The Magnetically Tuned
Transition-Edge Sensor
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1 Sharper field-tunable resistive transitions v Yes!
2 Increased X-ray pulse signal size. v Yes!
3 Faster X-ray pulse decay times v Yes!
4 Increased Signal to Noise v Yes!
5 Reduction in Johnson Noise ?
6 ?

Reduction in AE;yum




Predicted Measured on Comments

MTES Proto-type MTES
properties device

At B_=0, B decreases as |g| decreases. v yes From Z and IV measurements.

B further reduced for B_>0 and g<O0. v yes From Z and IV measurements.

MTES B reduced by more than a factor of 10. * v yes From Z measurements

B reduced over the entire operating bias trajectory. v yes Measured from R/R,, = 0.05 to 0.95

B reduction accompanied by a desirable increase in a. v yes Decrease in B/a.

Increase in X-ray pulse signal size. v yes Increased pulse heights until saturation

Faster X-ray pulse decay times v yes MTES 5 times faster

Decrease in NEP § v yes Magnetic tuning dropped NEP from 1.6
eV to 0.24 eV at 6 keV.

B can be even assume negative values v yes From IV and Z measurements

It is possible to stably bias the MTES in this negative 8 v yes From Z measurements

regime.

Reduction in Johnson Noise § ? (untested) Suffered from increase pickup noise due

to prototype design
Reduction in AEyum § ? (untested) Pickup noise and heat capacity too small

for the radically increased responsivity.

*. if resistively shunted junction weak-link model is satisfied
§ :if higher order nonlinear nonequilibrium Johnson noise terms are negligible and no new introduced
noise sources.



A “better” TES? Where do we start?

Small Signal Limit TES Calorimeter Expressions
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4 -larger signal size A
Goal: gl , ofl m) -faster recovery time
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N -improved energy resolution y,




Including Magnetic Field Effects in the TES R(T,1,B)

For the first time we include the magnetic field dependence in the TES response using our theoretical model. In other
words, we express the TES resistance R as function of temperature T, current I, and magnetic field B.

We then expand the R(T,1,B) function about a operating point  vg = (Rg, 7o, Io, Bo)

substitute the definitions for deviations from this operating point 01" =T — 1y , 0l =1 — 1y, 0B = B — By

oT ol 3;

We then use our successful theoretical model describing the B— B3 Bseif = Bsely + Biely
magnetic self-fielding effect which expresses total field B as a I injection internal

sum of a constant applied field B, and the self-field g | where g . . 6B = adl
is a geometric “self-fielding factor” and TES current I; B = Ba + Bseif = Ba+91 g
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MTES = “magnetically tuned TES ... reduced S#AND increased «
J.E. Sadleir et al. (Wednesday 11:15am)
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Moderate self-fielding g
beta = 0 at small R/Rn
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Fig.8: Left: Measured R, (T) for a fixed self-fielding constant but varying applied B. Right: the equivalent calculated
curves, except that the black dashed curve represents no B and no self field. The apparent dR/dT = a,,= (2ax - nf)/
(2+ ), thus we have demonstrated that engineering the self-fielding can create a device with lower, and even negative,
values for f5.
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Fig.8: Left: Measured R, (T) for a fixed self-fielding constant but varying applied B. Right: the equivalent calculated
curves, except that the black dashed curve represents no B and no self field. The apparent dR/dT = a,,= (2ax - nf)/

(2+ ), thus we have demonstrated that engineering the self-fielding can create a device with lower, and even negative,
values for f5.
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Asymmetric Current Injection
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e Want to make a calorimeter. Want a response
that is sensitive to

 Understanding of the exotic TES physics
effects led to my recommendation to use
MoAu as the sensor material for a MPT
thermometer. Given the best results to date.



Other reasons we need
superconducting knowledge

e Superconducting absorbers (have low heat
capacity, the design challenge is to minimize the
long lived quasiparticles or energy traps).

e Superconducting leads to bring the sighal in and
out of the low temperature detector signals.

e MoAu basic understanding lead me to suggest
using this material for Magnetic Penetration
depth Thermometer (MPT). It remains the best
result to date of any MPT sensor.




