
Announced Strategy Types in Multiagent RL for Conflict-Avoidance in the
National Airspace

Carrie Rebhuhn
Oregon State University

rebhuhnc@engr.oregonstate.edu

Matt Knudson
NASA Ames Research Center

matt.knudson@nasa.gov

Kagan Tumer
Oregon State University

kagan.tumer@oregonstate.edu

Abstract

The use of unmanned aerial systems (UAS)
in the national airspace is of growing interest
to the research community. Safety and scal-
ability of control algorithms are key to the
successful integration of autonomous system
into a human-populated airspace. In order to
ensure safety while still maintaining efficient
paths of travel, these algorithms must also
accommodate heterogeneity of path strate-
gies of its neighbors. We show that, using
multiagent RL, we can improve the speed
with which conflicts are resolved in cases
with up to 80 aircraft within a section of the
airspace. In addition, we show that the in-
troduction of abstract agent strategy types to
partition the state space is helpful in resolv-
ing conflicts, particularly in high congestion.

Introduction

The air traffic density in the national airspace (NAS) is in-
creasing beyond the current capabilities of air traffic con-
trollers. Centralized human control at each sector in the
airspace works well for low plane-to-controller ratios, but
with the growth commercial air traffic and the future intro-
duction of autonomous systems in the airspace, it is clear
that control algorithms must begin to handle some of the
safety in the airspace. The FAA NextGen Implementation
Plan promises regulation mandating that automatic depen-
dent surveillance broadcast (ADS-B) systems be installed on
all aircraft, providing a method by which air traffic control
systems can easily gather information about sector conges-
tion. More promising from a multiagent standpoint is the
introduction of traffic information service broadcast (TIS-
B), which provides distributed automatic ADS-B informa-
tion to planes within a 15-mile radius of other planes. Using
this locally-available information, we can construct conflict-
avoidance in the national airspace as a distributed multiagent
problem.
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Q-Learning in the NAS
Conflict-avoidance in the UAS domain requires an agent se-
lects the parameters of a diversion waypoint in a way that
maintains safety while still considering the path cost of a di-
version and the potential for conflict propagation in the sys-
tem. In this work we use reinforcement learning agents to
map plane states (relative to the plane’s nearest neighbor) to
conflict-avoidance actions (waypoints) through Q-learning.
A point-mass simulator is used to model agent trajectories,
and agents must make a conflict-avoidance decision when
the simulator detects a path conflict in some time horizon.

We call the joint state of all agents �s. Each agent i has a
state si, which is described in relation to its nearest neighbor,
such that si = {δn(i),Θn(i), hn(i), Tn(i), pi, gi}, where δn(i)
is the xy-planar distance to the nearest neighbor of i, Θn(i) is
the relative heading of the nearest neighbor of i, hn(i) is the
relative height (z-position) of the nearest neighbor of i, Tn(i)
is the type of the nearest neighbor, pi is the agent’s position,
and gi is the goal position of the agent. The position pi and
goal position gi of the agent is not useful for the task of
conflict-avoidance, so for the purpose of Q-learning we do
not distinguish between states with different pi or gi values.
The type information Tn(i) is used to distinguish different
states in Q-learning in our type-partitioned experiments, but
we compare to when this is not used to distinguish types
in our type-free experiments. Agents select an action ai =
{τ,m, t}, where τ is the action type (heading change, or
altitude change), m is the magnitude of this change, and t is
the duration of the redirection. Agents use ε−greedy action
selection to choose an action ai based on their a state si, and
then receive a reward R(�s,�a) based on the system state �s
and the action taken by the agent.

This reward captures the cost of conflicts caused after the
course correction, the signal cost of taking a diversion ac-
tion, and the distance cost of a particular action. We formal-
ize our the local reward as:

Li(si, ai) = wcu(1−nc(si))−wau(na(ai))−wddextra(si, ai)
(1)

where Li(si, ai) is the local reward given by the agent’s state
si and the agent’s action selection ai, nc(si) is the number of
conflicts that agent i is involved with, na(ai) is the number
of deviations agent i takes, dextra(si, ai) is the amount of



extra distance that will be added by creating the diversion
waypoint, and u is the unit step function. In our setup, the
values for these parameters are wc = 10, wd = 0.1, wa =
10.

Local rewards perform well in domains without conges-
tion, but when resources cannot be shared equally to attain
optimality, global rewards can promote coordination. Our
global reward is a simple summation of the local rewards:

G(�s,�a) =
N∑

i=0

Li(si, ai) (2)

Because global rewards can sometimes be too noisy for
agents to learn, we also test a ‘difference’ reward, which
evaluates an agent based on the effect of removing it from
the system. We derive this reward using the global reward
and the difference reward equation given in Tumer et al. [?]:

Dj(�s,�a) =

N∑

i∈Cj

Li(si, ai) (3)

where Dj(�s,�a) is the difference reward for agent j and Cj

is the set of agents in projected conflict with j.
Agents in the system have strategy types that define gen-

erally what conflict-avoidance action they will take. There
are four different strategy types; one that always rerouted
CCW by 90◦, one that always rerouted CW by 90◦, one
that always changed its altitude by ±1000m, and one that
learned at a rate of α = 0.1 and γ = 0.9 with a random
action-selection chance of ε = 0.1. To take advantage of
this type information, an agent was pre-trained with each of
the heuristic types in an environment with 5 agents with tar-
gets and initial positions created within a 1000m3 cube. The
Q-table developed by the learning agent, or stereotype, was
then used to initialize the agents in the test system.

Results and Discussion
We are interested in two things: the performance of reward
structures and scalability of reward structures with the in-
clusion of types in the state space. Figure 1 shows the im-
pact of agent types on performance with high congestion.
Types provide good initialization for all reward structures in
the high-congestion domain. They also improve the conver-
gence of global and local rewards.

Figure 2 shows that with the difference reward, at low lev-
els of congestion the agents find optimal policies, and there
is differentiation between the performance while identifying
types and the performance without the inclusion of types.
At all levels of congestion the use of types improves the ini-
tial performance of the UAS in conflict-avoidance. However
this improvement comes at the cost of the learning speed,
through partitioning of the state space. In high congestion,
learning without types overtakes learning with types, but
converges to a similar solution. In cases of medium conges-
tion, learning without types overtakes learning with types,
which decays slightly but then converges to similar perfor-
mance to learning with types.
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Figure 1: These results show three different learning ap-
proaches under high congestion (80 agents), comparing
learning with and without types in the state space.

In this paper we show that discriminating by agent strat-
egy type improves performance in high congestion in the
UAS domain for global and local rewards. Under the dif-
ference reward, we show that learning with types initially
outperforms learning without types, but is quickly overtaken
due to a slower learning speed. Values of learning with and
without types converge to similar performance under this
structure. Observing this, we identify a tradeoff between the
usefulness of including neighbor policies in the state space
(policy type value) and the increase in training samples from
not separating the Q-table updates by agent type. Knowing
type information is valuable in high congestion because it
provides necessary information about the local actions of the
agents. In cases with lower congestion, however, the policy
type value is lower because a more general policy is accept-
able.
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Figure 2: Agent density impact on global performance using
difference rewards.
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