A pair production telescope for medium-energy gamma-ray polarimetry

Stanley D. Hunter, Peter F. Bloser, Gerardo O. Depaola, Michael P. Dion, Georgia A. DeNolfo, Andrei Hanu, Marcos Iparraguirre, Jason Legere, Francesco Longo, Mark L. McConnell, Suzanne F. Nowicki, James M. Ryan, Seunghee Son, Floyd W. Stecker

NASA/Goddard Space Flight Center, Greenbelt Road, Greenbelt, MD 20771, USA
Space Science Center, University of New Hampshire, Durham, NH 03824, USA
Facultad de Matemática, Astronomía y Física, Universidad de Córdoba, Córdoba 5008, Argentina
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Dipartimento di Fisica, Università Degli Studi di Trieste, Treste, Italy
Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

We describe the science motivation and development of a pair production telescope for medium-energy (5–200 MeV) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (0.6° at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front detector (<3 x 10^-6 MeV cm^-2 s^-1 at 70 MeV), and minimum detectable polarization less than 10% for a 10 mCrab source in 10^6 s.

1. Introduction

Since the launch of AGILE [1] and Fermi/LAT [2], the scientific progress in high-energy (E > 200 MeV) gamma-ray science has been extensive. Both of these telescopes cover a broad energy range from ~20 MeV to >10 GeV. However, neither instrument is optimized for observations below ~200 MeV or for polarization sensitivity. Ground-based air Cherenkov telescopes have been used to observe both galactic sources such as supernova remnants and extragalactic sources of very high energy (TeV) gamma-rays such as active galactic nuclei (AGN) [3]. They have provided important astrophysical information, but they also lack the capability to detect polarization. The Fermi and AGILE space-based telescopes, operating in the GeV energy range, are expected to continue to make significant progress for the next several years. However, there remains a significant gap in our knowledge of astronomy in the medium-energy (~0.1–200 MeV) regime between the X-ray and high-energy gamma-ray energy ranges.

2. Science motivation

The next major step in gamma-ray astrophysics, recognized as early as the SAS-2 era [4], should be a medium-energy gamma-ray pair production telescope to fill this gap and provide answers to many important astrophysical questions. In the following, we describe the science motivation for this mission and the design of the Advanced Energetic Pair Telescope (AdEPT) a pair production telescope for medium-energy, ~5 to ~200 MeV, gamma-ray polarimetry.
emission processes such as synchrotron radiation and other gamma-ray production mechanisms, however, the angular resolution with which the geometry of the gamma-ray emission regions are probed by polarization measurements is limited by the instrument angular resolution. It has long been expected that other astronomical sources such as “blazars” (a class of active galactic nuclei) should produce polarized gamma-radiation owing to the highly structured magnetic fields in their emission regions [6–9]. It is also known that gamma-ray bursts (GRBs) emit hard X-radiation whose polarization has been detected by space borne instruments, e.g. RHESSI [10], INTEGRAL [11], and GAP [12]. Such polarization should extend into the gamma-ray range, given the same basic emission processes. Observations at higher energies will investigate an underexplored energy range and provide new understanding of emission mechanisms with high polarization sensitivity.

Medium energy polarization measurements with AdEPT can also explore fundamental questions in theoretical physics. There is an apparent incompatibility between relativity and quantum mechanics at the Planck scale of 1.6×10^{-35} m. Effective field theory models developed to determine possible quantum gravity effects at observable energies, have led to the prediction of possible “vacuum birefringence”, a process in which photons of different polarizations travel at slightly different velocities from an astronomical source. Such a process, if it exists at a significant enough scale, can destroy the inherent polarization of a source from which such polarization would be seen in its absence. Thus, the detection of polarization from a distant source such as a gamma-ray burst can constrain the possible existence of violations of relativity [13,14]. The birefringence effect is sensitive to the square of the photon energy. To date, the INTEGRAL/IBIS observations of the Crab pulsar and nebula at 200–800 keV [15] are the highest energy photon polarization measurements that have been made. An instrument capable of detecting polarization of medium energy gamma-rays can provide a much more sensitive probe of such relativity violations.

The AdEPT pair production telescope also has significant advantages over previous attempts to measure the medium-energy diffuse extragalactic gamma-ray background. Possible contributing components [16] include non-thermal tails from Seyfert galaxies, red-shifted lines from Type Ia and Type II supernovae, and unknown extragalactic sources. Measurements by both the Apollo21 [17] and COMPTEL [18] instruments were plagued by intrinsic detector and spacecraft background problems owing to the buildup of long-lived radioisotopes created by cosmic-ray interactions. The subtraction of such poorly determined backgrounds led to uncertainties in the extragalactic background determination and significantly different results reported by the two different instruments. A free-flying argon gas AdEPT instrument is expected to have low intrinsic background similar to EGRET and Fermi/LAT and therefore yield a more reliable determination of the extragalactic gamma-ray background in the medium-energy range.

The 5-plus fold improvement in angular resolution of AdEPT below ~200 MeV compared with Fermi/LAT, see Fig. 1 will enable the numerous soft gamma-ray sources in the galactic plane to be better resolved improving the determination of the medium-energy Galactic diffuse emission and to spatially resolve variation between electron dominated and hadron dominated processes in the 70–200 MeV range.

3. Obtainable goals for exploring the medium energy gamma-ray universe

Significant improvement in sensitivity for pair telescopes can only be achieved through a dramatic improvement in the angular resolution, especially at lower energies. The ultimate angular resolution of any nuclear pair-production telescope is limited by the unobserved recoil momentum of the nucleus. The nuclear recoil momentum calculated by Jost et al. [19] for photon energy E_γ has a broad distribution extending from $2m_e^2/E_\gamma$ to E_γ, where m_e is the electron rest mass, and the nuclear momentum is nearly orthogonal to the gamma-ray momentum. On the assumption that the recoil momentum is transverse to the photon direction [20], an upper limit to the kinematic limit can be defined as q_{bulk}/E_γ, where q_{bulk} is the momentum above which 68% of the distribution lies. This simple assumption becomes less valid at energies below ~25 MeV where the momentum distribution is wider and the recoil angle is more acute. The kinematic limit and twice the limit are shown in Fig. 1 as the solid and dotted magenta lines, respectively. In the case of triplet production, i.e. pair production on the atomic electrons, the recoil momentum is, in most cases, observable [21] and the angular resolution is limited by the energy and spatial resolution of the electron track imager. Further discussion of triplet detection with AdEPT including effective area (enhanced for low-Z materials), angular resolution, and polarization asymmetry factor is beyond the scope of this paper and will be addressed in a future paper.

Fig. 1. The calculated angular resolution of the AdEPT telescope concept (solid black line, see Section 6 and Table 3) as a function of the gamma ray energy is the quadrature sum of the kinematic limit determined for nuclear pair production from [19] (solid magenta line) and the angular resolution limited only by MCS of the electron–positron pair (black dashed line). Twice, and five times the kinematic limit is also shown (dotted magenta lines). Below ~200 MeV, the AdEPT telescope will achieve angular resolution within a factor two of the kinematic limit. The MEGA [29] measured pair production angular resolution (blue crosses), EGRET [73] calibrated angular resolution (green line), and Fermi/LAT front [74] on-orbit angular resolution (red line) are shown for comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The performance goals of a telescope to address the questions outlined above plus a wide variety of other interesting topics including solar flares, diffuse emission, etc. are summarized in Table 1.

In the following, we show that a medium energy gamma-ray telescope meeting these angular resolution and polarization sensitivity requirements can be developed and describe the design of the Advanced Energetic Pair Telescope (AdEPT)\(^1\) the telescope presently being developed using the Three-Dimensional Track Imager (3-DTI) technology developed at Goddard Space Flight Center (GSFC). In the following sections we describe the advantages of the 3-DTI gas detector technology and the predicted performance of AdEPT.

4. Advantages of a gas detector for a pair production telescope

The design of all pair production space telescopes to date, SAS-2 [22], COS-B [23], EGRET [24], AGILE [1], and Fermi-LAT [2] have utilized an electron tracking hodoscope consisting of a stack of electron tracking detectors interleaved with metal foils, each typically \(\sim 20\) milliradian lengths (mRL) thick, positioned above a calorimeter. SAS-2, COS-B and EGRET utilized two-dimensional gas spark chambers whereas AGILE and Fermi/LAT have taken advantage of silicon-strip detectors (SSD). The multiple layers of high-Z metal foils (totaling about 500 mRL) provide substantial material for high interaction probability and large effective area, however, they also contribute to multiple Coulomb scattering (MCS) which degrades the accuracy with which the electron and positron directions emanating from the pair vertex can be determined. Kryshkin et al. [25] determined that these directions for high energy (900 MeV) gamma rays, which form the basis of gamma-ray direction and polarization determination, are dominated by MCS after traversing about 10 mRL of material. The maximum material thickness would be even less for lower energy gamma rays.

In low-Z material, \(Z \lesssim 30\), gamma rays with energy below \(\sim 10\) MeV, are more likely to interact via Compton scattering than pair production, however, the intrinsic modulation factor of polarized gamma rays interacting via pair production is higher above \(\sim 2\) MeV, compared to Compton scattering and photo-electric absorption [26]. Thus, we are motivated to reduce the effective minimum energy of a pair telescope towards the threshold energy, to take advantage of the higher modulation factor. This requires that the direction of the electron and positron emanating from the pair vertex, which forms the basis of the gamma-ray direction and polarization determination, be measured in less than \(\sim 10\) mRL of material after which their directions are dominated by multiple Coulomb scattering [25].

In the remainder of this section we give a detailed calculation that corroborates the conclusion that a low density, less than \(\sim 5\) mg/cm\(^2\), track imager is required to achieve the AdEPT performance.

<table>
<thead>
<tr>
<th>Energy range</th>
<th>(-5) to (-200) MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy resolution</td>
<td>(-30%) AE/Eo (FWHM) at (-70) MeV</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>(<1^\circ) at 70 MeV</td>
</tr>
<tr>
<td>Continuum sensitivity (\times E^2)</td>
<td>(-3 \times 10^{-7}) MeV cm(^2) (s^{-1})</td>
</tr>
<tr>
<td>Minimum detectable polarization</td>
<td>(-10%) for 10 mCrab in (10^6) s (asymmetry factor, (\eta = 0.15))</td>
</tr>
</tbody>
</table>

1. A list of less common acronyms is given at the end this paper.

4.1. Electron track measurement constraint

Achieving high angular resolution and the lowest possible minimum detectable polarization (MDP) requires a new approach to reduce the density of the conversion and scattering material per track measurement interval in the hodoscope. The density per measurement interval (measurement density) of a hodoscope with interleaved foils can be reduced by decreasing the thickness of the conversion material or increasing the separation between the measurement layers.

The concept of reducing the thickness of the converter material in a gamma-ray telescope to improve the medium-energy sensitivity was recognized by Kniffen et al. [27]. They achieved nearly an order of magnitude increase in sensitivity at 20 MeV by replacing the lead conversion foils in a gas spark-chamber telescope, used previously for high-energy gamma-ray observation [28], with aluminum foils. More recently, several pair telescopes have been proposed without conversion foils, i.e. the conversion material is the SSDs of the track imager. Proposed applications of this concept are MEGA [29], Tigre [30], and a GLAST/LAT modification [31].

The AdEPT gamma-ray telescope concept (Table 3) takes advantage of a gaseous medium to provide a homogenous tracking detector to achieve nearly continuous measurements of the electron and positron tracks from pair production. The optimal fit formulas derived by Innes [32] for estimating the tracing parameter error matrix in the case of a homogenous detector with many layers, can be used to estimate the AdEPT angular resolution and place an upper limit on the gamma-ray converter density.

Innes describes the projection of a nearly straight track onto the plane perpendicular to the magnetic field as \(y = a + bx + cx^2/2\) where \(a\) is the position at the beginning of the track, \(b\) is the slope, \(c\) is the curvature, and \(x\) is the distance along the track. Innes defines the information density of a detector with total length \(L\), \(N\) equally spaced measurement layers, and RMS measurement error at each layer \(\sigma_m\) as \(I = (N + 5)/\sigma_m L\). The information density of the EGRET [33], MEGA [29], Fermi-LAT front section (hereafter Fermi/LAT) [34], and AGILE [35] telescopes along with the AdEPT concept are listed in Table 2. We have restricted the AdEPT detector length, corresponding to selection of the initial portion of the electron track, and taken an upper limit to the measurement spacing, see Section 5.2.

Innes further defines the characteristic scattering length \(\ell = 1/\sqrt{15}\) in terms of the information density and \(s\) the mean square projected scattering angle per unit length. Omitting the small logarithmic term in the Gaussian approximation for the central 98% of the projected scattering angular distribution [36,37], we have \(s \approx (13.6 \text{ MeV}/\mu\text{pc})^3 \cdot 1/X_n\), where \(X_n = X_0/\rho\) is the RL/density in units of mm. Innes derives formulas (Eq. (11) of [32]) for the optimal fit variance matrix elements in the continuous detector limit (\(\ell \to 0\), with \(i\) and \(s\) constant, for large \(N\)) in the limiting case, \(u = L/\ell > 7\) where the tracking error is dominated by MCS, and \(u < 7\), where the error is determined by the tracker spatial resolution. For the AdEPT concept described in Tables 2 and 3, \(u\) is well approximated by \(u \approx 60.9 \cdot \sqrt{10 \text{ MeV}/E_\gamma}\) for electron energies above \(\sim 0.5\) MeV. Over the medium-energy range, \(u \gg 7\) and the AdEPT angular resolution is dominated by MCS and we do not consider the correction to the Innes equations for \(u < 7\) in the absence of a magnetic field noted by Bernard [38]. For nearly straight tracks in the absence of magnetic field curvature, the variance of the optimum fit track slope is given by the \(V_{\theta_0}\) matrix element

\[
\sigma^2_{\theta_0} = V_{\theta_0} \approx 1/\ell^3 \left(2/u + \sqrt{2}\right)^{-1} \approx \sqrt{2}/(11\ell^3). \tag{1}
\]

We note that this formula is not applicable to MEGA, EGRET, Fermi/LAT, and AGILE because of their small number of measurement layers and discrete converter foils.
The gamma-ray direction, in the small-angle approximation, is reconstructed by combining the measured directions of the electron and positron weighted by their energies (see Section 3.11 of [20]). In the multiple scattering dominated regime, the conversion of track resolution to photon angular resolution is

\[\sigma_{\theta} = \sigma_{\theta_0} \sqrt{\frac{r}{1 - r}} \]

where \(r = \frac{r_{rl}}{r_{max}} \) and \(1 - r \) are the energy fractions carried away by the electron and positron. In the case of equal energy partition \((r = 0.5) \) we have \(\sigma_{\theta_0} \approx 1.2 \sigma_{\theta} \), which becomes \(\sigma_{\theta_0} \approx \sigma_{\theta} \) for asymmetric energy partition, \(r \approx 0. \)

The point spread function of a gamma-ray telescope is often expressed in terms of the 68\% containment angle \(\theta_{68} \), which is related to the standard deviation of a Gaussian distribution by

\[\theta_{68} = \sqrt{-2 \ln(1 - 0.68)} \sigma_{\theta_0} \approx 1.51 \sigma_{\theta}. \]

The expected angular resolution of the AdEPT telescope is the quadrature sum of the kinematic limit and \(\theta_{68} \) as shown in the solid black line in Fig. 1. Up to some energy the angular resolution is dominated by the kinematic limit. We denote the gamma-ray energy at which the angular resolution is twice the kinematic limit, indicated by the vertical black dotted line in Fig. 1, as \(E_{\text{KL}} \approx 150 \text{ MeV} \). The corresponding angular resolution, \(\theta_{68, KL} \approx 6 \text{ mrad} \), indicated by the horizontal black dotted line determines the electron–positron direction error \(\sigma_{E, KL} \approx 3.36 \text{ mrad} \) and, in the limit \(u \gg 1 \), Eq. (1) can be used to estimate the scattering angle, \(s \), and hence the RL of the electron–positron tracking medium:

\[s = \sqrt{\frac{\sigma_{\theta}}{4}} \approx \left(\frac{13.6}{\sqrt{\text{cp}}} \right) \frac{1}{X_0}. \]

Using the \(\theta_{68} \) value from Fig. 1 and assuming \(E_{e} = E_{e}/2 - m_{e} \), the value of \(X_0 \) increases from \(\sim 0.15 \times 10^4 \text{ cm} \) at 5 MeV to \(\sim 1.75 \times 10^4 \text{ cm} \) at \(\sim 800 \text{ MeV} \). On the assumptions, \(A \approx 2.12 \) for low-Z materials (\(Z < 20 \)), \(A \approx 2.52 - 8 \) for higher Z materials (\(20 < Z < 54 \)), and using Dahl’s approximation [37] for the RL of a material, \(X_0 = \frac{716.4 A}{2Z^2}\left[1 + \frac{2A}{Z}\right] \text{ g/cm}^2 \), the density of the tacking material must lie between \(\sim 0.5 \) and \(\sim 5 \text{ mg/cm}^2 \). With the exception of modern aerogel materials [39] this low density can only be realized with a gaseous media.

4.2. Polarization constraint

The use of the azimuthal orientation of the electron positron plane to determine the gamma ray polarization has been discussed since the 1950s [40,41] and imposes another constraint on the track imager. In the case of small nuclear recoil, i.e. the electron, positron, and incident photon are nearly coplanar, the azimuthal dependence of the cross section can be written in the form [42]

\[\sigma(\phi) = \sigma_0 \left[1 + \frac{P_{e} \cos^2\phi}{2} \right]. \]

where \(\sigma_0 \) is the total cross section, \(\phi \) is the azimuthal angle between the plane containing the electron–positron pair and the photon’s electric field vector, \(P \) is the fractional polarization, and \(\lambda \) is the inherent azimuthal asymmetry factor. Kel’ner et al. [26] calculated the azimuthal asymmetry of the secondary emission for the photo-electric, Compton, and pair production processes. They found that the asymmetry factor \(\lambda \) is higher for photoelectric and pair production processes below and above \(\sim 2 \text{ MeV} \) respectively compared to the Compton process and they showed that the polarization modulation factor and hence the polarization sensitivity, decreases exponentially with the thickness of material traversed by the pair electrons after only a few mRL [26]. These calculations assume that the electron and positron energies are greater than 1.5 MeV and that the angle between them and the photon is less than 40°. These calculations support the conclusion of Mattiox [43,44] that the thickness of the conversion foils in previous telescopes (typically 20 mRL) precludes any polarization sensitivity for these instruments. Buehler et al. [45] estimated that Fermi LAT might have marginal polarization sensitivity by selecting 50–200 MeV photons that convert in the silicon rather than the 30 mRL thick tungsten foils. Their analysis, omitting background and trial factor considerations, concluded that 20% polarization from Vela could be detected at 3\(\sigma \) using 20 months of data. The 8 mRL thickness of the two silicon-strip detectors reduces the polarization sensitivity.

4.3. Gaseous track imager

Significant advances in medium-energy gamma-ray pair production telescopes can only be realized if the density of the material in the track imager is drastically reduced. A low-density, homogenous detector that provides high spatial resolution tracking and substantially minimizes the effects of Coulomb scattering is required. These technical challenges were met historically with a whole genre of detectors based on gas physics including cloud chambers, bubble chambers, and gas-wire detectors (spark and drift chambers, etc., see e.g. [46]). The use of a gaseous medium time projection chamber as both the conversion and detection medium for a gamma ray pair telescope was first suggested by Hartman [47] and further explored by Blaser et al. [48,49]; Hunter et al. [50,51]; Ueno et al. [52], and Bernard [20]. In the following section we describe our Three-Dimensional Track Imager (3-DTI), a gaseous time projection chamber technology, its application to the design of AdEPT, and the expected performance of the AdEPT pair polarimeter instrument.
5. Three-Dimensional Track Imager (3-DTI)

The 3-DTI detector, shown schematically in Fig. 2, combines a gas time projection chamber (TPC) [53,54] and a 2-D readout to provide a low density gamma-ray conversion medium with high-resolution, 3-D charged particle tracking obtained by digitizing the 2-D readout signals. The 3-DTI also takes advantage of negative-ion drift [55] to reduce diffusion to the thermal limit without an applied magnetic field allowing the TPC drift distance to be much larger than would be possible with free electron diffusion.

The TPC volume, which defines the 3-DTI active volume, is bounded by a drift electrode on the top, a linear potential gradient field-shaping cage of wires, and 2-D readout plane on the bottom. A charged particle traversing the gas medium loses energy by ionization. The ionization electron density is proportional to the dE/dx energy loss of the particle along its track. The drift field, the electric field in the TPC active volume (\(E/\sqrt{C^2}\)), causes the ionization to drift at a uniform velocity onto the 2-D readout plane. The relative 3-D location of the ionization charge is determined from the 2-D readout and time of arrival.

5.1. Two-dimensional readout

The 2-D readout consists of a 2-D micro-well detector (MWD) [56–60] with pre-amplification provided by a Gas Electron Multiplier (GEM) [61]. Two-stage amplification of the ionization charge was required to detect single ionization electrons using the negative ion drift technique (see Sections 5.2 and 5.3). The MWD consists of two orthogonal layers of electrodes separated by an insulating substrate, see lower right inset in Fig. 2. The cathode and anode electrode strips are etched onto the top and bottom layers respectively of a copper clad insulator using flex circuit board technology. Holes etched in the top (cathode) electrodes are concentric with blind vias micro-machined in the insulator that expose the anode electrode and form the micro-wells. Our MWD design has 200 \(\mu\)m diameter \(\times 200 \mu\)m deep wells on 400 \(\mu\)m \(\times 400 \mu\)m center-to-center pitch. Charging entry a micro-well is accelerated by the strong electric field (\(\sim 40 \text{ kV/cm}\)) in the wells and can produce a Townsend electron avalanche (e.g. [62]) proportional to the primary ionization charge. This amplification, or “gas gain”, is exponentially dependent on the electric field in the micro-well. The avalanche electrons are collected on the anode and the motion of the avalanche charge induces an equal but opposite image charge on the cathode. The anode and cathode signals provide the 2-D, (X–Y), spatial location of the primary ionization. Sampling of the avalanche charge signal at a fixed frequency allows the third dimension Z (height) to be calculated from the uniform drift velocity of the ionization charge through the gas volume.

5.2. Negative ion diffusion

Diffusion of the ionization electrons drifting through the gas places an upper limit on the useful height of the TPC. If the maximum allowable diffusion is chosen to be twice the TPC readout pitch, then the maximum drift distance can be expressed in terms of the diffusion coefficient: \(Z_{max} = (2\text{Pitch}/\sigma_0)^2\). For example, Puiz [63] measured the electron drift velocity and diffusion in an Ar + CO\(_2\) (80%/20%) mixture at 1 atm. The drift velocity of free electrons \(V_d\) increases quasi-linearly with the drift field, \(E\), with reduced mobility \(\mu = V_d/E \approx 4.2 \times 10^8 \text{ cm}^2 \text{ atm}/\text{Vs}\) (Fig. 17 of [63]). The electron diffusion coefficient, \(\sigma_0\), shown as the red line in Fig. 3, exhibits thermal behavior decreasing as \(1/\sqrt{2kT/eE}\), blue line, up to \(\sim 100 \text{ V/cm}\). For higher drift fields, the electron drift velocity is significantly higher than the thermal velocity of the gas and \(\sigma_0\) tends to increase with \(E\) reaching a plateau at high fields \(> 800 \text{ V/cm atm}\). The minimum diffusion value of \(\sigma_0 \approx 180 \mu\text{m}/\sqrt{\text{cm}}\), is reached at \(\sim 300 \text{ V/cm}\), corresponding to a

Fig. 2. Schematic of the 3-DTI TPC technology showing how electron–positron pairs are tracked in 3-D. Components of the time projection chamber, micro-well detector plus GEM, and an avalanche in a single well are identified. (The reader is referred to the web version of this article for a color version of this figure.)

Fig. 3. (top) The longitudinal negative ion diffusion and (bottom) the drift velocity \((v_d - \mu E)\) for mixture of Xe + CS\(_2\). Thermal diffusion limit for \(T = 300 \text{ K}\) is shown as the blue, thermal limit line. Non-thermal diffusion for Ar + CO\(_2\) (80%/20%) [63] is shown as the red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
drift velocity $V_d = \mu E \approx 1.2 \times 10^4$ mm/ms. The maximum drift distance in Ar + CO$_2$ is then ~ 20 cm for a detector pitch of 400 μm.

Thermal diffusion can be maintained at higher fields by adding an electronneutral component to the gas that captures the primary ionization electrons, forming negative ions, which then drift in thermal equilibrium with the gas. Carbon disulphide (CS$_2$), with a vapor pressure of \sim300 torr at 300 K and moderate electron affinity [64], has successfully been used as a negative ion molecule in the negative ion-time projection chamber (NI-TPC) [55]. We have measured the negative ion diffusion coefficient in CH$_4$ + CS$_2$ [65] and in Xe at 100, 200, 300 torr plus 40 torr CS$_2$. The Xe results are shown in Fig. 3. For both gas mixtures, the negative ion diffusion coefficient is reduced to the thermal limit and is a function only of the drift field and gas temperature, and independent of the gas mixture. For negative ions, the diffusion coefficient decreases with E becoming less than ~ 80 μm/$\sqrt{\text{cm}}$ above \sim800 V/cm at 25°C. In this case, the maximum drift distance for a detector pitch of 400 μm is greater than ~ 100 cm. We note that the diffusion can be further reduced by operating the TPC at lower temperature, e.g. 0°C or lower.

The negative-ion drift technique allows for large TPC active volumes that can be read out with one readout layer, however, the drift velocity is substantially lower than for free electrons and, for constant voltage, the gas gain with CS$_2$ added is reduced about 100-fold. The drift velocity of the CS$_2$ ions in Xe is \sim10 mm/ms at 800 V/cm; about 3 orders of magnitude slower than that of free electrons in Ar + CO$_2$ [63]. Reduced drift velocity is an advantage in the digitization rate corresponding to a z-coordinate resolution is reduced and the sampling rate of the digitizers can also be reduced which results in lower instrument power, see Section 6. CS$_2$ also provides strong UV quenching, which reduces breakdown brought on by the electron avalanche and ensures stable operation. The threshold for electron dissociation of CS$_2$ is 9.337 \pm 0.06 eV [66], thus, dissociation represents a negligible effect and gas degradation should be minimal ensuring a long instrument lifetime.

Since thermal diffusion is independent of the gas mixture, we choose Ar + CS$_2$ rather than Xe + CS$_2$ for 3-DTI because of the higher drift velocity, reduced Coulomb scattering, and higher relative triplet production. Our measured mobility in Ar + CS$_2$ at 660 torr and 1200–1500 V/cm is 16–20 mm/ms, consistent with the results of Ohnuki et al. [67].

5.3. Single ionization electron detection

Detection of the ionization electrons along the tracks of the electron and positron pair is a requirement for gamma-ray imaging. Generation of a Townsend avalanche in the MWD requires detachment of the ionization electrons from the negative ions. This occurs in a strong electric field of the micro-well by collision of the negative ion with the gas molecules [68]. The free electrons are then accelerated in the micro-well producing the avalanche. The start of the avalanche from a detached electron, however, occurs lower in the micro-well (closer to the anode) compared with a free electron avalanche resulting in lower gain for given MWD voltages, shown in Fig. 4. The maximum electric field, and hence maximum avalanche gain, is determined by the maximum stable operating voltage of the micro-well detector corresponding with Raether’s criterion in micro-pattern gas detectors. This was demonstrated by Ivanouchenkov et al. [69] and Bressan et al. [70]. The micro-well voltage cannot be increased sufficiently to overcome the reduction in gain caused by the negative ion collision effect. We have overcome the reduction in gain by adding a Gas Electron Multiplier (GEM) [61] pre-amplification stage to our micro-well detector. The gain of our MWD with and without the GEM pre-amplifier measured in P-10 (90% Ar + 10% CH$_4$) and Ar + CS$_2$ (560 torr + 40 torr) at a total pressure of 600 torr is shown in Fig. 4. Gains in excess of 10^4 are readily achievable with the MWD + GEM combination in Ar + CS$_2$ providing single ionization electron detection.

The X–Z projection of the electron–positron tracks resulting from the pair interaction of a 6.129 MeV gamma ray is shown in Fig. 5 obtained with a small 5 \times 5 \times 9 cm3 3-DTI prototype with MWD + GEM readout. These highly structured tracks show pulse amplitude variation proportional to the dE/dx energy loss of the electrons along their paths, multiple Coulomb scattering, and the formation of the Bragg peak of the stopping lower energy particle. X–Z and Y–Z projections of a typical electron detection. The X–Z projection of the electron–positron tracks resulting from the pair interaction of a 6.129 MeV gamma ray is shown in Fig. 5 obtained with a small 5 \times 5 \times 9 cm3 3-DTI prototype with MWD + GEM readout. These highly structured tracks show pulse amplitude variation proportional to the dE/dx energy loss of the electrons along their paths, multiple Coulomb scattering, and the formation of the Bragg peak of the stopping lower energy particle. X–Z and Y–Z projections of a typical electron detection. The θ_{58} value derived from a very preliminary angular resolution measurement, based on only a few 6.129 MeV interactions, was \sim18 deg. This measurement is \sim2.5 times greater that the kinematic limit. Agreement is quite good given that the electron track lengths were short and no correction was made for near-field parallax.

5.4. 3-DTI prototype development

The development of the 3-DTI has been done in stages, our $10 \times 10 \times 15$ cm3 and $30 \times 30 \times 15$ cm3 versions are shown in
Fig. 6. 3-DTI electron track from 90Sr in Ar + CS$_2$ (560 + 40 torr) using a MWD + GEM operating at a total gain of 10^5. The left and right images are the X–Z and Y–Z projections of the electron track.

Fig. 7. A 30 × 30 × 7 cm3 3-DTI detector was used for an Office of Naval Research funded demonstration of neutron imaging [71] in an over-water environment. The 2-D readout for the 3-DTI detector used for neutron imaging did not require the two-stage GEM pre-amplifier because of the much higher specific ionization of protons compared to minimum ionizing electrons. We are in the process of expanding our mechanical support technique for the MWD + GEM to 10 × 10 cm2 and 30 × 30 cm2 MWDS. These larger prototypes will be used to make much more detailed and accurate angular resolution measurements than described above. These measurements and comparison with the calculations in this paper will be reported on in a subsequent publication.

6. Design of the AdEPT medium-energy pair polarimeter

The design of the AdEPT pair polarimeter has matured along with the development of the 3-DTI detector technology. Our baseline concept for the AdEPT instrument and spacecraft is described in Table 3.

The total mass of the Ar + CS$_2$ gas is \approx20 kg at 25°C with a corresponding RL of \sim60.1 × 103 cm. The 3-DTI drift field will be \sim1 kV/cm resulting in a negative drift velocity v_D of \sim18 mm/ms. The 3-D spatial resolution is determined by the MWD pitch and the sampling frequency of the analogue signals from the MWD. The 400 μm pitch of the MWD corresponds to a RMS resolution, $\sigma_{x,y}$ of 400 μm/√T2 \approx 115 μm. Similar z resolution of 400 μm is determined by the digitization rate which, with a five-fold over sampling to avoid aliasing, is determined by the negative ion drift velocity and the digitization rate is 5$v_D/\sigma_{x,y}$ \approx 225 kHz.

Previous gamma-ray telescopes, see Section 4, utilized a charged particle anti-coincidence detector and calorimeter in their designs. The value of an anti-coincidence detector and calorimeter in the AdEPT design is greatly reduced because of the slow negative ion drift velocity. The time required for the ionization (track information) associated with a cosmic-ray or electron/positron pair to drift to the readout layer, the read-out delay, is tens of milli-seconds. Thus, a temporal coincidence between the track information and fast scintillator pulses is impractical. An exception to the long read-out delay is for those tracks which traverse the readout plane. In this case the ionization charge closest to the read-out layer is read out in the next digitization period, \sim4 μs delay, and coincidence, in particular, with a calorimeter, may be practical.

In either case, an anti-coincidence signal cannot be used to discriminate cosmic rays from gamma-ray interactions since their ionization charge is in the gas and will be readout along with the gamma-ray track information. Thus, the readout delay results in a track “memory” in the TPC volume. In low-earth orbit, the integral SPENVIS2 isotropic cosmic ray proton flux is \sim56.6 (m2 sr s)$^{-1}$ above \sim6 GeV. The number of proton tracks crossing 1 m2 face of the TPC, with acceptance of 1 m2 sr, in a time corresponding to the maximum drift time, 1000 mm/v_D, is \sim10 tracks/face or \sim60 tracks/m3. The gamma-ray interactions must be identified and discriminated from these tracks, using image recognition techniques. In separate work [72], a multi-core processor has been demonstrated and software is being developed to process the Giga-bit per second raw data from a 1 m3 TPC and separate the gamma-ray tracks from the CR tracks. Initial processing of simulated AdEPT data indicates that this separation, due to the high spatial information provided by the 3-DTI, is nearly lossless and result in little loss of effective area.

At this point in the development of the AdEPT concept we omit the anti-coincidence because it is not effective and do not include a calorimeter. A calorimeter could be added later, at the expense of

2 Space Environment Information System https://www.spenvis.oma.be/.
increased mass, instrument complexity, and reduced instrument solid angle, if further instrument optimization and mission studies warrant.

6.1. Effective area

The performance of the AdEPT pair polarimeter has been calculated based on the concept parameters in Table 3, consideration of event reconstruction effects have not been included. The effective area of AdEPT is given by

$$A_{\text{eff}}(E_c) = A_{\text{geom}} \cdot \left(1 - \exp\left(-\mu_{\text{pair}} \cdot \rho_{\text{gas}} \cdot D\right)\right),$$

where A_{geom} is the TPC geometric area, $\mu_{\text{pair}}(E_c)$ is the pair interaction coefficient as a function of gamma-ray energy in cm2/g, ρ_{gas} is the gas density in g/cm3, and D is the depth of the TPC in cm. The effective area of AdEPT is plotted in Fig. 8 as a function of gamma-ray energy. The EGRET [73] and Fermi/LAT front [74] effective areas are shown for comparison.

6.2. Continuum sensitivity

The continuum sensitivity corresponding to a significance level, n_σ, is calculated from the expression for effective source counts [75]

$$n_\sigma = S / \sqrt{S + B}. \tag{6}$$

where S and B are, respectively, the number of source and background photons detected by an instrument with effective area A_{eff}, in observation time T_{obs}, and energy interval ΔE_c.

The easily recognized "\(\Lambda\)" signature of pair production results in detectors that are nearly free of instrumental background [47], thus the background counts are modeled using the all-sky average extragalactic gamma-ray emission spectrum derived from the EGRET data [76]

$$F_B(E_c) = 7.32 \times 10^{-9} (E_c/451 \text{ MeV})^{-2.10} \text{ photons cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ MeV}^{-1}.$$

We choose to use the flatter EGRET diffuse spectrum since it is consistent with the COMPTEL [77] and SAS-2 [78] results rather than the steeper Fermi spectrum [79], which if extrapolated down to the medium-energy region is inconsistent with the COMPTEL results.

The number of background counts is given by

$$B(E_c) = F_B(E_c) \cdot A_{\text{eff}}(E_c) \cdot T_{\text{obs}} \cdot \Omega(E_c) \cdot \Delta E_c \cdot \text{photons}, \tag{7}$$

where

$$\Omega(E_c) = 2\pi (1 - \cos \theta_{\text{iso}}(E_c)) \text{ sr} \tag{8}$$

is the solid angle containing 68% of the photons from a point source. The number of source counts corresponding to detection significance is determined by solving Eq. (6) for $S(E_c)$ and taking the positive root:

$$S(E_c) = \frac{1}{2} \left(n_\sigma^2 + \sqrt{n_\sigma^4 + 4B(E_c)n_\sigma^2} \right) \approx n_\sigma^2 + B(E_c). \tag{9}$$

The corresponding differential continuum source flux or sensitivity is given by

$$F_S(E_c) = S(E_c) / (A_{\text{eff}} \cdot T_{\text{obs}} \cdot \Delta E_c \cdot 0.68) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ MeV}^{-1}. \tag{10}$$

where the factor of 0.68 in the denominator corresponds to the use of θ_{iso} in Eq. (8). The AdEPT 3σ continuum source sensitivity multiplied by E_c^2 calculated on the assumptions of an observation time of 10^4 s and $\Delta E_c = E_c$ is shown in Fig. 9. The sensitivity for EGRET and Fermi-LAT front, calculated on the same assumptions are shown for comparison. The AdEPT sensitivity is better than Fermi up to $\sim 200 \text{ MeV}$, as desired.

The AdEPT sensitivity calculated here must be considered as a lower limit since the effective area calculation does not include any corrections for interactions near the edge of the TPC or inefficiencies in the track recognition. Further, the sensitivity for sources near the Galactic center will be up to an order of magnitude higher, since the 30 to 100 MeV Galactic diffuse emission is about an order of magnitude higher than the extragalactic emission [80]. The assumption of low instrumental background may also be optimistic, since, without an anti-coincidence, neutral pions generated by cosmic-ray protons interacting with the pressure vessel are a potential source of background. This will be taken into account as part of the detailed instrument simulations.

6.3. Minimum detectable polarization

The minimum detectable polarization (MDP) for a given instrument can be written as [81]

$$\text{MDP}(E_c) = n_\sigma / \sqrt{S + B}/S. \tag{10}$$

where S and B are the observed source and background counts and the asymmetry factor, is defined in Eq. (4). The asymmetry factor for co-planner events has been calculated over the entire energy range allowing for screening of the nucleus by Kel’ner et al. [26] and above 10 MeV using Monte Carlo integration by Depaola and Kozemeh.
6.4. Energy resolution

The high spatial resolution of the 3-DTI tracker allows multiple Coulomb scattering to be used to estimate the energy (E_p) of electrons above \sim1 MeV which will generally exit the 3-DTI gas volume. Specific ionization, dE/dx, and residual range can be used for lower energy and stopping electrons. The techniques developed to determine the energy of particles leaving tracks in photographic emulsions [84–86] have also been used with bubble chambers [87]. These techniques have been extended to include Kalman filtering [88] and been used to measure the through-going particle momentum in the ICARUS T600 TPC [89]. An estimate of the AdEPT energy resolution can be obtained by scaling the ICARUS muon momentum by the square root of the ratio of the detector RLs, i.e., $\sqrt{X_{0,\text{AD}}/X_{0,\text{IC}}}$ ≈ 29.4. This approach is valid because the spatial resolution per RL of AdEPT, $(1.2 \times 10^4 \text{ cm/RL})/(0.04 \text{ cm/sample}) = 3.0 \times 10^5 \text{ samples/RL}$, is much higher than for ICARUS, $(14 \text{ cm/RL})/(0.3 \text{ cm/sample}) = 46.7 \text{ samples/RL}$. The scaled ICARUS simulations using the classical and Kalman filter methods, shown in Fig. 11 with the scaled electron momentum, indicates that the expected AdEPT momentum resolution will be better than \sim15% for electron momenta above \sim10 MeV. The much higher resolution of AdEPT may result in improved low momentum resolution compared to ICARUS. Monte-Carlo simulations similar to those done for ICARUS are being done for the AdEPT instrument and the results will be presented in a future paper.

7. Summary

The AdEPT instrument concept based on the 3-DTI gas TPC technology (Table 3) will provide unique observations in the 5 to 200 MeV energy range. These observations with angular resolution within a factor of two of the pair production kinematic limit and minimum detectable polarization $<$ 2% for a 100 mCrab source up to \sim150 MeV will address a wide range of the critical science goals. The calculated AdEPT performance is encouraging and the few
instrument challenges are readily tractable. Detailed Geant4 simulations will be completed to confirm these calculations.

Milestones in the AdEPT development program include testing of $10 \times 10 \times 15 \text{ cm}^3$ and $30 \times 30 \times 30 \text{ cm}^3$ 3-DTI detectors. Currently proposed work will build a $50 \times 50 \times 100 \text{ cm}^3$ 3-DTI prototype of the AdEPT instrument module. Future work will include calibration of this AdEPT module prototype at the Duke University HIGS accelerator that offers 100% polarized gamma-rays from ~ 15 to 50 MeV [90], and a balloon flight in the 2018–20 time-frame. The goals of the accelerator calibration will be to determine the optimum electron energy determination algorithms, gamma-ray direction and energy, and the energy dependent polarization modulation factor, and to verify the angular and energy distributions for pair production near threshold simulated with Geant4. The balloon flight will confirm that gamma-rays can be identified in the presence of a high charge particle background.

We envision AdEPT, a future space mission, to be the next step in observational gamma-ray astrophysics that will open up a new window in medium-energy gamma-ray astrophysics with its unique capability to measure polarization.

References
