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Abstract

The need for accurate material models to simulate the deformation, damage and failure of polymer
matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and
automotive industries. While there are several composite material models currently available within LS-
DYNA (Livermore Software Technology Corporation), there are several features that have been
identified that could improve the predictive capability of a composite model. To address these needs, a
combined plasticity and damage model suitable for use with both solid and shell elements is being
developed and is being implemented into LS-DYNA as MAT 213. A key feature of the improved
material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define
the stress-strain response of the material. To date, the model development efforts have focused on
creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized
and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The
coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule,
are computed based on the input stress-strain curves using the effective plastic strain as the tracking
variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The
developed material model is suitable for implementation within LS-DYNA for use in analyzing the
nonlinear response of polymer composites.

Introduction

As composite materials are gaining increasing use in aircraft components where impact resistance
under high energy impact conditions is important (such as the turbine engine fan case), the need for
accurate material models to simulate the deformation, damage and failure response of polymer matrix
composites under impact conditions is becoming more critical. Within LS-DYNA (Ref. 1), several
material models are available for application to the analysis of composites. For example, the Chang-
Chang failure model (Ref. 2) is utilized in MAT 22 and MAT_54. In these models, combinations of
ratios of stresses to failure strengths are utilized to predict fiber or matrix based failure. The response is
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assumed be linear elastic, with limited capability to simulate the nonlinear shear response. In MAT 22
the failure is assumed to be brittle, while in MAT 54 the composite elastic constants are selectively
reduced based on the failure mode, and a gradual unloading is permitted until ultimate element failure is
reached. In MAT 58, a continuum damage model developed by Matzenmiller et al (Ref. 3) is employed,
where the initiation and accumulation of damage is assumed to be the primary driver of nonlinearity in
the composite response. The failure stresses and strains of the material in each of the coordinate directions
are specified by the user, and the material stress-strain curves are approximated based on this data. The
original version of the material model assumes a material response that is independent of strain rate.
However, in the enhanced model MAT 158, a modified version of the model used in MAT 58 is
employed which incorporates strain rate dependence into the material response (Ref. 1). A viscoelastic
Prony series based on shear moduli is used to modify the computed stresses. The strain rate dependence in
all of the coordinate directions is assumed to be identical. MAT 161 is an additional continuum damage
mechanics model available within LS-DYNA (Ref. 4). In this model, a stress to strength ratio approach in
a variety of coordinate directions is used to specify the beginning of either fiber or matrix based failure.
Appropriate failure mode based damage functions are then used to compute the reduction in elastic
moduli in each of the coordinate directions. In MAT 219, based on the CODAM model developed at the
University of British Columbia (Ref. 5), a strain versus failure strain ratio based approach is used to
predict the initiation of damage in a sublaminate of the composite. Separate damage accumulation and
modulus reduction functions based on failure mode and coordinate direction are implemented in a
continuum damage mechanics formulation. In MAT 221, damage accumulation functions based on
current strains, damage initiation strains and failure strains are used to reduce the elastic moduli of the
composite in each of the coordinate directions in a damage mechanics approach (Ref. 1). In MAT 261,
which is based on a damage and failure model developed by Pinho et al (Refs. 6 and 7), separate models
for fiber tension failure, fiber kinking failure, matrix tensile failure and matrix compressive failure are
developed, where different functional forms are used for each of the failure criteria (for example, the
matrix compression failure criterion is based on an extension of the Mohr-Coulomb failure criterion). The
various failure criteria are combined together using fracture mechanics concepts to develop a constitutive
model. In MAT 262, based on a model developed by Camonho, et al (Refs. 8 and 9), an energy approach
is utilized to generate damage functions in various coordinate directions within the context of a
continuum damage mechanics formulation.

While all of the material models discussed above have been utilized with some level of success in
modeling the impact response of polymer composites, there are some areas where the predictive
capability can be improved. In general, the existing models often require significant a priori knowledge of
the damage and failure such that their use as predictive tools can be limited. While these models generally
assume that the nonlinear response of the composite is due to either deformation mechanisms (plasticity)
or damage mechanisms, an improved model should have the capability to simulate the actual material
behavior in which the material nonlinearity is due to a combination of both deformation and damage
mechanisms. The input to the current material models generally consists of point-wise properties that lead
to curve fit approximations to the material stress-strain curves. This type of approach leads to either
models with only a few parameters, which provide a crude approximation at best to the actual stress-strain
curve, or to models with many parameters which require a large number of complex tests to characterize.
An improved approach would be to use tabulated data from a well-defined set of experiments to
accurately define the complete stress-strain response of the material. Furthermore, many of the existing
models are only suitable for use with two-dimensional shell elements, which cannot capture the through-
thickness response which may be significant in impact applications. Ideally, a fully three-dimensional
formulation suitable for use with solid elements would be available, along with the shell element
formulation. In addition, incorporating the effects of strain rate is only possible in a few of the existing
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models, and in those models, the effects of strain rate on the material response are assumed to be the same
in all of the material coordinate directions.

To begin to address these needs, a multi-institution consortium has been formed to develop and
implement a new composite material model within LS-DYNA, which will be implemented as MAT 213.
Currently, the primary focus of the effort has been on the development and testing of the orthotropic
macroscopic three-dimensional plasticity model. As will be discussed in more detail in the following
sections of this paper, the commonly used Tsai-Wu composite failure criterion (Ref. 10) has been
generalized and extended to a strain-hardening model with a quadratic yield function and a nonassociative
flow rule. A similar approach has been used by Sun and Chen (Ref. 11), in which a general quadratic plastic
potential function was generalized into a plasticity model suitable for use with composites. The coefficients
of the yield function for the new composite model are determined based on tabulated stress-strain curves in
the various normal and shear directions, along with selected off-axis curves. The non-associative flow rule is
used to compute the components of the plastic strain along with the effective plastic strain. The stresses that
are used in the flow rule are computed based on the input tabulated stress-strain curves. Systematic
procedures have been developed to compute the various coefficients in the yield function and the flow rule
based on the tabulated input data. An important point to note is that the developed material law is not limited
to the analysis of unidirectional plies alone. Alternatively, the material model is meant to be a fully
generalized model suitable for use with any composite architecture (unidirectional, laminated or textile). In
the following sections of this paper, a detailed derivation of the yield function and the flow law are
presented. The procedures to be used to characterize the material constants in the yield function and the flow
law are also discussed in detail. Details of the numerical implementation of the material model within LS-
DYNA and descriptions of verification and validation studies that were conducted using the developed
material model are available in a companion paper (Ref. 12).

Material Law Derivation

A general quadratic three-dimensional orthotropic yield function based on the Tsai-Wu failure model
is specified as follows, where 1, 2, and 3 refer to the principal material directions.

011
22
flo)=a+(R B F 0 0 0
c12
023
031 0
K1 F2 F3 O 0 0 Y\ o1
Fo F» F3 0 0 0 | o2
+(o11 022 ©33 o2 023 O3 s f B 00000 0%
0 0 0 Fua O 0 || o12
0 0 0 0 Fs5 0 | o2
0 0 0 0 0  Fes )\ 031

In the yield function, o;; represents the stresses and Fj; and F, are coefficients that vary based on the

current values of the yield stresses in the various coordinate directions. By allowing the coefficients to
vary, the yield surface evolution and hardening in each of the material directions can be precisely defined.
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The values of the normal and shear coefficients can be determined by simplifying the yield function for
the case of unidirectional tensile and compressive loading in each of the coordinate directions along with
shear tests in each of the shear directions, with results as shown below.

a=-1
1 1 1 1
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1 1 1 1 2
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In the above equation, the stresses are the current value of the yield stresses in the normal and shear
directions (determined using procedures to be discussed below), where the superscript 7 indicates the
tensile yield stress, and the superscript C indicates the absolute value of the compressive yield stress. To
determine the values of the off-axis coefficients (which are required to capture the stress interaction
effects), the results from 45° off-axis tests in the various coordinate directions can be used. For example,
the stresses in the local material axis system resulting from a uniaxial tensile test of a [45°] composite (for
a unidirectional composite), or any uniaxial tensile test conducted at 45° in the 1-2 plane from the
longitudinal (1) material axis for a multiply laminated or textile composite, can be computed to be the
following by the stress transformation equations (Ref. 10).

c11 =0.50v45
622 =0.50y45 (3)
c12 =—0.50v45

In the above equation, Gy, is the structural level current uniaxial yield stress resulting from a tensile test
on a [45°] ply, and the remaining stresses are the material axis system based stresses. By substituting this
equation into Equation (1) and solving for the off-axis constant F,, the following expression can be
obtained

2 _F1+F2 _l(

F =
" (GY45)2 Gy4s

Fi1+ Fa + Fa) 4

where all of the terms are as defined earlier. By using similar procedures involving 45° rotations in the 2-
3 plane and the 1-3 plane, similar expressions for the constants F,; and F';; can be determined.

A nonassociative flow rule is used to compute the evolution of the components of plastic strain. The
plastic potential for the flow rule is shown below

h:

)

\/Hl 16121 + szc%z + H33c§3 + 2H12611622 + 2H 23622633 + 2H31033011 + H44cs122 + H55c$%3 + H660%1
where o; are the current values of the stresses and H;; are independent coefficients, which are assumed to

remain constant. Procedures for determining the values of the coefficients will be discussed later in this
paper. The plastic potential function in Equation (5) is used as follows in a flow law, where the usual
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normality hypothesis from classical plasticity (Ref. 13) is assumed to apply and the variable A is a scalar
plastic multiplier.

0o
T 2H 2H 2H13633)
811 = \eHon +2H12622 + 213633
b = l(2H +2H +2H23633)
&y =7, (2Hon 22022 23033
b = i(2H +2H +2H33033) (6)
€33 = 2 13011 23622 33633
¢, =— Haao12

In the above equation, 85 are the components of plastic strain rate. For the shear components, tensorial,

not engineering, strains are used. By examining ratios of the components of plastic strain in response to a
given uniaxial stress component, the normal and off-axis coefficients /; in the plastic potential function

can be related to “plastic Poisson’s ratios”, vg , as follows. This concept, as will be shown later in this

paper, is useful in developing procedures to characterize the values of the coefficients.

o11#0 o2 #0 033 %0
- p 2P -p
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In the above equation the expressions in the first column are only valid for the case where the only
nonzero stress is in the 1 direction, the expressions in the second column are only valid for the case where
the only nonzero stress is in the 2 direction, and the expressions in the third column are only valid for the
case where the only nonzero stress in in the 3 direction. An important point to note is that while the yield
function can accommodate differences between the tensile and compressive responses of the composite,
the flow law, due to its lack of linear terms, cannot make such a distinction. However, introduction of a
linear term would make the plastic Poisson’s ratio, and thus the coefficients in the flow law, highly
dependent on the stress which would most likely lead to erratic behavior of the model. Another
consideration is that the coefficients of the flow law could be assumed to vary based on the current stress
and strain state, but that would require developing evolution conditions on the flow law, which would be
very difficult to determine based on experimental data.

Given the flow law, the principal of the equivalence of plastic work (Ref. 13) can be used to
determine expressions for the effective stress and effective plastic strain. By taking the vector product of
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the stress tensor and the plastic strain rate tensor, one ends up with the plastic potential function

multiplied by the plastic multiplier & . Since, by the principal of the equivalence of plastic work, the
vector product of the stress tensor and the plastic strain rate tensor must equal the product of the effective
stress and the effective plastic strain rate, one can conclude that the plastic potential function / can be

defined as the effective stress and the plastic multiplier A can be defined as the effective plastic strain
rate. This concept is expressed mathematically in the equation shown below

WP:c:éP:o:i%:hizceéé’ (8)
0o

where o, is the effective stress and ¢ is the effective plastic strain rate.

To compute the current value of the yield stresses needed for the yield function, the common practice
in plasticity constitutive equations is to use analytical functions to define the evolution of the stresses as a
function of the components of plastic strain (or the effective plastic strain). Alternatively, in the
developed model tabulated stress-strain curves are used to track the yield stress evolution. The user is
required to input twelve stress versus plastic strain curves. Specifically, the required curves include
uniaxial tension curves in each of the normal directions (1,2,3), uniaxial compression curves in each of
the normal directions (1,2,3), shear stress-strain curves in each of the shear directions (1-2, 2-3 and 3-1),
and 45° off-axis tension curves in each of the 1-2, 2-3 and 3-1 planes. The 45° curves are required in
order to properly capture the stress interaction effects. By utilizing tabulated stress-strain curves to track
the evolution of the deformation response, the experimental stress-strain response of the material can be
captured exactly without any curve fit approximations.

The required stress-strain data can be obtained either from actual experimental test results or by
appropriate numerical experiments utilizing stand-alone codes. Currently, only static test data is
considered. Future efforts will involve adding strain rate and temperature dependent effects to the
computations. For certain composite architectures, the number of stress-strain curves that need to be input
can be simplified. For example, for unidirectional composites, the normal response in the 3 direction can
be assumed to be identical to the normal response in the 2 direction due to the transverse isotropy of the
material. Likewise, the shear response in the 1-3 direction can be assumed to be identical to the shear
response in the 1-2 direction. Similarly, the 45° off-axis curve in the 1-3 plane can be assumed to be
identical to the 45° off-axis curve in the 1-2 plane. Due to the transverse isotropy of a unidirectional
composite, one can also demonstrate that for the case of a unidirectional composite the 45° off-axis curve
in the 2-3 plane is approximately equal to the normal stress-strain curve in the 2 (or 3) direction. For other
composite architectures with significant symmetry (such as two-dimensional plain or satin weave
composites), a certain degree of simplification in the stress-strain data that is required to be input is also
possible.

To track the evolution of the deformation response along each of the stress-strain curves, the effective
plastic strain is chosen to be the tracking parameter. Using the numerical procedure described briefly later
in this paper and in more detail in a companion paper (Ref. 12), the effective plastic strain is computed for
each time/load step. The stresses for each of the tabulated input curves corresponding to the current value
of the effective plastic strain are then used to compute the yield function coefficients. To enable this
tracking, each of the input stress-strain curves needs to be converted into a plot of stress versus effective
plastic strain. To enable this conversion, the principal of the equivalence of plastic work is used again to
relate the unidirectional plastic strain increment to the effective plastic strain increment. For example, for
the case of unidirectional loading in the 1 direction the effective plastic strain increment (and integrated
current total effective plastic strain) can be computed as follows
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where o1 is the unidirectional stress in the loading direction, def; is the plastic strain increment in the

loading direction and de? is the increment in effective plastic strain. Note that in a general case the
increment in effective plastic strain can be computed as the incremental area under the stress-plastic strain
curve divided by the current value of the effective stress. A graphical representation of this process is
shown below in Figure 1.

To compute the evolution of the effective plastic strain, a numerical algorithm based on the radial
return method is employed. Given the revised value of the effective plastic strain, the yield stress values
and the overall stress state of the material can be updated. Details of the numerical implementation are
provided in a companion paper (Ref. 12), but some of the key theoretical fundamentals of the algorithm
are given below. The standard elastic constitutive equation is used to compute the revised stresses, where
the flow law is applied for the computation of the plastic strains.

c:c:(s-sp):c:(s-k%} (10)

In the above equation, C is the standard elastic stiffness matrix, € is the total strain rate tensor, and the
remaining terms are as defined previously. To compute the effective plastic strain rate, the consistency
condition is applied in combination with the elastic constitutive equation

o
11
O-ll
o
gl =g, ——1L g? :Io-lldgll

£, ‘ h
User provided load curves are Internally stored is true stress
true stress versus true plastic strain versus effective plastic strain

Figure 1.—Conversion of stress versus plastic strain curves to stress versus effective
plastic strain curves.
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where f'is the yield function defined in Equation (1) and q is the vector of yield stresses based on the
input stress-strain curves.

a=(c7, o, ofy of o, of o2 o233 O3 Ovas Oras2s Ovis3i) (12)

where cy4s5-23 is the yield stress resulting from a uniaxial tensile test conducted at 45° in the 2-3 plane
and oy4s5-311s the yield stress resulting from a uniaxial tensile test conducted at 45° in the 3-1 plane. To
compute the derivative of the components of the q vector with respect to the effective plastic strain A, a
chain rule type of computation is carried out where the derivatives of the individual components of the
vector (the respective yield stresses) with respect to the effective plastic strain are determined as follows.

p
dojj doijj dgij

= (13)

The derivative of the components of the yield stress vector with respect to plastic strain is the
instantaneous slope of the stress versus plastic strain curve from each of the 12 input stress-strain curves.
The derivative of the plastic strain with respect to the plastic multiplier A can be computed from the flow
law for each of the specialized unidirectional (or off-axis) cases represented by the input stress-strain
curves. Note that for the off-axis cases the flow law must first be written in the material axis system and
then the plastic strains must be transformed into the structural axis system in order to compute the proper
derivative of the plastic strain with respect to the plastic multiplier. A secant iteration approach is used in
combination with the radial return method to compute the specific value of the effective plastic strain rate
(Ref. 12).

Characterization of Flow Law Coefficients

The coefficients in the flow rule need to be characterized based on data obtained from experimental
stress-strain curves for the composite. Specifically, data from the 12 experiments leading to the input
stress-strain curves must be utilized. The data can be obtained either from actual experiments or
numerical experiments. For example, if one knows the mechanical properties and stress-strain curves for
the fiber and matrix constituents, numerical analyses can be conducted using either high fidelity finite
element analysis (where the fiber and matrix are modeled as distinct constituents) or analytical tools such
as the NASA Glenn developed micromechanics code MAC/GMC (Ref. 14) to obtain numerical
approximations to the actual composite experimental data.

First, the procedures used to obtain the required coefficients for the simplified case of a unidirectional
carbon fiber based polymer matrix composite will be discussed. Afterward, a generalized procedure to
obtain the required constants for a general composite will be presented. For a unidirectional carbon fiber
composite, as discussed by Sun and Chen (Ref. 11) a reasonable approximation to make is that due to the
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linear behavior of the carbon fiber the plastic strain in the fiber direction (the 1 direction) is equal to zero
for all values of stress. By examining the second expression in Equation (6), one can conclude that for a
general stress state the only way the plastic strain in the 1 direction can be zero is for the coefficients H,
H,, and H,; to all be identically zero. Next, since the transverse tension response of the composite can
display a certain degree of nonlinearity, a reasonable approximation to make is that for the case of a
unidirectional load in the 2 direction the effective stress is equal to the applied transverse tension stress
0,,. By simplifying the plastic potential function /# (shown in Equation (5)) for the case of a unidirectional
transverse tension stress, and by setting this term (along with the transverse tensile stress) equal to the
effective stress, one can show that the value of the coefficient /7,, must equal one. Since a unidirectional
composite is transversely isotropic, one can set the value of H;; to also equal one. Given these values,

using the definition of the plastic Poisson’s ratio v4, shown in Equation (7), one can find that the

coefficient H,; equals the negative of the plastic Poisson’s ratio v£;. Since the flow surface coefficients

are assumed to be constant, an average value of the plastic Poisson’s ratio must be determined from the
experimental and/or numerical test data from a unidirectional transverse tension test. To determine the in-
plane shear coefficient Hy,, utilizing a procedure similar to that developed by Sun and Chen (Ref. 11) for
their model, the plastic potential function % given in Equation (5) and the plastic strain definition given in
Equation (6) can be simplified for the case of in-plane shear loading in the 1-2 direction, yielding the
following expressions.

h=06.=0124/ Has

p (14)
el) =0.5¢f\Hi =€l = f12

0.5V Hu

Starting from the experimental stress versus plastic strain plot for the case of in-plane shear loading,
using the expressions in Equation (14) the value of Hy4 can be optimized to provide the closest possible
match with the overall effective stress versus effective plastic strain curve, selected for the case of a
unidirectional carbon fiber composite to be the transverse tension stress versus plastic strain curve. Due to
the transverse isotropy of the unidirectional composite, the value of the coefficient Hyq can be set equal to
the value of the coefficient /H,4. To determine the value of the Hss coefficient, a similar procedure can be
carried out for the case of shear loading in the 2-3 direction. Alternatively, due to the transverse isotropy
of the composite, by computing the effective stress for the case of off-axis loading in the 2-3 plane, an
isotropic type of relation can be determined for the coefficient Hss

Hss =2(1+V§3) (15)

where v, is the plastic Poisson’s ratio in the 2-3 direction, obtained from the material data.

Similar procedures are used for the case of a general composite with no identified symmetries. An
example of a general composite would be a triaxially braided composite which is modeled as a smeared,
homogenous material. Another example would be a generalized laminated composite modeled as a
smeared, homogeneous material. For the case of a general composite, a unidirectional tension test in the
longitudinal (1) direction is chosen as the baseline case. By utilizing Equation (5) and setting the plastic
potential function and the unidirectional longitudinal stress equal to the effective stress, the value of the
H\ coefficient can be found to equal one. Based on the relations given in Equation (7), the value of the

coefficient H;, can be found to equal the negative of the plastic Poisson’s ratio v/, , and the value of the
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coefficient /5 can be found to be equal to the negative of the plastic Poisson’s ratio v{;. As before, the

value of the plastic Poisson’s ratio used in the computations is the average value of the parameter
determined from the experimental and/or numerically obtained data. In a similar fashion, the values of the
coefficients H,,, H,; and H3; can be computed.

P
A%
H2 =—;2
Va1
viy
Ha3 =-vh,—= (16)
vP
21
P
A%
H33 =—;3
V31

To compute the values of the coefficients Hy4, Hss, and Hygg, the same procedure that was utilized to
compute H,, for the case of a unidirectional carbon fiber composite is used, only all three shear loading
cases (05, 03, and o3;) must be used.

Conclusions

A generalized plasticity model suitable for use in polymer composite impact simulations has been
developed. The plasticity model will be part of a generalized plasticity and damage model which will be
implemented into LS-DYNA as MAT 213. The yield function is based on the Tsai-Wu composite failure
model, and a suitable nonassociative flow rule was defined. Methods of utilizing tabulated stress-strain
data to track the evolution of the yield stresses as a function of the effective plastic strain have been
developed. The elastic constitutive equation can be used in combination with the consistency condition to
compute the effective plastic strain. In a companion paper (Ref. 12), further details of the numerical
algorithm are provided along with examples of verification and validation studies which have been
performed to examine the accuracy and efficiency of the analytical model.

Future efforts will involve the development of an equivalent damage model, to be employed in
combination with the plasticity model, which will also be based on utilizing tabulated stress-strain data to
track the evolution of damage in the composite. Element failure will also be incorporated within the
model. In addition, strain rate and temperature effects will be added to the analysis capability. Overall,
when completed the composite model as implemented in MAT_ 213 will provide significant
improvements to the state of the art in the modeling of the impact response of polymer matrix composites.
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