Implementation of the Orbital Maneuvering System Engine and Thrust Vector Control for the European Service Module

Jon Millard
NASA GRC
JPC, July 28-30 2014, Cleveland, OH
Multi-Purpose Crew Vehicle (MPCV)

Agenda

- NASA propulsion hardware obligations for ESM
- Hardware Overview
- Design Description and Interface Document
- Implementation
- Current Status
- Conclusion
Hardware Obligations

- **Under BHSEALS, NASA is obligated to provide ESA**
 - Two (2) OMS-E assemblies for EM-1 and flight spare
 - One (1) OMS-E assembly for propulsion system ground testing
 - One (1) OMS-E assembly for EM-2
 - Two (2) TVC assemblies for EM-1 and flight spare
 - Two (2) TVC assemblies for developmental testing
 - One (1) TVC assembly for EM-2
 - Available OMS-E & TVC GSE
 - One (1) OMS-E mass simulator
 - One (1) OMS-E electrical simulator

- **Under BDEALS, NASA is obligated to provide ESA**
 - OMS-E & TVC design documentation, drawings, and operational histories
 - Models to support performance, structural, and thermal analysis

BILATERAL HARDWARE and SOFTWARE EXCHANGE AGREEMENTS, LISTS, and SCHEDULES (BHSEALS)

BILATERAL DATA EXCHANGE AGREEMENTS, LISTS and SCHEDULES (BDEALS)
Hardware Overview

- **OMS-E Assembly**
 - Engine Subassembly
 - Pneumatic Pack, TCA, BPV, gimbal ring, service lines, and instrumentation
 - Nozzle Extension
 - Heat Shield Assembly
- **TVC Assembly**
 - Pitch Gimbal Actuator
 - Yaw Gimbal Actuator
 - Active Actuator Controller Unit
 - Standby Actuator Controller Unit
 - Electrical Harnesses
- **GSE**
 - Engine Installation GSE
 - Leak Check/Purge GSE
 - Protective GSE
 - TVC GSE
 - Shop Aides
 - Shipping Containers
Design Description and Interface Document (DDID) Overview
Design Description and Interface Document

- Design Definition and Interface Document (DDID) will serve as the single source for the design characteristics and interface requirements for the heritage engine and TVC assemblies.

- **Complete description of design characteristics**
 - Product and functional descriptions of subassemblies, components (including GSE)
 - Mechanical, thermal, electrical design characteristics
 - Performance, life characteristics
 - Operational envelopes, operational constraints
 - Induced and natural environments
 - Logistics characteristics

- **DDID will provide interface requirements to the vehicle**
 - DDID requirements will flow to subsystem specifications
 - DDID requirements flowed to propulsion system specification will flow to engine and TVC specifications
 - DDID will also serve as the verification document for compliant engine and TVC requirements
- Design characteristics and interface requirements/verification will be sourced
 - Traceability back to Rockwell specification for requirements
 - Traceability back to qualification reports and certification requests for verification

- DDID will be peer reviewed within NASA
 - Certify the design and interface characteristics are representative of the heritage hardware design

- If modifications or delta qualifications to the heritage hardware are needed for ESM, they will be documented in the Definition File (DF)
 - DF along with DDID will be implemented as a part of the ESM Verification Compliance Document (VCD)
Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the ESM

- Implementation Overview
Implementation Overview

- **5 Key areas to implement the heritage HW**
 - Areas consists of task that are NASA led, Airbus led, or Joint

- **Secure and Maintain Heritage Hardware**
 - Establish inventory in secured storage, maintain inventory until transfer, provide documentation on design and operational history (NASA)

- **Evaluate Suitability of Heritage Hardware Design for ESM**
 - Establish heritage hardware design characteristics (NASA)
 - Develop technical specification for ESM main engine/TVC (Airbus)
 - Identify areas of heritage hardware design non-compliance with ESM (Joint)
 - Develop and execute plans to resolve non-compliances (Joint)
 - Certify heritage hardware is suitable for ESM application (Joint)

- **Select and Prepare Units for Transfer to ESA**
 - Develop selection criteria for units to be transfer (NASA)
 - Prepare units per ATP’s (Shuttle-era w/ any ESM-specific mods) (NASA)
 - Conduct pre-ship/hardware acceptance reviews before each transfer (Joint)
Implementation Overview

- **Develop Assembly, Integration, and Test Procedures**
 - Provide summarized versions of Shuttle-era AI&T procedures (NASA)
 - Provide descriptions of available heritage GSE (NASA)
 - Develop ESM-specific logistics and installation procedures (Airbus)
 - Identify and develop new, ESM-specific GSE (Airbus)
 - Develop procedures for ground tests (Airbus)

- **Install and Maintain Transferred Units**
 - Install ground test and flight units per developed AI&T procedures (Airbus)
 - Provide engineering support during installation and test activities (NASA)
 - Provide engineering support in response to anomalies during installation and test activities (NASA)
Multi-Purpose Crew Vehicle (MPCV)

Implementation Overview

- Evaluation tasks to determine the suitability of the GFE can be grouped into several broad areas
 - Mechanical Flight Environments
 - Thermal Flight Environments
 - Radiation Flight Environments
 - SSP vs ESM Interfacing Avionics
 - Engine and TVC Performance
 - Mission Life Capability (Pneumatic Pack Capability)
 - Maximum Design Pressure
 - Shelf Life Evaluation
 - Remaining Operating Life
 - Electromagnetic Compatibility/Electromagnetic Interference
 - Engine Alignment
 - Natural Environments
 - Ground and Transportation Environments
 - Logistics (shipping, packaging, identification, human engineering)
 - Acceptance Test Requirements
Implementation Overview

• New hardware developments, that are needed to implement the heritage hardware into ESM, have already been identified
 – OMS-E EGSE (valve actuation, instrumentation)
 – OMS-E Instrumentation
 – TVC Electrical Harnesses (heritage harnesses have insufficient length)
 – TVC EGSE (gimbal actuation; heritage EGSE not recommended for use)
 – Supporting MGSE (e.g., platform for installation stand)
 – Shipping Containers (TVC components, nozzle, GSE)

• Differences in Shuttle-era and current design and construction standards should be evaluated to understand risks involved in use of heritage hardware for ESM
 – Materials and Processes
 – Mechanical Design
 – Structural Design
 – Pressure System Design
 – Electrical Design
 – Cleanliness

• S&MA support will be needed for OMS-E and TVC
 – FMEA, PRA, Hazards data
 – Support hardware test and integration activities
Current Status

- **Initial drafts of engine and TVC specification released**
 - System and Subsystem PDR used to incorporate comments and RIDs

- **Draft DDID (with ESM subsystem interfaces) released for internal and peer review.**
 - Will be revised based on review feedback and baselined for release

- **Equipment Qualification Status Review (EQSR) schedule for early fall 2014**
 - Review used to assess compliance status of GFE with ESM requirements
 - Board approved all plans to resolve noncompliant requirements

- In parallel suitability of GFE is being evaluated in regards to environments, performance, and life

- Shipping container fabrication and GSE revalidation is being conducted

- TVC Disassembly and Inspection with basics functional checks

- Integration support for all test campaigns associated with the ESM and GFE
Conclusion

- Many challenges associated with reusing heritage hardware
 - Heritage design and history, international cooperation, resources, schedule
- Work required for successful implementation has been identified and mapped to Orion schedule to meet EM-1 launch date.