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Since its founding, NASA has been dedicated to the 
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Abstract

An attractive property of ensemble data assimilation methods is that they provide flow dependent 
background error covariance estimates which can be used to update fields of observed variables 
as well as fields of unobserved model variables. Two methods to estimate background error 
covariances are introduced which share the above property with ensemble data assimilation 
methods but do not involve the integration of multiple model trajectories. Instead, all the 
necessary covariance information is obtained from a single model integration. The Space 
Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the 
spatial distribution of model variables within a single state vector. The Flow Adaptive error 
Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving 
window along a model trajectory.

SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of 
the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the 
CICE sea ice model.  The results are validated against unassimilated Argo salinity data.  They
show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used 
by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis.
Because of their reduced cost, SAFE and FAST hold promise for high-resolution data 
assimilation applications.

Keywords:
Data assimilation; error covariance; Kalman filter; ensemble Kalman filter;
ensemble optimal interpolation
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1. Introduction
Following a seminal paper by Evensen (1994) introducing the ensemble Kalman filter (EnKF),
ensemble data assimilation (EDA) methods have gained wide acceptance and usage in the 
geophysical sciences. While EDA methods differ in terms of the approach used to update or 
resample the ensemble of model states, they all require an ad hoc number of concurrent model 
integrations to estimate the distribution of background errors.  This approach is essentially an
O(n) procedure, where n is the size of the model state vector.  In contrast, the original Kalman
(1960) filter algorithm propagates its background error covariance estimates by means of matrix 
multiplications of O(n3). Hence, EDA methods are comparably economical from a numerical 
standpoint.  Yet, their cost is significantly higher than that of conventional methods that do not 
involve ensemble model integrations.  Thus, implementations of EDA methods must 
compromise between ensemble size and model resolution.

Because the analysis and error estimates depend on the state of each ensemble member, EDA 
methods are flow-adaptive. They also provide estimates of the cross-field covariance between 
observed and unobserved model fields that can be used to update unobserved system variables.
For example, ocean sub-surface fields can be updated even if only surface observations are 
available.

The purpose of this paper is to introduce two data assimilation algorithms that share the 
abovementioned properties of EDA methods but, unlike EDA methods, rely on only a single 
model trajectory to estimate the necessary error-covariance information. As such, these methods 
obviate the requirement to compromise between ensemble size and model resolution. The Space 
Adaptive Forecast-error Estimation (SAFE) algorithm estimates error covariances from the 
spatial distribution of model variables in the neighborhood of every model grid cell in a single
background state.  In contrast, the Flow Adaptive error Statistics from a Time series (FAST)
algorithm estimates covariances from the recent distribution of high-pass filtered lagged 
instances of the model state vector sampled along the same trajectory. Because they do not 
require multiple integrations of the numerical model, SAFE and FAST are considerably less 
resource hungry than typical EDA methods and thus hold promise for high-resolution data 
assimilation applications.

The underlying assumption on which SAFE and FAST are based is that errors in the forecasts 
used in assimilation are primarily phase errors in space and/or time. For the ocean, this 
assumption makes sense as the dominant source of error can be related to errors in surface 
forcing, i.e., the timing, intensity, or location of particular atmospheric synoptic events. Thus, 
the forecast (or background) errors can be related to the timing or intensity in the propagation or 
advection of oceanic anomalies.

The algorithms are outlined in Section 2 and compared to conventional assimilation techniques
in Section 3 where they are applied to the assimilation of Argo temperature (T) profiles into the 
OGCM component of the NASA Global Modeling and Assimilation Office (GMAO) Goddard 
Earth Observing System (GEOS).  Unassimilated Argo salinity (S) observations are used to 
validate the assimilation.  Conclusions follow in Section 4.
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2. Assimilation Algorithms
2.1 Preamble
Most sequential data assimilation algorithms are inspired by or derived from the Kalman filter 
(Kalman 1960) and involve the following steps,

where the subscript k refers to the kth of a sequence of assimilations, xf and xa denote the model 
forecast and analyzed states, M is the model operator, and fk-1 represents the forcing between 
times tk-1 and tk.  The observations, yk, assimilated at time tk are related to the true system state, xt,
at time tk by equation (1b) where Hk is the observation operator, E denotes the expectation 
operator and ��k, with covariance matrix Rk, is the observation error vector.  The Kalman gain 
matrix, Kk, dictates how the observations and model forecast are weighted in the analysis 
computation (equation 1d). It depends on Hk, Rk and the background error covariance matrix,

Of course, since xt is unknown, Pk cannot be computed directly from equation (2) and must be 
estimated, either explicitly or implicitly, by some other means. In fact, the procedure used to 
estimate Pk can be used to classify data assimilation methods.

In most EDA methods, Pk is estimated from the statistical distribution of an ensemble of model 
forecasts,

started from an ensemble of n analyzed model states at the previous analysis time, tk-1.
Following Houtekamer and Mitchell (2001), many EDA systems filter spurious long-range 
covariances resulting from finite ensemble sizes by (dropping the k subscript) decomposing P as

where Pe represents the background covariances estimated from the ensemble of model states, C
is a compactly supported correlation matrix and � denotes the Schur (i.e., element by element) 
product of two matrices.

In a class of methods known alternatively as ensemble optimal interpolation (EnOI: e.g.,
Borovikov et al. 2005; Oke et al. 2005, 2010; Wan et al. 2010; Vernieres et al. 2012) or 
asymptotic ensemble filters, the time dependency is neglected and P is estimated from the 
statistics of one or more model run histories or from combinations of model histories. In many 
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cases, EnOI methods are competitive with the flow-dependent EDA methods because they make 
up for the performance degradation due to neglecting the forecast-error evolution by estimating 
error statistics from a much larger ensemble.

Optimal interpolation (OI: Eliassen 1954) refers to an older class of data assimilation methods in 
which background error covariances are modeled with Gaussian functions or other analytically 
or empirically derived functions.  Cross-field covariances are generally neglected in these
methods and only the model field corresponding to the observed variable is updated.

2.2 Space Adaptive Forecast error Estimation (SAFE)
The SAFE algorithm attempts to combine the simplicity and cost effectiveness of OI with the
large sample size of EnOI and the flow dependency of the EnKF.  It estimates background error 
covariances by treating the state variables in neighboring grid cells surrounding every model grid 
point as if they were the state variables of other ensemble members at the same grid point.
Because the size of the neighborhood determines the covariance amplitudes, rescaling is 
necessary. Note however that an error-covariance rescaling step is also implicitly present in 
many EDA methods where the background error covariance amplitude is determined by 
parameters of a covariance inflation procedure.

To facilitate the procedure in geophysical fluid models with complicated boundaries, the 
following algorithm is used. For simplicity of notation, we assume that the model state can be 
split according to

where v is an observed model field and w is unobserved. The generalization to more than two 
model fields is obvious. We also assume that all the data assimilated correspond to the same 
model quantity although the generalization to different observation types is also straightforward.
In view of the above, the model update is split according to

The application of equation (6c) is further simplified by assuming that the w background error in 
grid cell (i, j, k) is predominantly related to the v error in grid cell (i, j, k) and negligibly related 
to the v errors in other grid cells, thus neglecting the off diagonal elements of Pvv in (6c).  Instead 
the unobserved model field is updated according to
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where I, J and K denote the number of grid cells along the x, y, and z space dimensions,
respectively. Heuristically, these simplifications are related to the assumption that if a and b are 
correlated and b and c are correlated, then a and c are correlated.  

The first step is to estimate the background error variance of the observed field (the procedure is 
the same regardless whether this field is prognostic or diagnostic) with

where 
 is a local 3D averaging operator.  For our implementation, repetitive application of a 
gridpoint (spatial) Laplacian smoother was found to be effective. The results of Section 3 
(Figure 1) indicate that the size of the regions over which the averaging is applied is of little 
consequence.

The variance estimate is rescaled such that 

where the double vertical bar stands for an L2 vector norm. The parameter � is prescribed.  It is 
a scalar representing the global mean (asymptotic) target ratio of background error variances to 
data error variances and its role is similar to that of multiplicative covariance inflation 
parameters used in many EDA applications. Note that this formulation assumes a steady state 
regime where the average global mean error variance increase between successive assimilations 
equals the mean error variance decrease resulting from each assimilation step.

After estimating the background error variances, the update of equation (6a) is applied. This step 
corresponds to an OI analysis with the model background error variances calculated with 
equation (7). Let �12 represent the covariance of the v background errors at locations 1 and 2.  It 
is estimated with

where �v1 and �v2 are estimated with equation (7), the Ls are length scales in units of the 
variable v and in the three space dimensions and c0 is the popular function given by equation 
(4.10) of Gaspari and Cohn (1999), or any other compactly supported correlation function.
Alternatively, Euclidian distance can be used in the right hand side of equation (9b) at the 
expense of a slightly higher operation count.  The max function selects the largest of its
arguments.  
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Equation (9b) ensures that �12 is 0 if either v1 differs significantly from v2 or if locations 1 and 2 
are very distant from each other. The intent is that in the majority of cases,

and the modulation of the background error covariances with the c0 function enforces error 
covariance localization in a state-dependent manner. The formulation with the max function is 
pertinent to the ocean where strong gradients often coincide with zero correlation surfaces.  In 
other applications, one can replace equation (9b) with

The local cross-field covariances of the v and w errors in every grid cell are estimated with

They are used to update the fields of unobserved variables according to equation (6b-d).

2.3 Flow Adaptive error Statistics from a Time series (FAST)
Unlike SAFE which uses the spatial distribution of model variables to estimate error covariances,
FAST computes the analysis increment at time tk from n previous instances of the model state 
vector sampled from the recent history of the current model run,

where etc., for a given time lag �� Arguably, � should be such 
that xk-1 differs significantly from xk while it still contains information that is useful at  tk. For 
simplicity, � is set to the assimilation interval in this study.

While one could attempt to compute the analysis from Xk without further preprocessing as 
though it were made of the current state of each member of an ensemble of model trajectories,
the resulting error covariance estimates would be dominated by the instances furthest away from 
the center of the time window since is the simple moving average of length n estimated at 
time To prevent this from occurring and improve the assimilation performance, the lagged 
state instances are first high-pass filtered and then resampled to remove the remaining sequential 
ordering information.

The high-pass filtering takes the form  
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where the sequence of is an exponential moving average (EMA) of the model state history,

where A good choice to filter out time scales longer than half the sampling time 
window is The case with � = 0.5 is essentially equivalent to forming the ensemble 
of first order differences over the time window.

The resampling,

uses weights, �ij, drawn from a uniform random distribution.

FAST makes the same calculations to estimate background error covariances and compute 
assimilation increments with the ensemble of deviations from equation (14b) as the EnKF makes 
with its ensemble of model states at time tk (e.g., equation 2b-f of Keppenne et al. 2008). One 
notable difference is that FAST calculates only one increment. Because a single model
integration is involved, the ensemble size (n) can be increased at a very minimal cost

2.4 GEOS-5 Modeling and Ocean Data Assimilation System
2.4.1 GEOS-5 atmosphere-ocean general circulation model
The SAFE and FAST algorithms are tested in Section 3 in the context of assimilating Argo
temperature data into the GFDL MOM4.1 ocean model coupled to the NASA GEOS-5 AGCM 
and to the Los Alamos CICE ice model (all of which comprise the GEOS-5 AOGCM).  The 
model configuration is the same as that used for the GMAO ocean analysis (Vernieres et al.
2012).  In summary, the OGCM is run with a geopotential vertical coordinate on a ½° grid with a
gradual meridional refinement to ¼° at the Equator and with 40 vertical levels.  The grid is 
Cartesian south of 60°N and tripolar northward thereof.  The AGCM grid is 1° × 1.25° with 72
levels.  The CICE model is run on the same horizontal grid as the OGCM.  The AGCM is 
constrained by replaying the Modern-Era Retrospective analysis for Research and Applications
(MERRA: Rienecker et al. 2011) while the ocean observations are assimilated.  The replay 
procedure effectively replaces the AGCM state with the state of the analysis every six hours.

2.4.2 GEOS integrated ocean data assimilation system (iODAS)
The components of the GEOS-5 AOGCM are connected to each other and to the GEOS
integrated ocean data assimilation system (iODAS) with the Earth System Modeling Framework 
(ESMF).  Besides SAFE and FAST, an EnOI utilizing a steady state ensemble of forecast-error 
estimates is used in Section 3 as a comparison benchmark.  The parallel implementation of 
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iODAS follows Keppenne and Rienecker (2003).

SAFE. FAST and EnOI background error covariances are localized according to equation (4)
where the element of C corresponding to the ith and jth model state variables at space-time 
locations (xi, yi, zi, ti) and (xj, yj, zj, tj), is given by

where ri and rj are the adaptive localization variable at locations i and j and the r field is the 
observed variable.  Note the similarity with equation (9b), except for the appearance of the 
temporal term, The latter results from differences between the measurement times 

and the analysis time. The application of equation (15) to modulate the background error
covariances enforces a state-dependent error-covariance localization, even when the raw
covariances are time-independent, as is the case with EnOI.

3. Application
To validate SAFE and FAST, we ran four AOGCM experiments assimilating T profiles from the 
broad-scale global array of temperature/salinity profiling floats (Argo: Gould et al. 2004). In the 
SAFE, FAST and EnOI runs, both T and S ocean model fields are updated.  As in the GMAO 
production ocean analysis (Vernieres et al. 2012), the EnOI background error covariances are 
computed from the leading 20 EOFs (with the corresponding ensemble mean removed) of an 
ensemble of 186 short-term forecast-error estimates from coupled GEOS-5 forecasts.  TOI is an 
univariate OI run in which the background error variance corresponds to the cumulative variance 
of the EOFs used in the EnOI run. Note that the TOI run is included for completeness, even 
though it is known that assimilation that does not update salinity carefully can give a poor 
analysis (e.g., Sun et al. 2007). Besides the assimilated Argo T data, unassimilated Argo S data 
are used for validation. A control run without data assimilation was also run. We did not include 
an EnKF in the comparison because our earlier work has demonstrated that comparatively many 
ensemble members and a large amount of tuning are needed for it to outperform the EnOI 
benchmark.  

The runs cover a two-year period starting on January 1, 2010.  The ocean initial conditions are 
the same for all runs and come from the GMAO ocean analysis (Vernieres et al. 2012).  The 
GEOS-5 replay procedure constrains the atmosphere to MERRA over the period of the runs.  
Every five days, data from a 5-day time window centered about the analysis time are processed.
The operator H is a 4-dimensional interpolation operator to the time and location of the 
observations. The observational error model is vertically Gaussian to reflect correlated errors in 
each ARGO profile and the absence of error correlations between distinct profiles. The 
observational error variance varies as a function of depth according to the magnitude of the 
vertical gradient. Details are provided in Vernieres et al. (2012). The assimilation increments
are applied incrementally over a five-day period, as in the incremental analysis update procedure 
of Bloom et al. (1996), but without rewinding the model clock (Keppenne et al. 2008).

The SAFE run estimates its background error covariances from equations (7) and (10) where the
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 operator consists of 10 diffusion steps. To improve the performance in the low latitudes, 
SAFE error covariances are explicitly disabled when they involve a grid cell within the 10°N-
10°S latitude band and another grid cell outside of it.  This step is exclusively applied in the 
SAFE run to prevent the state variables at grid cells outside the waveguide from participating in 
the estimation of the background error variance (
 operator) at grid cells inside the waveguide.  
The FAST run applies equations (11-14) with a five-day lag, n=20 and �=0.18. Only 20 lags are 
used to facilitate comparison with EnOI, since the latter uses a static ensemble of 20 leading 
EOFs.   The error-covariance localization scales (Ls in equation 15) are the same in all runs and 
are identical to those used in Vernieres et al. (2012).

Figure 1. Reduction of SAFE RMS OMF over the corresponding RMS OMF from the control run 
without data assimilation for (a) assimilated Argo T and (b) unassimilated Argo S data.  The 
three cases shown correspond to SAFE runs in which the background error covariance 
estimation involves 5 (red), 10 (blue) and 20 (green) steps of a diffusive (Laplacian) filter.  
Negative (vs. positive) values correspond to improvements (vs. worsening) over the control.

Figure 1 shows that varying the size of the neighborhood used in the SAFE background error
estimation (number of 
 smoothing iterations in equation 7) has little effect on the performance 
of the SAFE algorithm.  It shows the evolution of global RMS observation minus forecast (OMF)
reduction from the corresponding RMS OMF from the control run without data assimilation, 
such that negative numbers indicate that the analysis is closer to the data than the control.  Fig. 
1a corresponds to the assimilated T data and Fig. 1b to the unassimilated S data. The three cases 
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shown correspond to 5 (red), 10 (blue) and 20 (green) iterations of a Laplacian filter.  While the 
case with 20 iterations produces a somewhat larger RMS S OMF reduction, the differences from 
the other two cases are small.

Figure 2. Reduction of RMS OMF over the corresponding RMS OMF from the control run 
without data assimilation for (a) assimilated Argo T and (b) unassimilated Argo S data in runs 
assimilating the Argo T data every five days and in which the background error covariances are 
estimated with either EnOI using a static ensemble of 20 leading error EOFs (EnOI: red), a 
lagged ensemble of the 20 most recent unfiltered background states (0 order: magenta), an 
ensemble of the 20 most recent first-order time differences (1st order: cyan), an ensemble of the 
20 most recent second-order time differences (2nd order: blue), or FAST with 20 lags and 50-day 
high pass filtering (FAST: green).  Negative (vs. positive) values correspond to improvements (vs. 
worsening) over the control.

Figure 2 illustrates how high-pass filtering and resampling the sequence of background states 
from which FAST estimates error covariances affects the assimilation performance.   It shows the 
global RMS OMF reduction from the control for both T and S in five cases. The green lines
correspond to the full FAST methodology (equations 11-14) with n=20 and �=0.18 (period 10 
EMA).  The four other cases shown correspond to (1) the deviations from their ensemble mean 
of the most recent 20 unfiltered background states sampled every five days (magenta), (2 and 3) 
the deviations from their ensemble mean of the most recent 20 first order time differences (cyan) 
and second-order time differences (blue) of background states sampled every five days and (4) 
the EnOI run (red).  Clearly, computing covariances from unfiltered background states, a 
procedure which corresponds to using signal covariances, results in the poorest performance for 
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S data even though it draws the model state closest to the T data.  The performance obtained with 
the dynamic ensembles of most recent first and second order time differences is close to that 
obtained with the static ensemble of leading EOFs.  FAST with 50-day high-pass filtering 
(period-10 EMA removal from a time series with L = 5 days) performs best for S and achieves a
good compromise for T.  Presumably, the 50-day filtering retains pertinent information and 
avoids aliasing to the lower frequencies but it is possible that better results could be obtained 
with a different high-pass period.

Figure 3. Temperature background error standard deviation estimates along the Equator in the 
SAFE, FAST and EnOI runs of Section 3 and corresponding from top to bottom to March 31, 
2011 (a: SAFE, e: FAST), June 30, 2011 (b: SAFE, f: FAST), September 30, 2011 (c: SAFE, g: 
FAST) and December 31, 2011 (d: SAFE, h: FAST) Panel (i) shows the time independent 
background error standard deviation estimate used by both the EnOI and TOI runs.  The color 
scale shown to the right of panel (i) is applicable for all panels.

To illustrate the SAFE and FAST error covariance models, Figure 3 shows time sequences of 
zonal vertical cross sections at the Equator through the SAFE (Fig. 3 a-d) and FAST (Fig. 3 e-h) 
background error standard deviation estimates for the model’s ocean temperature. The succession 
is shown with a 3-month interval. The FAST and SAFE sections are qualitatively similar.  Yet, 
the SAFE estimates are noticeably smoother because the number of grid cells participating in the 
SAFE spatial averaging is larger than the number of lagged state instances used in the FAST 
computations.  Also note the general resemblance to the corresponding section through the time-
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independent background error standard deviation field used by EnOI and TOI (Fig. 3i).  The dif-
ferences between the equatorial sections are largest in the Indian and Atlantic Ocean.

Figure 4. Processing time per month of model simulation expressed in units of the corresponding 
processing time from the control run.  Note the logarithmic scale.  The EnKF case corresponds 
to a best case scenario for a 20-member EnKF run in which ensemble members are run
sequentially.

The processing time of each run with data assimilation expressed in terms of the time taken by 
the control run on 30 Intel Altix Sandy Bridge nodes (360 2.8 GHz cores) is shown in Figure 4.
TOI takes 70% longer than the control run while FAST and EnOI both take about twice as long 
as TOI and SAFE takes nearly 50% longer than TOI.  For comparison, the best case scenario for 
a 20-member ensemble run in which ensemble members are run sequentially is also shown.  
Running ensemble members in parallel, while possible with the GEOS iODAS would require 
many more computational nodes.

12



Figure 5. Zonal and meridional sections through the marginal contribution to the T and S 
assimilation increments in practical salinity units (PSU) corresponding to a unit T innovation at 
(0ºN, 140ºW, 180m) in the SAFE (a-d), FAST (e-h) and EnOI (i-l) runs on January 1, 2012.  
Zonal (meridional) sections are labeled W-E (S-N).  (a), (e), (i) correspond to T zonal sections,
(b), (f), (j) to T meridional sections, (c), (g), (k) to S zonal sections and (d), (h), (l) to S 
meridional sections.  The top color bar applies to all the panels in the top two rows.  The bottom 
color bar applies to the bottom two rows.

Figure 5 illustrates the background error covariance models used in each run by showing
marginal T and S assimilation increments corresponding to the impact of a unit T innovation at 
(0ºN, 140ºW, 180m) at the end of the runs (January 1, 2012). The top row of panels (a), (e) and 
(i) shows zonal sections through the corresponding marginal T increments in the SAFE (left),
FAST (middle) and EnOI (right) runs.  The 2nd row of panels (b), (f) and (j) shows corresponding 
meridional T sections. Panels (c), (g) and (k) (3rd row) and the bottom row of panels (d), (h) and 
(l) show zonal and meridional sections through the corresponding marginal S increments.

The differences apparent in Figure 5 result primarily from differences in covariance modeling 
approach (static ensemble in EnOI, time-lagged ensemble in FAST, spatial covariance in SAFE).
However, differences also arise from differences in the state adaptive error-localization of
equation (15) since the differences between the respective background states have increased over 
time (particularly evident in Figure 6). The amplitude differences between the SAFE, FAST and 

13



EnOI marginal gains reflect differences in the background error estimates at the observation 
location.  In this example, there is more correspondence between the shapes of the marginal T 
and S increments from the EnOI (panels (i) and (k) and panels (j) and (l)) than those from SAFE 
or FAST.  The amplitude of the T marginal increment is also largest in the EnOI run.  Yet, the 
amplitude of the S marginal increment is relatively small in the EnOI run, reflecting lower
covariance between the T and S error estimates at this particular observation location.

Figure 6. Zonal sections through the marginal contribution to the S assimilation increment in 
PSU corresponding to a unit T innovation at (0ºN, 140ºW, 180m) in the SAFE (a-e), FAST (f-j) 
and EnOI (k-o) runs on (from top to bottom) January 1, 2010, April 1, 2010, July 1, 2010, 
October 1, 2010 and January 1, 2011.  The color bar to the right applies to all the panels.

To further illustrate how the SAFE, FAST and EnOI error-covariance models differ, Figure 6
shows the time evolution (sampled every three months) of zonal sections through the marginal S 
increment corresponding to a unit T innovation at the same Equatorial location considered in 
Figure 5. Not surprisingly since the EnOI estimates background covariances from a static 
ensemble, its marginal S gain at this location displays the least temporal variation.  The temporal 
variations result from how the background T field (r in equation (15)) changes with time.
Conversely, the FAST marginal S gain varies the most with time as one could have expected 
because the corresponding background error covariances are high pass filtered by design and 
represent errors/uncertainties at periods shorter than 50 days in this case. Clearly, the FAST 
covariances are influenced by tropical instability waves which mostly occur between July and 
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November and have wavelengths of 1000-2000 km and periods of 20-40 days (e.g., Willett et al., 
2006). While the SAFE background error covariance calculations also depend on the background 
fields, the resulting covariances only capture variability in space, not in time.

Figure 7. (a) RMS OMF difference with RMS OMF from the control run without data 
assimilation for (a) assimilated Argo T data, (b) unassimilated Argo S data in the upper 300 
meters and (c) unassimilated Argo S data below 300 meters.  RMS OMF differences quantify the 
improvement (negative values) or worsening (positive values) over the control and are shown in 
each panel for the SAFE (blue), FAST (red), EnOI (green) and TOI (magenta) runs.

Figure 7 quantifies the improvement (negative values) or worsening (positive values) over the 
control by showing to what extent the RMS OMF statistics differ from the corresponding 
statistics from the control run.  RMS OMF differences are shown in each panel for the SAFE 
(blue), FAST (red), EnOI (green) and TOI (magenta) runs.  Figure 7a corresponds to the 
assimilated Argo T data, while Figures 7b and 7c correspond to the unassimilated Argo S data 
above and below 300 meters.  While the four data assimilation methods perform similarly for T,
FAST stands out for its better performance in terms of S, especially in the upper ocean (Fig. 7b).  
On the other hand, the underperformance of TOI, which degrades the model salt field compared 
to the control run, is especially striking in the thermocline (Fig. 7c).

15



Figure 8. Global average of RMS OMF over the control as a function of depth for (a) 
assimilated T data and (b) unassimilated S data in the second year (2011) of the SAFE (blue), 
FAST (red), EnOI (green) and TOI (magenta) runs.  Negative (positive) numbers indicate a 
reduction (increase) in RMS OMS statistics over the control run.

The global RMS observation minus forecast (OMF) differences corresponding to the T data are 
comparable in the four runs with T data assimilation (SAFE: 0.76 ºC, FAST: 0.88 ºC, EnOI: 0.76
ºC, TOI: 0.87 ºC), as they each explain approximately the same fraction of the T innovation 
variance of the control run (1.272 ºC2).  This result is as expected given that each run sets �=1 in 
equation (8) to facilitate the comparison.  Figure 8 further illustrates the respective performance 
of each run with T assimilation. The difference of the RMS OMF (horizontally and over time) in 
the data assimilation runs from that in the control is shown as a function of depth for 2011 (blue: 
SAFE, red: FAST, green: EnOI, magenta: TOI). Negative numbers mean that the data 
assimilation brings the (5-day lead) forecast state closer to the data than the control and should 
be the norm if the data are unbiased. Figure 8a corresponds to the assimilated T data and Figure 
8b to the unassimilated S data.  For T, the level of improvement over the control is similar for all 
runs and is largest near a depth of 100 meters.  For S, the results are markedly different.  TOI is 
worse than the control over the entire water column and while SAFE, FAST and EnOI all 
improve upon the control over the entire column, FAST produces the largest improvement over 
the entire depth range. 
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Figure 9.  Horizontal distribution of RMS OMF differences for the unassimilated S data during 
2011 with the corresponding RMS OMF from the control run.  The data are binned over 0-300-
meter deep by 1º zonal by 1º meridional boxes.  Negative values identify areas where the analysis 
is closer to the Argo observations than the corresponding state from the control run and vice 
versa.  The four panels correspond to the SAFE (a), FAST (b), EnOI (C) and TOI (d) runs.

The horizontal distributions of the differences in RMS S OMF from those of the control during 
2011 for each of the SAFE, FAST, EnOI and TOI runs are shown in Figure 9 for the upper 300 
meters and in Figure 10 for depths greater than 300 meters. In the upper ocean, SAFE, EnOI and 
TOI all show significant degradations from the control in the Western Equatorial South Pacific 
(red areas in Figs. 9a, 9c, and 9d).  FAST does better in the same area and performs best overall 
(Fig. 7b). Since the upper ocean salt content is heavily influenced by precipitation and 
evaporation and the corresponding fluxes are constrained to the MERRA forcing in all runs,
including the control, it is not surprising that the analyses (which all assimilate T only) do not 
outperform the control at the surface and in the mixed layer.   Positive impacts on the model 
salinity from the T data assimilation are most likely to manifest themselves further away from 
the surface.  Accordingly, the positive impact of the S field correction in the SAFE, FAST and 
EnOI runs is more apparent below 300 meters (compare Figs. 10a, 10b and 10c to Fig. 10d),
especially in the Northern Atlantic, Gulf Stream and Kuroshio areas and in the area of the West
Australian and Leeuwin currents in the Southeast Indian Ocean. While FAST performs best 
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overall, it under-performs the control in the Indian sector of the Southern Ocean. Since the 
comparison is restricted to 2011, these regional comments are not definitive.

Figure 10.  Same as Figure 9 for the Argo S observations below 300 meters. 

4. Outlook
When EDA schemes are applied to complex numerical models, the ensemble size is always a 
limiting factor or the object of compromise.  The methodologies introduced here are designed to 
possess the main advantages of EDA methods, namely the ability to update state variables even if 
unobserved (or not directly assimilated) and to adaptively estimate the spatial distribution of 
background errors, without incurring the cost of ensemble integrations.

While SAFE is nearly as economical as conventional OI, our results hint that it is somewhat less 
effective as FAST or EnOI in updating fields of unobserved variables. The better performance of 
FAST in this respect may stem in part from its error covariance model ability to capture sub-
seasonal variability and in part from the fact that it does not rely on the type of heuristic 
assumption made with SAFE between equations (6c) and (6d).

Of course, nothing precludes one from using FAST or SAFE to boost the ensemble size of an 
EDA scheme.  SAFE background error estimates can be combined with those obtained with a 
dynamical ensemble as is usually done with OI covariances in hybrid EDA schemes.  Several 
FAST trajectories can be run concurrently and the resulting time lagged ensembles combined 
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into a single ensemble.  Another area where SAFE and FAST seem to hold promise is in complex 
production systems where running an EDA scheme would require that the ensemble size or 
model resolution be severely limited, and in high-resolution data assimilation applications where 
numerical cost is critical.
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