Micro Cathode Arc Thruster

The Micro Cathode Arc Thruster (μCAT) is a novel concept of electric propulsion for small satellites. A collaboration between The George Washington University and NASA Ames Research Center has developed a modular propulsion system that consists of a single Printed Circuit Board (PCB) which controls an array of 4 thrusters for station keeping and attitude control maneuvers.

- The entire propulsion system's volume is less than 0.3U. All electronics and power distribution components are included in the board, as well as four thrusters
- Quasi-perfect ionization degree of 99% of the plasma particles in the exhaust plume, giving a near zero back flux
- Optimal thruster placement for attitude control maneuvers
- Potential station keeping applications (Fig.II)
- Designed to be compatible with the PhoneSat/ EDSN bus in a 1.5U cubesat form factor
- Thrust to mass ratio of 0.63 μN/g

Table I: Main characteristics of a single Micro Cathode Arc Thruster at 50Hz frequency

<table>
<thead>
<tr>
<th>Thrust</th>
<th>Isp</th>
<th>Power</th>
<th>Mass</th>
<th>Propellant</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 μN</td>
<td>2000-3000 s</td>
<td>5 W</td>
<td>300 g</td>
<td>Titanium</td>
</tr>
</tbody>
</table>

Performance

The μCAT consists of a very small thruster head (5mm of cross section), electrically powered by a Pulsed Plasma Unit (PPU) that manages the stored energy in an inductor. Vacuum arc discharges ablate the cathode material, forming cathode spots that transfer surface micro-plasma. The μCAT offers a reliable performance according to cubesat standards and supports the following features:

- Operation at multiple frequency and power ranges
- Power required for operation: 0.1 W/Hz per thruster
- Redundant control logics to ensure safety

Design & Applications

The design consists of an aluminum shell that encloses the following components (Fig.III):

- Brass screw which serves as the anode
- Cylindrical titanium rod which acts as the cathode and the actual solid propellant
- Ceramic insulator which separates both electrodes
- Spring that pushes the propellant rod to the edge in order to consume it uniformly as the thruster is firing
- Spade lug terminals enforce connectivity to cathode and anode

Previous work

- Performance and control of three discrete μCAT at the same time with a smartphone Application
- Design of a functional PhoneSat-μCAT interface
- Long run Vacuum tests at Ames Research Center Engineering Evaluation Laboratory
- Parallel multi-thruster channel operation
- CAD Model and power electronics design
- Micro-controller software development

Current Work

- Fabrication of a Printed Circuit Board that contains the Pulsed Plasma Unit circuitry and controls the electronics
- New mechanical design that ensures more reliability in the electrical connections
- Performance tests and thrust stand measurements at specialized facilities
- Application of an external magnetic field to improve performance
- Increase of Technology Readiness Level from 5 to 6

POC: Elwood Agasid
elwood.f.agasid@nasa.gov