
amplitude is underestimated mostly in the reforecasts. The amplitude of the temperature variability over
Siberia is more realistic in CM2.1 than in the other systems, and this might be linked to the more intense
SLP variability over the Arctic and the Kara Sea (Figure 1g). The regressed upper level zonal wind onto the AO
index from the forecast systems is consistent with that of MERRA with high statistical significance, describing
a realistic modulation by the jet stream corresponding to the phase of the AO (Figure 2b). Nevertheless, there
are system-dependent biases such as shifts in the centers of variability that correspond to biases in the
SLP variability. Consistent with the jet stream shift, the precipitation is enhanced in high-latitude positive
phase of the AO, but the amplitudes of the forecasts are lower than observation (Figure S1 in the supporting
information). The forecast systems commonly fail to capture the precipitation anomaly in the East Asia. The
overall amplitude of CFSv2 is lower than those of the other systems, possibly due to the frequent substitution
of the second EOF mode.

4. AO Prediction

Above results demonstrate that the models are to large extent able to reproduce the observed AO pattern.
We next focus on prediction skill. Note that, as described in section 2, we use a single AO loading vector
obtained from MERRA for each period rather than those computed from the individual models. The time
series of the AO index for the recent period (1997–2010) from MERRA and the reforecasts are shown in
Figure 3a. The reforecasts show a reasonable prediction of the seasonal mean AO index. This includes the
anomalously negative value in 2010, although most of the reforecasts underestimate the amplitude of the
negative anomaly. The ensembles of the prediction systems commonly show a large spread, though they
show relatively small spread in some years. Table 1 shows the correlation coefficients between the AO index

Figure 3. (a) DJF mean normalized AO index of MERRA (black solid line) and reforecasts (color bars). The error bars refer to the ensemble spread of the AO index
between 25th percentile and 75th percentile (extreme ensemble spreads are not shown). Correlation coefficient of AO index as a function of forecast lead
month for (b) 1983–2010, (c) 1983–1996, and (d) 1997–2010. Black dashed line refers to persistence forecast by the MERRA November AO index for each period, and
colored lines indicate prediction skill for each model. Thin horizontal dashed line refers to the 95% confidence level.
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of MERRA and each reforecast. The AO prediction
skill from the multimodel ensemble (MME, r= 0.77
for 1997–2010) is lower than the skill from the
best-performing model (i.e., CFSv2, r= 0.87), which
implies that the MME is not providing much
benefit in this case.

Figures 3b–3d show month-to-month temporal
correlation coefficients for December–May along
with corresponding results for the persistence
forecast. Except for GloSea4, forecasts initialized
around November show higher temporal
correlation coefficients in winter than persistence
for 1997–2010, while the skill of the dynamical

predictions do not consistently exceed that of persistence after February. The prediction skill for 1983–1996
becomes comparable to persistence after December, consistent with lower seasonal mean prediction skill
during the early period (1983–1996) as shown in Table 1. The reason for the relatively low prediction skill of
GloSea4 in January and February is not clear. It might be related to a model bias or it may be due to the
relatively small number of ensemble members. GloSea4 shows slightly higher prediction skill when its own
EOF pattern is used to derive the AO index (r= 0.54 for DJF mean compared to 0.44 in Table 1), which implies
that deficiencies in the representation of the AO pattern obscured its prediction skill.

We note that while we find useful prediction skill of the AO in GloSea4, Arribas et al. [2011], who analyzed
hindcasts made with an earlier version of GloSea4, reported much lower prediction skill of the NAO (which is
related to the AO). The hindcast data set used in this study is made with a version of the GloSea4 seasonal
prediction system upgraded in several aspects from the original version of Arribas et al. [2011]. The changes
include improved atmospheric physics, interactive sea ice and its initialization, and enhanced vertical
resolution of the atmosphere. A comprehensive description of the difference between the GloSea4 system
used in Arribas et al. [2011] and that used in the current study is given in Lee et al. [2014]. A similar skill
improvement in NAO prediction was found in the study of Scaife et al. [2014], where they incorporated those
upgrades as well as a higher horizontal resolution (0.83 longitude by 0.55 latitude) for the GloSea system
(i.e., GloSea5). The prediction skill increase across the GloSea versions suggests that improvements in
atmospheric model physics, interactive sea ice formulation and the initialization process, and enhanced
vertical resolution to better represent troposphere-stratosphere interaction, may all potentially contribute to
improved AO predictions. However, the reasons for any improvements in skill can be highly dependent on
the models and initial conditions. For example, increased vertical resolution does not always guarantee
improvement in some models. Although better representation of the stratosphere by increasing a model’s
vertical resolution is likely to improve the seasonal prediction skill of the AO or NAO [e.g.,Marshall and Scaife, 2010;
Kim and Flatau, 2010; Kim et al., 2011; Riddle et al., 2013], that is not always the case. For example, CM2.1 produces
skillful predictions of the AO (r=0.80 for 1997–2010) with the lowest model top (10hPa).

Almost all reforecasts exhibit
significantly higher skill for the recent
period of 1997–2010 compared to the
earlier period (i.e., 1983–1996). The skill
of probabilistic forecasts, consistent
with the skill of the deterministic
forecasts of the AO index, also show
substantial changes between the two
periods (Figure 4). Each reforecast
shows marginal prediction skill for
both positive and negative phases of
the AO for 1997–2010 (all of ROC scores
exceed 0.6), while the ROC scores for
1983–1996 are mostly lower than those
for the recent 14 years. Furthermore,

Table 1. Correlation Coefficients Between the DJFMean AO
Index From MERRA and Each Forecasta

1983–1996 1997–2010 1983–2010

GloSea4 n/a 0.44 n/a
CFSv2 0.44 0.87** 0.65**
GEOS-5 0.25 0.54* 0.39*
CanCM3 0.62* 0.52 0.53**
CanCM4 0.56* 0.79** 0.67**
CM2.1 0.49 0.80** 0.66**
Persistence �0.23 0.23 �0.25

aSingle and double asterisks indicate that the correlation
coefficient is statistically significant at the 95% and 99%
confidence levels, respectively.

Figure 4. Relative Operating Characteristic (ROC) scores for ensemble AO
index prediction for positive AO (upper tercile, red) and negative AO
(lower tercile, blue). The checkered bars indicate ROC scores for 1983–
1996, and the filled bars indicate ROC scores for 1997–2010.
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the ROC scores change little with calibration using cross validation (not shown). Note that the skill
enhancement is greater for the negative phase of the AO than for the positive phase (on average,
improvements in the scores of the five systems are 0.27 for negative AO and 0.11 for positive AO). This
change is interesting because exactly the same model is used for both periods in all prediction systems.

Riddle et al. [2013], who also found this change in the CFSv2 reforecasts, speculated that the difference was
caused by systematic errors associated with the initialization prior to 1998. However, given that a similar
change in prediction skill occurs in other prediction systems, we need to consider other possibilities, such as
changes in the predictability of the AO. Previous work supports this argument. For example, Li et al. [2013]
suggested a strengthening in the relationship between the AO and the El Niño–Southern Oscillation (ENSO)
after the mid-1990s, with possible links to interannual variability of sea ice. The correlation coefficient
between the DJF mean AO index in this study and the Oceanic Niño Index of NOAA (http://www.cpc.ncep.
noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) is 0.02 for 1983–1996 and �0.59 for
1997–2010. Because ENSO is a lower frequency phenomenon and is predictable up to 12months in many
seasonal prediction systems, a stronger ENSO-AO coupling means a higher predictability of the AO. Jia et al.
[2009] showed that a strong negative AO-like response was generated by thermal forcing over the central
Pacific, while the response to an eastern Pacific forcing is much weaker. And we have also observed more
frequent central Pacific El-Niño events in recent decades [Kug et al., 2009; Lee andMcPhaden, 2010]. Therefore,
the changes in the characteristics of ENSO and associated changes in ENSO-AO coupling during recent
decades could have contributed to the change in the prediction skill of the AO index. In addition, the
Madden-Julian oscillation (MJO) might also influence the tropical-extratropical coupling and intraseasonal
prediction skill. For example, the AO phase [Flatau and Kim, 2013] and the prediction skill of the NAO
[Lin et al., 2010] appear to be influenced by the phase and amplitude of the MJO in boreal winter.

Among the prediction systems, only CanCM3 shows slightly lower prediction skill in the recent period
compared to the earlier period. CanCM3 is very similar to CanCM4, though CanCM3 has no shallow
convection scheme and has simple radiative forcing [Merryfield et al., 2013]. The above improvement in
skill might be associated with improved diabatic forcing in the tropics, propagating to extratropics,
which acts as a source of prediction skill for the AO. In general, further studies are needed to identify the
reasons for the higher prediction skill of the AO from the dynamical seasonal prediction systems in the
recent period.

5. Summary and Conclusion

This study examined the skill of AO predictions using reforecast data sets from six state-of-the-art coupled
ensemble prediction systems. The study focuses in particular on wintertime AO predictions using a set of
reforecasts initialized around November over multiple years. The prediction systems all include interactive
land, ocean, and sea ice components coupled with the atmosphere, although the details of the formulations
and the initialization processes are substantially different among the systems. Our results show that most of
the seasonal forecast systems used in this study exhibit useful skill in predicting the AO up to 2months lead
time for the recent 14 years (1997–2010). We also found that both the deterministic and probabilistic
prediction skills of the AO are higher in the recent years (1997–2010), compared to those in the earlier
14 years (1983–1996). The apparent strengthening of ENSO-AO coupling in recent years provides one
possible reason for the higher skill of AO predictions in the recent period.

Our results highlight two aspects of the AO prediction problem. First, seasonal prediction systems are
able to reproduce the basic AO phenomenon itself, with high pattern correlations in SLP ranging from
0.83 to 0.95. The forecast systems also produce realistic patterns of anomalous surface temperature,
upper level wind, and precipitation associated with the AO, implying that those systems are able to
resolve the key physical and dynamical processes associated with the AO. Second, the seasonal prediction
systems are able to forecast year-to-year variations of the AO, including the recent extreme occurrences
of the AO. The prediction skill does differ among the six systems, and this likely reflects the different
parameterizations and initialization processes in the different systems. The considerable spread among
the model ensemble members suggests the possibility of future improvements in AO predictions. The
reforecast data sets, while allowing us to demonstrate forecast skill, are however not well suited for
isolating what aspects of model physics need to be improved in order to further improve AO prediction
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skill. Progress on that front will require active experimentation with the individual models (e.g., sensitivity
experiments), as well as assessing the quality of the initial conditions and other details of the forecast
configurations (e.g., ensemble size).

Finally, we note that the higher prediction skill in recent decades has been found in previous studies for the
NAO [Rodwell and Folland, 2002; Bierkens and van Beek, 2009] and the AO [Riddle et al., 2013]. The short
time period over which the prediction skill was evaluated, however, makes it difficult to assess any
modulation of the AO from long-term variability such as the Pacific Decadal Oscillation (PDO) and the
North Pacific Gyre Oscillation. Therefore, it is currently not possible to predict whether the level of skill found
in this study will be same in the future.
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