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The Time-Spectral method is derived as a Fourier collocation scheme and applied to
NASA’s overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The pa-
per outlines the Time-Spectral OVERFLOW implementation. Successful low-speed laminar
plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral
method to resolve the highly-vortical wakes typical of more expensive three-dimensional
rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV),
facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally,
simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise)
flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The
Time-Spectral hover simulation matches the time-accurate calculation using a single har-
monic. Significantly more temporal modes and SVV are required to accurately compute
the forward flight case because of its more active, high-frequency wake.

I. Introduction

Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turboma-
chinery, and flapping wing configurations. The standard procedure for simulating such flows involves

advancing the unsteady governing equations forward in time long enough for the initial transient to exit
the computational domain and for a statistically stationary flow to be achieved. It is often necessary to
simulate through several periods of motion to accomplish this task, making unsteady design optimization
prohibitively expensive for many realistic problems. An effort to reduce the computational cost of these
calculations led to the development of the Harmonic Balance method [1,2], which capitalizes on the periodic
nature of the solution, while maintaing the ability to resolve nonlinearities inherent in the underlying physics.
This approach exploits the fact that time-periodic flow, while varying in the time domain, is invariant in the
frequency domain. Expanding the temporal variation at each spatial node as a Fourier series transforms the
unsteady governing equations into a coupled set of steady equations in integer harmonics that can be tackled
with the acceleration techniques afforded to steady-state flow solvers. Other similar approaches, such as the
Nonlinear Frequency Domain (NLFD) [3, 4, 5], Reduced Frequency [6], and Time-Spectral [7, 8, 9] methods,
were developed shortly thereafter and are examples of Fourier pseudospectral schemes.

Fourier pseudospectral methods have demonstrated marked success in reducing the computational costs
associated with simulating forced periodic flows [4]. Using this approach, the solutions at N equispaced time
instances are coupled through the temporal derivative term. The trigonometric representation of periodic
phenomenon provides spectral convergence as the number of time-samples, and correspondingly, the number
of resolvable harmonics, K = (N − 1) /2, increases. The spectral convergence rate of Fourier methods is
superior to the algebraic convergence rates associated with traditional time-marching schemes for unsteady
calculations, implying that a given level of accuracy can be achieved with significantly fewer degrees of
freedom [10]. Some approaches iterate the equations in the frequency domain directly. Others performs
all operations in the time domain, simplifying the process of augmenting this capability to existing solvers.
However, each approach harnesses the underlying steady solution in the frequency domain.
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Overset and Cartesian grid methodologies are versatile techniques capable of handling complex-geometry
configurations with relative motion between components, and are commonly used for practical engineering
applications. The combination of the Time-Spectral approach with this general capability may potentially
provide an enabling new design and analysis tool. In an arbitrary moving-body scenario for these approaches,
a Lagrangian body moves through a fixed Eulerian mesh (or another moving Lagrangian mesh). Mesh points
interior to solid bodies are removed (cut or blanked), leaving a hole in the background mesh. Blanked mesh
points are excluded from the computational domain within which the governing equations are solved, and
therefore the solution at such nodes is undefined. In general, such grid points undergo dynamic blanking
where they are blanked only for a fraction of time and active otherwise. Dynamically-blanked nodes lack a
complete set of time samples, preventing direct application of the Time-Spectral approach due to the infinite
support of the complex exponential basis functions of the Fourier series upon which the method is based.
Murman [6] demonstrated the approach for a Cartesian solver with rigid domain motion, wherein the hole
cutting remained fixed. Similarly, Thomas et al. [11, 12] and Custer [13] applied the method to the NASA
overset OVERFLOW solver with static hole-cutting. Soucy et al. [14] avoided dynamically-blanked nodes
by extending the near-body grids such that they envelop the solid body at all time instances. This approach
proves worthy for simple configurations but is not a general solution for the case of arbitrary motion. These
efforts focused on applying this method to Cartesian and overset meshes with constant blanking. Mavriplis
et al. [15] demonstrated an approach to treat dynamically-blanked nodes by applying a Laplacian smoothing
operator to populate blanked data from surrounding grid points. Recently, the authors developed a hybrid
Time-Spectral scheme implemented within NASA’s OVERFLOW solver to consistently handle dynamically-
blanked nodes for overset relative-motion cases [16].

This paper extends the algorithm development from [16] by applying it to realistic three-dimensional
rotorcraft problems. Representative experimental and computational flowfields of rotorcraft in forward flight
are depicted in Figure 1. These images demonstrate some of the complexities inherent in rotorcraft problems
such as blade-vortex interaction (BVI) and the convection of highly dynamical vortices through a turbulent
environment. Of particular interest are the high-frequency phenomenon associated with convecting vortices
that are difficult to resolve, time-dependent features due the broad range of frequencies encountered.

Previous applications of Time-Spectral solvers to rotorcraft problems include the work of Tatossian and
Nadarajah [17, 18], Ekici et al. [19], Choi et al. [20, 21] and Yang et al. [22]. Ekici et al. demonstrated
the ability for the High Dimensional Harmonic Balance (HDHB) method to successfully calculate three-
dimensional solutions for the rotor of Caradonna and Tung [23] in hover and lifting and non-lifting forward
flight. Tatossian and Nadarajah performed adjoint-based design optimization of the Caradonna and Tung
rotor using an NLFD solver for both hover and forward flight. Choi et al. implemented exact fluid-structure
coupling for Time-Spectral calculations and also performed adjoint-based aerodynamic shape optimization
using a Time-Spectral solver for the UH-60A rotor. Yang et al. demonstrated the ability for an augmented
BDF/Time-Spectral algorithm to resolve quasi-periodic maneuver for the UH-60A rotor.

The paper continues in §II with a review of the Time-Spectral method followed by details of the OVER-
FLOW discretization in §III. Numerical experiments in §IV include a series of low-speed laminar plunging
airfoil cases that serve as informative model problems for the the three-dimensional rotorcraft cases. These
simulations serve as more tractable two-dimensional cases that allow for more rigorous analysis to ascertain
the solution procedures required for tackling the more expensive three-dimensional problems. Finally, in
§V, realistic three-dimensional rotorcraft calculations for the isolated V-22 Tilt Rotor Aeroacoustic Model
(TRAM) in hover and forward (edgewise) flight demonstrate the ability of the Time-Spectral scheme to
resolve the flow.

II. The Time-Spectral Method

The standard Time-Spectral method is applicable to most PDE-based solution methods, but it cannot
be directly incorporated into the class of solvers employing overset technology. Relative motion within the
overset framework introduces spatial nodes that may not contain a physically meaningful solution for all
time, due the the dynamic hole-cutting of points within a solid body. The solution at these nodes cannot
be uniquely expanded in a basis of infinitely-supported complex exponential functions, and therefore these
nodes can not be treated with the standard Time-Spectral approach. Our previous work [16] developed an
approach to deal with such dynamically-blanked nodes by partitioning the temporal domain and expanding
local expansions of the solution with a non-periodic basis derived from barycentric rational interpolants.
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The standard Time-Spectral method is derived as a Fourier collocation scheme [20,24] for a time-periodic
solution, u, to a representative PDE, with a general residual operator, R (u), that is free to be of linear or
nonlinear form.

∂

∂t
u (x, t) +R (u (x, t)) = 0, x ∈ Ω (1)

Since the solution is assumed a priori to be periodic in time, such that u (x, t+ T ) = u (x, t), the solution
at every point in space, x, can be expressed as a Fourier series where the basis functions, φk (t), are the
complex exponentials in integer harmonics of the fundamental frequency, ω = 2π/T .

u (x, t) =

∞∑
k=−∞

ũk (x)φk (t) , φk (t) = eiωkt (2)

A discrete approximation, uN , is required, and therefore the Fourier series is truncated to N terms which
retains K = (N − 1) /2 harmonics of the fundamental frequency.

uN (x, t) =

K∑
k=−K

ũk (x)φk (t) (3)

The method of weighted residuals (MWR) is applied to approximate the solution to PDEs by minimizing a
discrete residual, RN , of Eq. 1.

RN (x, t) =
∂

∂t
uN (x, t) +R (uN (x, t)) , x ∈ Ω (4)

It requires that RN integrates to zero against an appropriate set of test functions, ψ, over the period [25].

(RN , ψj)w =

∫ T

0

RN ψj w dt = 0, j ∈ JN , JN = {0, . . . , N − 1} (5)

The choice of weight and test functions, w = 1 and ψj = δ (t− tj), respectively, defines a collocation scheme
because it eliminates the discrete residual at each of the collocation points, tj .

∂

∂t
uN (x, tj) +R (uN (x, tj)) = 0, x ∈ Ω, j ∈ JN (6)

Because the temporal basis functions are the complex exponential functions, the collocation points are
distributed uniformly over the period, tj = jT/N .

The temporal derivative in Eq. 6 is evaluated by analytically differentiating the truncated Fourier series
in Eq. 3.

∂

∂t
uN (x, t) =

K∑
k=−K

iωkũk (x) e
iωkt (7)

The Fourier coefficients, ũk (x), are determined from the solution values at the N collocation points by
applying the discrete Fourier transform.

ũk (x) =
1

N

N−1∑
j=0

uN (x, tj) e
−iωktj (8)

While this results in a pseudospectral method, it enables spatial operators from existing flow solvers to be
leveraged because the spatial residual is evaluated in the time domain. Substitution of Eq. 8 into Eq. 7 defines
the derivative at time tj . The derivative at each collocation point is expressed as a weighted sum of the solu-
tion at every collocation point. This can be expressed in matrix form, where the time-domain temporal dif-
ferentiation operator, DN , acts on the time-history of the solution, uN (x) = {uN (x, t0) , . . . , uN (x, tN−1)}T .

∂

∂t
uN (x) = DNuN (x) (9)
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Expressing Eq. 6 is matrix form and replacing the analytic temporal derivative with the operator in Eq. 9
results in the global system of equations.

DNuN (x) +R (uN (x)) = 0, x ∈ Ω (10)

To avoid directly solving a large or nonlinear system, Eq. 11 is iterated in pseudotime until satisfactory
convergence is achieved.

∂

∂τ
uN (x) +DNuN (x) +R (uN (x)) = 0, x ∈ Ω (11)

Because the collocation scheme uses time-domain data via the discrete Fourier transform, it is possible
for the resolved frequency components to be corrupted by aliasing errors [10] in nonlinear equations, e.g.
the Navier-Stokes equations governing fluid dynamics. Aliasing errors do not affect the spectral convergence
rate of the discrete Fourier series [26], but they can destabilize calculations. Therefore, spectral vanishing
viscosity, in the form originally proposed by Tadmor [27], is applied by adding an artificial viscosity term
in the form of a second-degree global differentiation operator that is only active above a certain cutoff
frequency. This approach damps the high-frequency modes, attenuating their destabilizing impact on the
resolved spectrum.

∂

∂t
uN (x, t) +R (uN (x, t)) = εΔt

∂

∂t

(
QN

∂

∂t
uN (x, t)

)
, x ∈ Ω (12)

The symmetic viscosity kernel, QN , is applied only to the higher frequencies by defining a smooth function
that is null below the cutoff frequency, M , and smoothly transitions to unity at the highest frequencies.
Here, the cutoff frequency is taken as roughly two-thirds the highest mode, M = � 2K

3 � and coefficient as the
reciprocal of the number of harmonics, ε = K−1. Huang and Ekici [28] apply spectral vanishing viscosity to
dealias HDHB calculations using a binary viscosity kernel. McMullen [29] applies this concept only on the
coarse grids within the multigrid framework to more rapidly damp out the high frequency modes without
sacrificing accuracy on the finest mesh.

The standard Time-Spectral method outlined above cannot be applied in general within the overset
framework. Relative motion of overset grids produces spatial nodes that lack complete time-histories, obvi-
ating the ability to uniquely represent the aperiodic solutions with a Fourier series. To circumvent this result,
the approach presented by the authors in [16] expands the solution at a given dynamically blanked node
within intervals of consecutively unblanked time samples onto a global basis spanning the same sub-periodic
interval. Spatial nodes may have multiple associated temporal intervals so solutions are expanded with inde-
pendent bases within each partition. Here we use barycentric rational interpolants. Fully periodic intervals
are still expanded and differentiated in the Fourier basis, resulting in a hybrid approach that employs the
optimal basis available. Readers are referred to [16,30] for further detail.

In contrast to the modal complex exponential basis set upon which the spectral vanishing viscosity is
based, the nodal basis of the rational interpolant can not be decomposed into modal components to damp
only the highest-frequencies. Instead, a dissipation operator derived from barycentric rational interpolants
is employed at dynamically-blanked nodes. The dissipation operator is applied only at the two interval
boundary nodes to avoid sacrificing accuracy within the interior of the temporal domain.

III. OVERFLOW

OVERFLOW is an overset, implicit, finite-difference-based Reynolds-averaged Navier-Stokes (RANS)
solver developed at NASA to handle a wide range of flow calculations [31]. To avoid solving the global
implicit system at every iteration, OVERFLOW employs an approximate-factorization (AF) of the left-
hand-side (LHS) of the discretized equations, whereby each dimension is solved sequentially. The AF scheme
[32] requires the inversion of a sequence of either block-tridiagonal or scalar-pentadiagonal matrices, greatly
reducing the computational effort required to update the solution at every iteration. The Time-Spectral
scheme can be incorporated within this framework by adding an additional factor in the temporal dimension.
A brief synopsis of the time-accurate and Time-Spectral discretizations is provided below.
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Temporal Discretization

OVERFLOW solves the unsteady Navier-Stokes equations in strong conservation-law form in three spatial
dimensions.

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (13)

The flux vectors, F , G and H are nonlinear functions of the state vector of conserved quantities, Q. The
equations are presented in Cartesian coordinates, but are solved in generalized curvilinear coordinates.

Time-Accurate Scheme

In the general case of time-dependent flow, a dual time-stepping scheme is applied to sufficiently reduce the
unsteady residual at each physical time step. The time-derivative of the state vector of conserved quantities
is approximated with a second-order backward difference formula (BDF2).

3Qn+1 − 4Qn +Qn−1

2Δt
+ δxF

n+1 + δyG
n+1 + δzH

n+1 = 0 (14)

The spatial finite-difference operators, δx, δy and δz are applied to the corresponding flux vectors in the x-,
y- and z-directions, respectively. The dual-time advancement scheme is achieved by adding a pseudotime
derivative approximated by the first-order backward Euler scheme, with subiteration index s.

Qs+1 −Qs

Δτ
+

3Qs+1 − 4Qn +Qn−1

2Δt
+ δxF

s+1 + δyG
s+1 + δzH

s+1 = 0 (15)

The flux vectors are nonlinear functions in Q and are therefore linearized about Qs. The linearizations are
substituted into Eq. 15 which is then put into delta form, where A, B and C are the flux Jacobians in the
x-, y- and z-directions, respectively, Δτ̃ = Δτ/

(
1 + 3Δτ

2Δt

)
and ΔQ = Qs+1 −Qs.

[
I +Δτ̃ δxA+Δτ̃ δyB +Δτ̃ δzC

]
ΔQ = −Δτ̃

[
3Qs − 4Qn +Qn−1

2Δt
+ δxF

s + δyG
s + δzH

s

]
(16)

Approximately factoring the LHS of Eq. 16 results in the final form of the system of equations.

[
I +Δτ̃ δxA

][
I +Δτ̃ δyB

][
I +Δτ̃ δzC

]
ΔQ = −Δτ̃

[
3Qs − 4Qn +Qn−1

2Δt
+ δxF

s + δyG
s + δzH

s

]
(17)

The solution is updated by applying a sequence of low-rank inversions onto the right-hand side (RHS) of
Eq. 17 on a point-by-point basis. This second-order accurate dual time-stepping procedure is used for the
time-accurate calculations presented in Sections IV and V.

Time-Spectral Scheme

The Time-Spectral discretization is a modification to the discretization of the time-derivative in Eq. 14, where
an infinitely-supported spectrally-accurate differentiation operator, DN , replaces an algebraically-accurate
finite-difference approximation.

DNQ
s+1 + δxF

s+1 + δyG
s+1 + δzH

s+1 = 0 (18)

The solution vector of conserved variables is now defined over the spatial and temporal dimensions and
therefore the spatial and temporal differentiation operators are constructed accordingly, as demonstrated
explicitly by Thomas et al. [12] and Naik et al. [33]. As with the time-accurate case, a backward Euler
pseudotime advancement scheme is applied to Eq. 18.

Qs+1 −Qs

Δτ
+DNQ

s+1 + δxF
s+1 + δyG

s+1 + δzH
s+1 = 0 (19)

Linearizations of the flux vectors about Qs are substituted into Eq. 19, which is then put into delta form.

[I +ΔτDN +ΔτδxA+ΔτδyB +ΔτδzC] ΔQ = −Δτ [DNQ
s + δxF

s + δyG
s + δzH

s] (20)
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Finally, the LHS of Eq. 20 is approximately-factored, treating time as an additional direction.

[I +ΔτδxA] [I +ΔτδyB] [I +ΔτδzC] [I +ΔτDN ] ΔQ = −Δτ [DNQ
s + δxF

s + δyG
s + δzH

s] (21)

The solution is updated by a applying a sequence of four directional inversions onto the RHS of Eq. 21. The
required modifications to the existing solver are limited to an additional linear solve, of at most dimension
N , at every grid point for the Time-Spectral AF operator, and an evaluation of the temporal residual term
(DNQ

s) at every grid point. In other words, time is treated in a similar fashion to the spatial independent
variables when solving for the steady-state solution in the combined space-time domain.

For spatial nodes with complete time histories, the standard Fourier-based differentiation operator is
used for DN . However, for dynamically-blanked nodes, DN of dimension NP < N , is dynamically generated
and used for the intervals of NP consecutively-defined time samples. A favorable outcome of the Time-
Spectral AF scheme is that the implicit temporal operator, [I +ΔτDN ], is diagonalized by the discrete
Fourier transform if Δτ is constant for each time-sample (Δτ is still free to change in space enabling local
pseudo time stepping). Thus, the temporal update at statically-blanked nodes is reduced from an implicit
linear system of equations to a series of scalar equations, removing the need for an inversion of the LHS
operator. Replacing the direct linear solution with a fast Fourier transform (FFT) and inverse transform
(IFFT) reduces the complexity from O (

N3
)
to O (N logN) which matches that of the explicit NLFD method

[29].
The memory requirements for a Time-Spectral solution are greater than its time-accurate analog because

the solution and residual must be stored for each time sample. However, careful implementation limits the
storage requirements. Details of memory scaling for the OVERFLOW Time-Spectral solver are outlined
in [16] and suggest that a large number of temporal modes can be applied without risk of exhausting the
memory budget on suitably parallelized calculations.

Spatial Discretization, Multigrid Acceleration and Turbulence Modeling

The Time-Spectral approach as applied to OVERFLOW avoids modifying the existing spatial residual and
implicit operators because they are applied to each time sample sequentially within each iteration. Second-
order finite differences are used for all of the cases presented, with second- and fourth-difference artificial
dissipation using OVERFLOW’s default settings of ε2 = 2.0 and ε4 = 0.04 dissipation coefficients. The
primary convergence acceleration technique built into OVERFLOW is the Full Approximation Storage (FAS)
multigrid algorithm. It is desirable to include multigrid within the Time-Spectral implementation to make
simulations of increasingly complex three-dimensional problems more tractable. The FAS spatial multigrid
scheme was augmented to include the fully-implicit Time-Spectral scheme on all grid levels. The Time-
Spectral multigrid implementation has demonstrated a multifold increase in computational efficiency when
applied to representative two-dimensional problems and should greatly assist in the calculation of more
complex three-dimensional flows (See Figure 2). No temporal multigrid has been implemented but is included
as part of future work.

Approximate-factorization schemes are prone to numerical instabilities in three or more dimensions. The
three dimensional Time-Spectral AF scheme applies a sequence of four operators. Thomas et al. [11,12] and
Custer [13] demonstrate stability of a two-factor Time-Spectral AF scheme. However, three- and four-factor
periodic central-difference AF schemes are unconditionally unstable absent dissipation. Linear stability
analysis in [30] demonstrates conditional stability for the Time-Spectral AF scheme in two and three spatial
dimensions by applying artificial dissipation to only the spatial operators. This treatment maintains the
spectral accuracy of the purely imaginary temporal differentiation operator.

Practical applications of the Time-Spectral method, including rotorcraft and turbomachinery, involve
turbulent flows. OVERFLOW employs a loosely coupled turbulence scheme whereby the turbulent variables
are updated initially and held constant for the flow-equation iteration. This code structure prevents a direct
Time-Spectral implicit treatment for the turbulence variable without a significant overhaul. Instead, a semi-
implicit treatment retroactively applies the implicit operator to the semi-implicit turbulent update, Δν̃s+

1
2 .

Initially, the turbulence equation is updated implicitly in the spatial dimensions where the Time-Spectral
temporal residual, DN ν̃

s is explicitly added to the RHS.

[I +ΔτδxA] [I +ΔτδyB] [I +ΔτδzC] Δν̃
s+ 1

2 = −Δτ [R (ν̃s) +DN ν̃
s] (22)

The semi-implicit update, ν̃s+
1
2 , is held fixed while advancing the conserved variables from Qs to Qs+1. The

implicit update, Δν̃s+1, is computed and retroactively applied to ν̃s to advance the solution prior to the
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subsequent iteration.

[I +ΔτDN ] Δν̃s+1 = Δν̃s+
1
2 (23)

The one-equation Spalart-Allmaras turbulence model [34] is used for all turbulent RANS cases presented in
this work. A limiter is employed on the temporal gradient of the turbulent working variable to prevent a
violation of its positivity constraint as demonstrated in [16].

IV. Laminar Plunging Airfoils

A pair of low speed, low Reynolds number laminar plunging NACA 0012 airfoil cases are investigated as
a precursor to the upcoming three-dimensional rotorcraft cases. These flows exhibit some similar physical
phenomena to the rotorcraft flows, most notably the convection of strong vortices through the wake. Jones
et al. [35] published results from low-speed experiments that serve to highlight the complex nature of the
vortical structures associated with these flows as a function of their Strouhal number, St = kh, which is a
product of their reduced frequency, k = ωc/V∞, and nondimensionalized plunging amplitude, h = a/c. The
instantaneous vertical displacement, y (t) = h sin (kt), is defined as a single sinusoid of the reduced frequency.

At low Strouhal numbers, the plunging motion results in vortices with a momentum deficit, resulting in
a time-averaged drag on the airfoil. As the frequency is increased, the vortical structure changes, eventually
resulting in a thrust-producing momentum surplus. Increasing the Strouhal number even further results in
both lift and thrust. This behavior has been coined the Knoller-Betz effect after the experimentalists who
first independently documented the phenomenon [35]. Rotors in forward flight undergo a host of oscillations,
either prescribed or passively via fluid-structure interaction, suggesting that analysis of the two-dimensional
problem should uncover computational strategies for the full three-dimensional configurations.

Two primary cases are investigated: a drag-producing case with St = 0.288 and a higher-frequency thrust-
producing case with St = 0.6. Freestream Mach number, M∞ = 0.2, and Reynolds number, Re = 1850,
are used for both cases. Each case is computed using both rigid- and relative-body motion to compare the
performance between the standard and hybrid Time-Spectral methods. The grid system presented in Fig. 3
consists of a 589 × 33 C-mesh near-body grid embedded within a hierarchy of isotropic Cartesian off-body
grids. The large 909 × 309 finest level-one (L1) off-body grid spans 8c downstream with 0.01c grid spacing
to accurately resolve a significant portion of the highly-active wake. The hole-cut standoff distance is 0.075c
and the Cartesian grids span approximately 200c to the farfield boundaries in both the x- and y-directions.

Drag-Producing Case

The lower-frequency test case of St = 0.288 with reduced frequency k = 3.6 and plunging amplitude h = 0.08
results in a vortical wake structure that creates a momentum deficit, producing a time-averaged drag on
the airfoil. The case was simulated using time-accurate and Time-Spectral approaches for both rigid and
relative motion and qualitatively compared to the experimental results offered in [35]. Figure 4 provides
snapshots of the experimental flow field and vorticity magnitude of the simulations. The time-accurate
calculation successfully captures the primary flow features depicted in the experimental snapshot and the
Time-Spectral simulations for both rigid and relative motion converge to a similar solution, provided the
sufficient temporal resolution of around 16 modes. There exist significant variations for the under-resolved
Time-Spectral solutions between the rigid- and relative-motion cases, but the underlying wake structure is
apparent with just one or two modes for the relative-motion case and just two or four modes for the rigid-
motion case. Figure 5 confirms the rapid convergence of the Time-Spectral computed drag coefficient, cd, to
the time-accurate result. Employing just four modes (See Figure 5b) for either Time-Spectral configuration
nearly matches the time-accurate signal. In fact, the relative motion converges slightly faster as evidenced in
Fig. 6 where the cyan line corresponding to the rigid-motion case with N = 9 time-samples lies off the time-
accurate signal for a portion of the period, but the relative-motion signal is identical to the time-accurate
signal to the resolution of the figure. Thus, the scalar performance measure of drag converges more rapidly
than the vortical flow features.

Thrust-Producing Case

As the Strouhal number is increased to St = 0.6, the vortical wake structure evolves from producing a
momentum deficit, as demonstrated for St = 0.288, to a momentum surplus, where the time-averaged flow
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exhibits a thrust-inducing jet structure. Selecting a reduced frequency, k = 6.0 and plunging amplitude
h = 0.1, results in the particular wake structure depicted in Fig. 7. Experimental results taken from [35]
and depicted in Fig. 7a use this Strouhal number, St = 0.6, except that the reduced frequency is halved
and the plunging amplitude doubled (k = 3.0 and h = 0.2). Simulations using these parameters resulted
in significantly different vortical wake patterns. Therefore, the case using the higher reduced frequency is
employed, which is consistent with the observations and calculations in [36]. Figure 7 demonstrates strong
agreement between the time-accurate and experimental data and again demonstrates the convergence of
the Time-Spectral solutions for both rigid and relative motion with increased temporal resolution. As with
the drag-producing cases, the Time-Spectral calculations require sixteen modes to qualitatively match the
time-accurate solution. The bulk features of the wake are resolved using half as many modes, but the
solutions do not match in the vicinity of the trailing edge. Figure 8 confirms the convergence of the Time-
Spectral computed drag coefficient, cd, to the time-accurate result for the thrust-producing case. Seventeen
time-samples are sufficient to reproduce the time-accurate result for both the rigid- and relative-motion
Time-Spectral calculations (See Figure 9).

Unlike the drag-producing case using k = 0.288, spectral vanishing viscosity is required to adequately
converge the Time-Spectral simulations for the thrust-producing configuration for both the rigid- and relative-
body motion calculations. Initially, spectral vanishing viscosity is only applied to the statically-blanked
(Fourier-based) nodes in the case of relative motion, leaving the dynamically-blanked nodes free of any
added dissipation. For the relative motion case with N = 17, additional dissipation is required at the
undamped, dynamically-blanked nodes as described in §II.

Comparison of the rigid- and relative-motion Time-Spectral simulations for the low-speed laminar NACA
0012 suggest similar convergence to the time-accurate result as a function of the number of temporal degrees of
freedom. However, the plunging amplitudes for these cases are relatively small. The inviscid plunging NACA
0012 airfoil case presented in [16], with a significantly larger plunging amplitude of h = 0.5, demonstrates
that significantly more temporal modes are required to adequately resolve the flow for the relative-motion
Time-Spectral simulation. The sub-optimal basis used to describe the solution at dynamically-blanked nodes
is likely partially responsible for this result, but so too is the fact that the stationary background grid is not
moving with the body. The solution on the background grid remains periodic, however, its frequency content
is driven by the relative motion between itself and the plunging near-body grid. Consider the solution at a
point on the near-body grid moving with the airfoil. Over the course of the period of motion, it experiences
smooth transitions between compressions and expansions. While a stationary point on the background grid
in the vicinity of the airfoil experiences periodic compressions and expansions, the transitions become more
rapid as the plunging amplitude increases; the airfoil moves past the stationary point with a larger velocity
and therefore the transition occurs over a shorter duration. This increases the frequency of the response
that must be approximated by the discrete Fourier series. Therefore, more modes may need to be retained
in order to resolve the relative-motion case because its solution contains higher-harmonics on the stationary
grid.

Figures 10 and 11 provides the time and frequency response (of streamwise momentum, ρu) of the subsonic
inviscid plunging airfoil at a node located approximately 0.35c downstream of the trailing edge on both the
near- and off-body grids in the neutral position. For the case of rigid-body motion, the off-body grid translates
with near-body grid and the nodes remain approximately coincident for all time. For the case of relative
motion, the node on the off-body grid remains in place and is therefore only approximately coincident with
the node on the near-body grid at two time instances over the period of oscillation. The higher-frequency
content in the solution at a node on the stationary background grid suggests that more frequencies are
required to resolve the solution using relative motion than with rigid motion. This assertion is supported by
Fig. 12 that plots the reconstruction of the off-body grid solution from the frequency components defined
by a discrete Fourier transform of the time-accurate solution. Figure 12a demonstrates that roughly four
modes are sufficient to adequately resolve the solution at the off-body grid point for the case of rigid-body
motion. However, the reconstructions plotted in Fig. 12b suggest that thirty or more modes are required to
sufficiently resolve the flow at the stationary off-body grid point. However, many fewer modes are required
to match the time-accurate result with respect to integrated loads such as drag [16], supporting the Time-
Spectral method as a potential reduced-order model (ROM). For such simple cases, rigid motion would
naturally be a more efficient choice as fewer modes are required to resolve the flow. However, more complex
configurations (e.g. multiple independently oscillating airfoils) would require a relative motion treatment for
a non-deforming grid. The transmission of low-frequency signals in one frame to high-frequency signals in
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another frame proves fundamental to the case of rotorcraft, which is explored in the upcoming section.

V. Three-Dimensional V-22 Osprey Tiltotor

The present section demonstrates the ability of the proposed Time-Spectral approach to successfully
match time-accurate predictions of a realistic three-dimensional application – the isolated V-22 Osprey
tiltrotor depicted in Fig. 13a. Rotorcraft performance is primarily assessed on the converged periodic steady-
state flowfields of both hover and forward flight, and therefore both cases are included.a Selection of the high-
stiffness and relatively low aspect ratio V-22 rotor permits the assumption of non-deforming blades, removing
the need to incorporate aeroelastic effects. However, aeroelasticity is a critical component of rotorcraft
performance analysis in general and should be included either directly, in a fluid-structure formulation, or
with a comprehensive coupling procedure. Research on aeroelasticity in the context of the Time-Spectral
method is ongoing [9, 21, 37, 38], but including aeroelasticity is beyond the current scope. Additionally, the
V-22 rotor is not typically used in forward (edgewise) flight as it operates in either hover mode or airplane
(propeller) mode. Nevertheless, forward-flight Time-Spectral results are compared to those computed in an
unsteady environment to evaluate the predictive capabilities of the Time-Spectral approach for that flight
regime.

Hover

The V-22 Osprey tiltrotor has been analyzed for hover extensively - both experimentally and numerically.
The quarter-scale Tilt Rotor Aeroacoustic Model (TRAM) was tested at the Duits-Nederlandse Windtunnel
(DNW) with experimental details provided in [39,40]. The isolated rotor geometry is used for all calculations
presented which is consistent with the numerical experiments detailed in [41, 42, 43, 44]. With respect to
overset grids, the typical solution procedure involves revolving the body-fitted curvilinear grids through a
system of stationary background grids. Despite the relatively low aspect ratio of the V-22 blades, a successful
Time-Spectral simulation using this approach would require retaining a large number of harmonics due to
the high-frequency response induced on the fixed background grids by the relatively low-frequency signals
on the near-body grids moving with the blades. This is analogous to the two-dimensional plunging airfoil
result shown in Fig. 11 where a relatively low-frequency signal on moving near-body grids induces a much
higher-frequency response on stationary background grids. Alternatively, rigid-body motion can be achieved
by rotating the background grids with the rotor blades. Since hover can be well estimated as a steady flow
in the rotating frame (See [41] for non-inertial reference frame results), it is expected that only a limited
number of temporal modes are required when all grids rotate in unison. However, employing rigid-body
motion fails to introduce any dynamically-blanked nodes. The case of hover is used to validate the three-
dimensional OVERFLOW Time-Spectral implementation. Dynamically-blanked nodes are introduced in the
forward-flight case discussed in the upcoming section.

The objective of the hover test case is to validate the three-dimensional Time-Spectral OVERFLOW
solver against the standard OVERFLOW time-accurate solver, by using the same grid systems and spatial
discretizations to isolate the effects of varying the temporal discretization. The grid system includes three
blades, each composed of an C-mesh blade grid and two cap-grids, one each for the root and tip, as depicted
in Fig. 14a. The C-mesh consists of 181×94×65 points in the chordwise, radial and body-normal directions,
respectively. Each blade, root and tip grid contains 1.1, 0.48 and 0.33 million grid points, respectively, for
a total of 5.7 million near-body grid points. The off-body grid system, depicted in Fig. 14b, is comprised
of a hierarchy of forty-six isotropic Cartesian grids spanning 15 rotor radii (R) to the farfield boundaries
in each direction, totaling 21.3 million mesh points. Thus the total number of grid points is 27.1 million.
The finest Cartesian L1 grid spans roughly ±1.2R in both the x- and y-directions and −1.9R and +0.38R
in the z-direction, with spacing of 0.1ctip. While a center body is included in the experiment and previous
computations, it is omitted in the current work.

Previous numerical calculations of the V-22 TRAM hover case employed a series of turbulence model
treatments, but the current results were computed following the laminar off-body procedure outlined by
Potsdam and Pulliam [42]. The one-equation SA turbulence model is solved on all body-conforming near-

aRotorcraft performance is also gauged on transient maneuver characteristics which cannot be predicted with the standard
Time-Spectral method. Mavriplis et al. [24] extended the Time-Spectral method to treat quasi-periodic flows like rotorcraft
maneuver by applying periodic subtraction.
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body grids. However, the turbulence model production source terms are deactivated on the Cartesian
background grids to prevent the eddy viscosity from growing unbounded in the vortex-dominated wake and
feeding back to the flow in the vicinity of the rotor.

The hover test case uses a uniform collective of 14◦ with a tip speed of Mtip = 0.625 and tip Reynolds
number of Retip = 2.1 million, which is consistent with the primary TRAM test case in [42]. Qualitative
results from both time-accurate and single-harmonic Time-Spectral V-22 TRAM hover calculations are
presented in Figs. 15-16. Figure 15 plots iso-contours of vorticity magnitude, as well as a cutting plane of
the same functional. Figure 16 plots the same iso-contours of vorticity magnitude over a cutting plane of
undampled eddy viscosity. The time-accurate and Time-Spectral calculations demonstrate strong agreement
in both cases.

In general, dozens of periods are required to converge certain functionals of interest in a time-accurate
calculation. The Figure of Merit, FM , is an established scalar performance measure for rotorcraft in hover
that measures rotor efficiency; it is a ratio of the ideal power, derived from momentum theory, to the actual
(computed) power.

FM =
1√
2

C
3/2
T

CQ
(24)

The Time-Spectral simulation is steady in nature and converges directly to the space-time solution.

CT CQ FM

TS 0.11379× 10−1 0.15320× 10−2 0.5602

TA 0.11383× 10−1 0.15320× 10−2 0.5605

Table 1: Isolated V-22 Osprey Tiltrotor in Hover. Force and moment coefficients and Figure of Merit for
the single harmonic Time-Spectral (TS) and time-accurate (TA) calculations.

Table 1 provides the force and moment coefficients and the Figure of Merit for the time-accurate and single
harmonic Time-Spectral calculations. The Figure of Merit computed using the Time-Spectral method with a
single harmonic agrees with the time-accurate result to five percent of a percent. However, the Figure of Merit
is substantially lower than those presented in [41,42,43,44]. This discrepancy is attributable the use of only
second-order central differencing of the convective terms, as opposed to higher-order schemes in the references
cited. Preliminary results do indicate an improvement with increasing the spatial discretization order of
accuracy. Nevertheless, the case of hover has validated the three-dimensional Time-spectral implementation.

Forward Flight

The hover case of the previous section prescribed the rigid motion of the isolated V-22 rotor with its off-
body grid system, resulting in an absence of dynamically-blanked nodes. Rotors in forward (edgewise) flight
experience an imbalance of dynamic pressure on the advancing (0 ≤ Ψ ≤ 180) and retreating (180 ≤ Ψ ≤ 360)
segments of a rotation (See Fig. 13b). Left untreated, this leads to an undesired rolling moment about the
longitudinal axis of the vehicle. Cyclic pitch is used to mitigate the force imbalance by dynamically changing
the pitching amplitude of the blade as it rotates. On the advancing side, where blades experience a higher
dynamic pressure, pitch is decreased to reduce the resulting normal force. Conversely, blades pitch upwards
on the retreating side to increase the normal force in the presence of lower dynamic pressure. While the
background grids are still prescribed to rotate with the rotor, the relative pitching motion between the blades
and background grids results in dynamically-blanked nodes, thereby requiring the hybrid Time-Spectral
scheme.

While the V-22 Osprey is not typically employed in forward (edgewise) flight because its thrust is derived
by tilting its rotors forward into propellor mode, the edgewise-flight case provides an opportunity to gauge the
three-dimensional hybrid Time-Spectral scheme for a rigid blade. A reasonable selection of parameters are
selected for collective and cyclic pitch values estimated from [39]. Additionally, the rotor shaft axis is chosen
to be vertical. While the rotor is not trimmed (e.g. with a comprehensive analysis tool), the prescription
of fixed collective and cyclic pitch serve as a representative estimate of rotor trim. Additionally, the rotors
move in prescribed fashion, ignoring the force-induced blade dynamics typically associated with high-fidelity
rotorcraft calculations. The current objective is to compare Time-Spectral results to those computed with
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the standard time-accurate flow solver. Aeroelasticity and deformation are complications that obscure the
current objective, but should be included in full-scale rotorcraft simulations.

Time-accurate and Time-Spectral forward-flight V-22 TRAM calculations are presented for an advance
ratio, μ = 0.2, where M∞ = μMtip, using the same tip Mach and Reynolds numbers as the hover case. The
test case employs a fixed collective, θ0 = 10◦, and longitudinal and lateral cyclic pitch amplitudes, θC1 = 3◦

and θS1 = −5◦, respectively, where, the pitch amplitude, θ (Ψ), is prescribed by the following relationship.

θ (Ψ) = θ0 + θC1 cos (Ψ) + θS1 sin (Ψ) (25)

Azimuthal angle, Ψ, is taken to be zero in the free stream direction as depicted in Fig. 13b. The off-body grid
system is modified for the forward flight case because vorticity shed off of the rotor is convected downstream
as opposed to straight down as for the case of hover. Thus, the Cartesian off-body grid system is compressed
to provide a wider L1 grid near the rotor to capture vortical content as it convects downstream. The off-body
grid system is still comprised of a hierarchy of 46 isotropic Cartesian meshes combining for a total of 20.3
millions grid points. Therefore, the entire grid system is comprised of 26.1 million grid points, which is nearly
equivalent to the amount used for hover. The L1 grid spans roughly ±1.65R in both the x- and y-directions
and −0.9R and +0.28R in the z-direction, with the same spacing of 0.1ctip as the hover case. Additionally,
spectral vanishing viscosity is required to satisfactorily converge the Time-Spectral calculations.

Qualitative comparisons between the time-accurate and Time-Spectral forward flight results are evident
in Figs. 17-18. Figure 17 plots iso-contours of vorticity magnitude and a cutting plane of undamped eddy
viscosity. The Time-Spectral solution using only N = 11 time samples shows some agreement with the
time-accurate result but demonstrates marked disagreement in the turbulence variable. The Time-Spectral
solution using N = 21 time samples offers significant improvement. The N = 31 Time-Spectral solution
resolves of some of the finer features exhibited in the time-accurate result and shows improved agreement
of the turbulent eddy viscosity field. The side views of the four cases, provided in Fig. 18, demonstrate
similar trends. Unlike the case of hover, the flow is no longer steady in the rotating frame. The tip vortices
being convected downstream pose a resolution problem for unsteady simulation as a point on the rotating
background mesh moves quickly through the vortices. This is yet another example of a case where a relatively
low-frequency disturbance in one frame is transformed to a much higher frequency signal in another frame,
which may explain the poor resolution of the tip vortices in the Time-Spectral calculations.

Finally, Figure 19 demonstrates quantitative convergence of the Time-Spectral calculations to the time-
accurate solution for the instantaneous thrust coefficient, CT , versus azimuthal angle, Ψ. Despite rather poor
qualitative agreement, the N = 11 Time-Spectral case resolves the bulk CT signal. Naturally, agreement
improves as the temporal resolution is refined. The N = 31 Time-Spectral result matches the time-accurate
signal over nearly the entire period.

VI. Summary & Future Work

A brief synopsis of the Time-Spectral was provided with implementation details within NASA’s implicit
OVERFOW RANS solver. The Time-Spectral OVERFLOW solver was applied to problems in two and three
dimensions. Investigation of low-speed laminar plunging airfoils demonstrated the ability of the standard
and hybrid Time-Spectral schemes to accurately simulate solutions with highly-vortical wakes over a range
of reduced frequencies. The Time-Spectral solver was then used to demonstrate successful calculations of
three dimensional rotorcraft problems for the isolated V-22 Osprey rotor in hover and forward (edgewise)
flight. Only a single harmonic is required to resolve the hover cases where all grids rotate in unison. The
more active wake associated with forward flight requires significantly more temporal resolution.

With the goal of improving efficiency, future work includes parallelization in the temporal dimension [24]
and a zone-based frequency adaptation strategy to more optimally allocate the temporal degrees of freedom
to more dynamic regions of the flow. Frequency adaptation in the context of temporal Fourier schemes has
been developed [45,46,47,48,49,50,51], however refinement on a point-by-point basis is not practical in the
context of overset grids. Rather, the adaptive mesh refinement model can be employed in time so that every
grid has an associated number of time-instances that can be refined as the simulation advances. New grids
can also be generated to resolve high-frequency regions of the flow. Spatio-temporal multigrid also offers
potential convergence acceleration and will be included as part of future work.
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(a) Experimental (b) Computational

Figure 1: Top view of rotorcraft forward flight flow characteristics (a) experimental from [52] and (b)
numerical simulation of a high-speed UH-60 case C8534, with M∞ = 0.236 and μ = 0.37 using 61 million
grid points [44].
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Figure 2: Residual and drag coefficient convergence for a single grid (black line) versus three-level full
multigrid (hashed red line) for a laminar plunging airfoil case with St = 0.288.
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(a) Near-body grid C-mesh with hole-cut.

(b) Cartesian off-body grid structure.

Figure 3: Laminar Plunging NACA 0012 Airfoil. Grid system.
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(a) Experimental [35] (b) Time Accurate

(c) Rigid, N = 3 (d) Relative, N = 3

(e) Rigid, N = 5 (f) Relative, N = 5

(g) Rigid, N = 9 (h) Relative, N = 9

(i) Rigid, N = 17 (j) Relative, N = 17

(k) Rigid, N = 33 (l) Relative, N = 33

Figure 4: Laminar Plunging NACA 0012 Airfoil. Drag-producing case at M∞ = 0.2 and Re = 1850. Visualization
of vorticity magnitude. Comparison of experimental with computed time-accurate and Time-Spectral results using
N ∈ {3, 5, 9, 17, 33} for both rigid- and relative-body motion. Note that while certain flow features are not resolved
by the lower-mode Time-Spectral cases, Fig. 6 suggests that using N ≥ 9 matches the time-accurate drag-coefficient
for nearly the entire period of oscillation. Vorticity magnitude varies from 0 in white to greater than or equal to 1 in
black.
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Figure 5: Laminar Plunging NACA 0012 Airfoil. Drag-producing case at M∞ = 0.2 and Re = 1850. Time Spectral
versus time accurate drag coefficients for N ∈ {3, 9, 33}. Ten periods of the rigid-motion time-accurate solution
are plotted in red from steady-state startup. Blue squares locate the drag coefficient values at the Time-Spectral
collocation points for relative-body motion. Relative-body drag coefficients computed from an interpolation of the
Time-Spectral solution to 201 points shown with the blue-hashed line. Green diamonds locate the drag coefficient
values at the Time-Spectral collocation points for rigid-body motion. Rigid-body drag coefficients computed from an
interpolation of the Time-Spectral solution to 201 points shown with the green-hashed line.
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(a) Rigid Motion
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Figure 6: Laminar Plunging NACA 0012 Airfoil. Drag-producing case at M∞ = 0.2 and Re = 1850.
Convergence of (a) rigid- and (b) relative- motion Time-Spectral drag coefficients to the periodic steady-
state time-accurate calculation for N ∈ {3, 5, 9, 17, 33}.
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(a) Experimental [35] (b) Time Accurate

(c) Rigid, N = 3 (d) Relative, N = 3

(e) Rigid, N = 5 (f) Relative, N = 5

(g) Rigid, N = 9 (h) Relative, N = 9

(i) Rigid, N = 17 (j) Relative, N = 17

(k) Rigid, N = 33 (l) Relative, N = 33

Figure 7: Laminar Plunging NACA 0012 Airfoil. Thrust-producing case at M∞ = 0.2 and Re = 1850. Visualization
of vorticity magnitude. Comparison of experimental with computed time-accurate and Time-Spectral results using
N ∈ {3, 5, 9, 17, 33} for both rigid- and relative-body motion.
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Figure 8: Laminar Plunging NACA 0012 Airfoil. Thrust-producing case at M∞ = 0.2 and Re = 1850. Time Spectral
versus time accurate drag coefficients for N ∈ {3, 9, 33}. The time-accurate solution is plotted in red from steady-
state startup. Blue squares locate the drag coefficient values at the Time-Spectral collocation points for relative-body
motion. Relative-body drag coefficients computed from an interpolation of the Time-Spectral solution to 201 points
shown with the blue-hashed line. Green diamonds locate the drag coefficient values at the Time-Spectral collocation
points for rigid-body motion. Rigid-body drag coefficients computed from an interpolation of the Time-Spectral
solution to 201 points shown with the green-hashed line.
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Figure 9: Laminar Plunging NACA 0012 Airfoil. Thrust-producing case at M∞ = 0.2 and Re = 1850.
Convergence of (a) rigid- and (b) relative-motion Time-Spectral drag coefficients to the periodic steady-state
time-accurate calculation for N ∈ {3, 5, 9, 17, 33}.
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(a) Streamwise momentum, ρu, over one period.
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(b) Spectrum of streamwise momentum, |ρ̃u|.
Figure 10: Plunging NACA 0012 Airfoil. Inviscid case with h = 0.5 and M∞ = 0.5. Time and frequency
response of subsonic plunging airfoil with an off-body grid translating with the airfoil. The frequency
components at the near- and off-body nodes are nearly identical.
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(a) Streamwise momentum, ρu, over one period.
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(b) Spectrum of streamwise momentum, |ρ̃u|.
Figure 11: Plunging NACA 0012 Airfoil. Inviscid case with h = 0.5 and M∞ = 0.5. Time and frequency
response of subsonic plunging airfoil with a stationary background grid. The frequency components at the
near- and off-body nodes are strikingly different with many more modes required to resolve the solution at
the node on the stationary background grid. The node on the background grid is the same one described
in Fig. 10a, but the background grid was translating with the airfoil in that case and only a few modes are
required to resolve the solution.
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(a) Translating node on background grid in rigid-body motion.
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(b) Stationary node on background grid in relative-body motion

Figure 12: Plunging NACA 0012 Airfoil. Inviscid case with h = 0.5 andM∞ = 0.5. Temporal reconstruction
of streamwise momentum, ρu, at a node on the off-body grid (a) translating with the airfoil and (b) stationary
relative to the translating airfoil. The solution at the stationary node requires approximately K = 32
modes to reasonably reconstruct the continuous signal whereas the solution at the translating node requires
approximately K = 4 modes, suggesting an inherent inefficiency of employing relative motion. However,
rigid-body motion is not universally applicable and therefore relative-body motion must be used for certain
configurations.
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(a) Full Configuration (b) Azimuthal angle, Ψ

Figure 13: V-22 Osprey (a) full configuration [44] (b) definition of azimuthal angle, Ψ, taken from [41].

(a) Blades with near-body grids. (b) Off-body grid-system.

Figure 14: Isolated V-22 Osprey Tiltrotor in Hover. Geometry and grid system. Each blade is wrapped in an
C-mesh with tip and root cap grids and the rotor is embedded in a hierarchy of isotropic Cartesian off-body
grids. The domain of the off-body system is cut away to reveal the structure of the isotropic Cartesian grids.
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(a) Time Accurate (b) Time Spectral

Figure 15: Isolated V-22 Osprey Tiltrotor in Hover. Comparison of iso-contours of vorticity for time-accurate
and Time-Spectral simulations. Contours of vorticity magnitude are plotted in a constant y-plane, ranging
from a value of zero in blue to 0.01 in red.

(a) Time Accurate (b) Time Spectral

Figure 16: Isolated V-22 Osprey Tiltrotor in Hover. Comparison of iso-contours of vorticity for time-accurate
and Time-Spectral simulations. Contours of undamped turbulent eddy viscosity, ν̃, are plotted in a constant
y-plane, ranging from a value of zero in white to 900 in black.
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(a) Time Accurate, N = 1440 (b) Time Spectral, N = 11

(c) Time Spectral, N = 21 (d) Time Spectral, N = 31

Figure 17: Isolated V-22 Osprey Tiltrotor in Forward Flight. Top view of iso-contours of vorticity for time-
accurate and Time-Spectral calculations with advance ratio μ = 0.2 and tip Mach number Mtip = 0.625.
Time-Spectral simulations using N ∈ {11, 21, 31} are presented to demonstrate the convergence towards the
time-accurate result with the addition of temporal modes. Contours of undamped eddy viscosity are plotted
in a constant z plane.
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(a) Time Accurate, N = 1440 (b) Time Spectral, N = 11

(c) Time Spectral, N = 21 (d) Time Spectral, N = 31

Figure 18: Isolated V-22 Osprey Tiltrotor in Forward Flight. Side view of iso-contours of vorticity for time-
accurate and Time-Spectral calculations with advance ratio μ = 0.2 and tip Mach number Mtip = 0.625.
Time-Spectral simulations using N ∈ {11, 21, 31} are presented to demonstrate the convergence towards the
time-accurate result with the addition of temporal modes. Contours of undamped eddy viscosity are plotted
in a constant y plane.
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(a) Five harmonics, N = 11
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(c) Fifteen harmonics, N = 31

Figure 19: Isolated V-22 Osprey Tiltrotor in Forward Flight. Reconstruction of Time-Spectral thrust coeffi-
cient, CT , for N ∈ {11, 21, 31} against the time-accurate calculation versus Ψ using a time step of equivalent
to 0.25◦, Δt = T/1440.
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