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Abstract—We present results and analysis investigating the 

effects of radiation on a variety of candidate spacecraft 

electronics to proton and heavy ion-induced single-event 

effects (SEE), proton-induced displacement damage (DD), and 

total ionizing dose (TID). This paper is a summary of test 

results. 
 

Index Terms—Single-event effects, proton-induced 

displacement damage, total ionizing dose, spacecraft electronics, 

digital, linear bipolar, and hybrid devices. 

I. INTRODUCTION 

NASA spacecraft are subjected to a harsh space 

environment that includes exposure to various types of 

ionizing radiation. The performance of electronic devices in a 

space radiation environment is often limited by its 

susceptibility to single event effects (SEE), total ionizing dose 

(TID), and displacement damage (DD). Ground-based testing 

is used to evaluate candidate spacecraft electronics to 

determine risk to spaceflight applications. Interpreting the 

results of radiation testing of complex devices is quite 

difficult. Given the rapidly changing nature of technology, 

radiation test data are most often application-specific and 

adequate understanding of the test conditions is critical [1]. 

Studies discussed herein were undertaken to establish the 

application-specific sensitivities of candidate spacecraft and 

emerging electronic devices to single-event upset (SEU), 

single-event latchup (SEL), single-event gate rupture (SEGR), 

single-event burnout (SEB), single-event transient (SET), TID, 

enhanced low dose rate sensitivity (ELDRS), and DD effects. 
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II. TEST TECHNIQUES AND SETUP 

A. Test Facilities 

All tests were performed between February 2013 and 

February 2014. Heavy ion experiments were conducted at the 

Lawrence Berkeley National Laboratory (LBNL) [2] and at 

the Texas A&M University Cyclotron (TAMU) [3]. Both of 

these facilities are suitable for providing a variety of ions over 

a range of energies for testing. The devices under test (DUTs) 

were irradiated with heavy ions having linear energy transfers 

(LETs) ranging from 0.6 to 120 MeV•cm2/mg. Fluxes ranged 

from 1x102 to 1x105 particles/cm2/s, depending on device 

sensitivity. Table 1 shows representative ions used at LBNL 

and Table 2 contains representative ions used at TAMU. LETs 

in addition to the values listed were obtained by changing the 

angle of incidence of the ion beam with respect to the DUT, 

thus changing the path length of the ion through the DUT and 

the "effective LET" of the ion [4]. Energies and LETs 

available varied slightly from one test date to another. 

Laser SEE tests were performed at the pulsed laser facility 

at the Naval Research Laboratory (NRL) using two-photon 

absorption [5], [6] with the light incident from the back side of 

the wafer following polishing to produce a mirror-like finish. 

The laser light parameters are listed in Table III. 

Proton SEE, DD and TID tests were performed at the 

University of California at Davis (UCD) Crocker Nuclear 

Laboratory (CNL) using a 76” cyclotron (maximum energy of 

63 MeV) [7]. Pulse width and beam spot size are listed in 

Table IV. 

TID testing was performed using a 60Co source. The source 

is capable of delivering dose rates between 0.0005 rad(Si)/sec 

and 50 rad(Si)/sec. 
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TABLE I: LBNL TEST HEAVY IONS 

Ion 
Energy 
(MeV) 

Surface 
LET in Si 

(MeV•cm2/mg) 
(Normal Incidence) 

Range in 
Si (µm) 

18O 183 2.2 226 

22Ne 216 3.5 175 

40Ar 400 9.7 130 

23V 508 14.6 113 

65Cu 660 21.2 108 

84Kr 906 30.2 113 

107Ag 1039 48.2 90 

124Xe 1233 58.8 90 

LBNL 10 MeV per amu tune 

 
TABLE II: TAMU TEST HEAVY IONS  

Ion 
Energy 
(MeV) 

Surface 
LET in Si 

(MeV•cm2/mg) 
(Normal Incidence) 

Range in 
Si (µm) 

14N 210 1.3 428 

20Ne 300 2.5 316 

40Ar 599 7.7 229 

63Cu 944 17.8 172 

84Kr 1259 25.4 170 

109Ag 1634 38.5 156 

129Xe 1934 47.3 156 

197Au 2954 80.2 155 

TAMU 15 MeV per amu tune 

84Kr 2081 19.8 332 

139Xe 3197 38.9 286 

TAMU 25 MeV per amu tune 

amu = atomic mass unit 

 
TABLE III: LASER TEST FACILITY 

Naval Research Laboratory (NRL) Pulsed Laser SEE Test Facility 

Laser: 1260 nm, 140 fs pulse width, beam spot size ~1.3 μm and 
repetition rate of 1 KHz. 

 
TABLE IV: PROTON TEST FACILITIES 

University of California at Davis (UCD) Crocker Nuclear Laboratory 

(CNL), energy tunes ranged from 6.5 to 63 MeV, flux ranged from 8×107 

to 1×109 particles/cm2/s. 

 

 

B. Test Method 

Unless otherwise noted: 

All tests were performed at room temperature and with 

nominal power supply voltages. We recognize that 

temperature effects and worst-case power supply conditions 

are recommended for device qualification; SEE testing was 

performed in accordance with JESD57 test procedures [8]; and 

TID testing was performed in accordance with MIL-STD-883, 

Test Method 1019 [9]. 

1) SEE Testing - Heavy Ion: 

Depending on the DUT and the test objectives, one or 

more of three SEE test methods were typically used: 

Dynamic – the DUT was exercised continually while being 

exposed to the beam. The events and/or bit errors were 

counted, generally by comparing the DUT output to an 

unirradiated reference device or other expected output (Golden 

chip or virtual Golden chip methods) [10]. In some cases, the 

effects of clock speed or device operating modes were 

investigated. Results of such tests should be applied with 

caution due to the application-specific nature of the results. 

Static – the DUT was configured prior to irradiation; data 

were retrieved and errors were counted after irradiation. 

Biased – the DUT was biased and clocked while power 

consumption was monitored for SEL or other destructive 

effects. In most SEL tests, functionality was also monitored. 

In SEE experiments, DUTs were monitored for soft errors, 

such as SEUs, and for hard errors, such as SEGR. Detailed 

descriptions of the types of errors observed are noted in the 

individual test reports [11], [12]. 

SET testing was performed using high-speed oscilloscopes 

controlled via LabVIEW®. Individual criteria for SETs are 

specific to the device and application being tested. Please see 

the individual test reports for details [11], [12]. 

Heavy ion SEE sensitivity experiments include 

measurement of the linear energy transfer threshold (LETth) 

and cross section at the maximum measured LET. The LETth 

is defined as the maximum LET value at which no effect was 

observed at an effective fluence of 1×107 particles/cm2. In the 

case where events are observed at the smallest LET tested, 

LETth will either be reported as less than the lowest measured 

LET or determined approximately as the LETth parameter 

from a Weibull fit. In the case of SEGR experiments, 

measurements are made of the SEGR threshold Vds (drain-to-

source voltage) as a function of LET and ion energy at a fixed 

Vgs (gate-to-source voltage). 

2) SEE Testing - Proton 

Proton SEE tests were performed in a manner similar to 

heavy ion exposures. However, because protons cause SEE 

via indirect ionization of recoil particles, results are 

parameterized in terms of proton energy rather than LET. 

Because such proton-induced nuclear interactions are rare, 

proton tests also feature higher cumulative fluences and 

particle flux rates than heavy ion experiments. 

3) SEE Testing - Pulsed Laser 

DUTs are mounted on an X-Y-Z stage that can move in 

steps of 0.1 microns for accurate determination of the volumes 

sensitive to single event effects. The light is incident from the 

back side, which is polished to a mirror-like finish, and is 

focused through the substrate using a 100x lens that produces 

a spot diameter of approximately 1.3 μm at full-width half-

maximum (FWHM). An illuminator, together with an infrared 

camera and monitor, were used to image the area of interest 

thereby facilitating accurate positioning of the device in the 

beam. The pulse energy was varied in a continuous manner 

using a polarizer/half-waveplate combination and the energy 

was monitored by splitting off a portion of the beam and 

directing it at a calibrated energy meter. 
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4) TID Testing - 60Co 

The test procedures, including the radiation dosimetry 

details, are most often performed in accordance with the latest 

version of MIL-STD-883 Test Method 1019 [9]. Unless 

otherwise noted, the irradiation was performed using a room 

in-air 60Co facility where the sources are raised up out of the 

floor during exposures. Active dosimetry was performed using 

air ionization probes. The DUTs were placed inside a standard 

Pb/Al filter box.  

5) Displacement Damage - Proton Testing 

Proton-induced displacement damage tests were performed 

on biased devices. Functionality and parametric changes were 

measured either continually during irradiation (in-situ) or after 

step irradiations (for example: every 10 krad(Si), or every 

1x1010 protons/cm2). 

III. TEST RESULTS OVERVIEW 

Principal investigators are listed in Table V. Abbreviations 

and conventions are listed in Table VI. SEE results are 

summarized in Table VII. Unless otherwise noted all LETs are 

in MeV•cm2/mg and all cross sections are in cm2/device. All 

SEL tests are performed to a fluence of 1×107 particles/cm2 

unless otherwise noted. 

TID and DD results are summarized in Table VIII and a 

synopsis of low dose rate on-going TID results are in 

Table IX. 
 

TABLE V: LIST OF PRINCIPAL INVESTIGATORS 

Principal Investigator (PI) Abbreviation 

Melanie D. Berg MB 

Megan C. Casey MCC 

Michael J. Campola MJC 

Dakai Chen DC 

Robert A. Gigliuto RG 

Raymond L. Ladbury RL 

Jean-Marie Lauenstein JML 

Jonathan A. Pellish JP 

 

TABLE VI: ABBREVIATIONS AND CONVENTIONS 

LET = linear energy transfer (MeV•cm2/mg) 
LETth = linear energy transfer threshold (the maximum LET 

value at which no effect was observed at an effective 
fluence of 1x107 particles/cm2 – in MeV•cm2/mg) 

< = SEE observed at lowest tested LET 
> = no SEE observed at highest tested LET 
 = cross section (cm2/device, unless specified as cm2/bit) 
maxm = cross section at maximum measured LET 

(cm2/device, unless specified as cm2/bit) 
amu = atomic mass unit 
Ag = Silver 
Ar = Argon 
AVO = open loop gain 
BiCMOS = bipolar complementary metal oxide 

semiconductor 
CCD = charge coupled device 
CMOS = complementary metal oxide semiconductor 
DIMM = duel inline memory module 
DUT = device under test 
EF = enhancement factor 
ELDRS = enhanced low dose rate sensitivity 
FF = functional failure 
H = heavy ion test 
hFE = forward current gain 
ID# = identification number 
IIB = input bias current 
Iout = output current 
L = laser test 
LBNL = Lawrence Berkeley National Laboratory 
LDC = lot date code 
LDMOS = laterally diffused metal oxide semiconductor 
LDR = low dose rate 
LVPECL = Low-voltage positive emitter-coupled logic 
MOSFET = metal-oxide-semiconductor field-effect transistor 
NA = not available 
NAND = Negated AND or NOT AND 
NRL = Naval Research Laboratory 
PI = principal investigator 
REAG = radiation effects and analysis group 
ReRAM = Reduction-oxidation random access memory 
Rev. = revision 
RX = receiver output 
SEB = single event burnout 
SEE = single event effect 
SEGR = single event gate rupture 
SEL = single event latchup 
SET = single event transient 
SEU = single event upset 
Si = Silicon 
SiC = silicon carbide 
SiGe = silicon germanium 
SJ VDMOS = super junction vertical double diffused 

MOSFET 
SOI = silicon on insulator 
Ta = Tantalum 
TAMU = Texas A&M University Cyclotron Facility 
TO = transistor outline 
TX = transceiver output 
V = volt 
VBE = base-emitter voltage 
Vcc = power supply voltage / core voltage 
VCE = collector-emitter voltage 
VCM = common mode voltage 
VDS = drain-source voltage 
VGS = gate-source voltage 
VIH = input high voltage 
VIL = input low voltage 
VIH_min = input low minimum voltage 
VIL_max = input low maximum voltage 
Vin = input voltage 
VIO = input/output voltage 
VOS = input offset voltage 
VOUT = output voltage 
VR = reverse voltage 
Xe = Xenon 
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TABLE VII: SUMMARY OF SEE TEST RESULTS 

Part Number Manufacturer 
LDC or 

Wafer #; 
REAG ID# 

Device 
Function 

Tech-
nology 

Particle: 
(Facility/Year/Month) P.I. 

Test Results:  
LET in MeV•cm2/mg,  

σ in cm2/device, unless otherwise 
specified S

u
p

p
ly

 

V
o

lt
a
g

e
 

S
a
m

p
le

 S
iz

e
 

(N
u

m
b

e
r 

T
e

s
te

d
) 

Logic Device:         

ACT4468 Aeroflex 
1210;  

13-039 
Transceiver Bipolar H: (TAMU13May) DC 

SET 2.8<LETth<4.0 

σmaxm=7×10-4 cm2 [13] 
5 V 3 

SNJ54LVC14AFK Texas Instruments 
1137B; 
13-029 

Hex Schmitt-
Trigger 
Inverter 

BiCMOS 
H: (TAMU13May) 
DC 

SELth~70  

σmaxm =7 × 10-6 cm2 at 100oC 
Not immediately destructive. [14] 

3.5 V 3 

SiC:         

GB20SLT12 GeneSiC 
1209; 

13-032 
Schottky 

Diode 
SiC 

H: (TAMU13June) 
JML/MCC 

Immediate catastrophic SEB at 
500 VR with 1110 MeV Ag. VRRM 
and IR severely degraded at 
lower VR. 1110 MeV Ag: 
threshold for degradation < 350 
V; 709 MeV Cu: < 375 V; 267 
MeV Ne: 550 V<VR<600 V. [15] 

Up to 
1100 
VR 

14 

C4D40120D CREE 
Wafer # 
E23312; 
13-033 

Schottky 
Diode 

SiC H: (TAMU13May) MCC 

1110 MeV Ag: SEE-induced 
degradation VR<=150 V; VR 
threshold for catastrophic failure 
(SEB) < 500 V. [16] 

Up to 
650 VR 

9 

CPM-1200-0025B CREE 
1327;  

13-069 
Power 

MOSFET 
SiC H: (LBNL13Sept) MCC 

996 MeV Xe: Immediate 
catastrophic SEB at VDS < 650 V; 
threshold not found. At all other 
voltages tested, degradation in 
both gate and drain currents was 
observed suggestive of SEB 
damage. [17]  

0 VGS 8 

MSK1852P 
CREE (Packaged by 

MSKennedy) 
1332;  

13-070 
Power 

MOSFET 
SiC H: (LBNL13Sept) MCC 

At voltages up to 500 VDS and at 
all beam conditions tested, no 
immediate catastrophic failure 
was observed but degradation in 
both gate and drain currents was 
observed. Failures were 
suggestive of SEGR damage. 
[18] 

0 VGS 13 

MSK1852PN 
CREE (Packaged by 

MSKennedy) 
1332;  

13-071 
MOSFET SiC H: (LBNL13Sept) MCC 

At all voltages and beam 
conditions tested, no immediate 
catastrophic failure was observed 
but degradation in both gate and 
drain currents were observed.  
Failures were suggestive of SEB 
damage. [19] 

0 VGS 11 

CHTPLA8543C Cissoid 
1312; 
1324;  

13-044 

Power 
MOSFET 

SiC 
H: (TAMU13June);  
H: (LBNL13Sept) JML 

Contact PI for test results. 0 VGS 8 

IDW40G65C5FKSA1 Infineon 
HAA249; 
13-038 

Schottky 
Diode 

SiC 
H: (TAMU13May-Jun) 
MCC 

1289 MeV Ag:  SEB induced 
degradation VR<200 V; 
immediate catastrophic failure 
observed at VR=300 V. [20] 

Up to 
300 VR 

13 

Power:         

IPW65R019C7 Infineon 
HAA249;  
13-060 

MOSFET 
SJ 

VDMOS 
H: (TAMU13June) JML 

SEB. 1289 MeV Ag:300 V < VDS 
< 325 V [21] 

0 VGS 3 

MOS-250-2 FUJI 
Test Chip; 

13-061 
MOSFET VDMOS H: (LBNL13Sept) JML 

SEGR. 1233 MeV Xe (LET = 59) 
pass 250 VDS at 0 to -10 VGS; fail 
< 200 VDS at -15 VGS. [22] 

0, -10, 
-15 
VGS 

3 

B1230-X18, CA18HA JAZZ 
Test Chip; 

A613 
MOSFET LDMOS 

H: (TAMU13June); 
(LBNL13Sept) JML 

Contact PI for test results. 0 VGS N/A 

IXDI630CI IXYS 
1209;  

13-034 
MOSFET 

Gate Driver 
CMOS 

H: (TAMU13June) 
MCC 

SEL 8.6 < LETth < 20. [23] 35 V 4 

ADUM3223AR7 Analog Devices 
1251; 

13-031 
Half-Bridge, 

Driver 
CMOS H: (TAMU13May) MCC SEL LETth < 8.3. [24] 5 V 3 

Memory:         

K4T1G084QF-BCE6 
die on 

M470T2863FB3-CE6 
DIMM 

Samsung 
LDC NA; 
12-036 

DDR2 CMOS L: (NRL14Jan) RL 

SEU were seen when the DDR2 
memory array was irradiated with 
laser at NRL two-photon 
absorption facility. [25] 

1.5 V 1 
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Part Number Manufacturer 
LDC or 

Wafer #; 
REAG ID# 

Device 
Function 

Tech-
nology 

Particle: 
(Facility/Year/Month) P.I. 

Test Results:  
LET in MeV•cm2/mg,  

σ in cm2/device, unless otherwise 
specified S

u
p

p
ly
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m
b

e
r 

T
e

s
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d
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K4B2G0846-HCH9 
(13-015) 2 Gb die on 
M471B5773DH0-CH9 

DIMMs and 
K4B4G0846B-HCH9 
(12-037) 4Gb die on 

M471B5773DH0-CH9 
DIMMs 

Samsung 
LDC NA; 
13-015;  
12-037 

DDR3 CMOS 
H: (TAMU13May) RL; 
L: (NRL13Mar) RL 

H: SEU and SEFI seen down to 
lowest test 1.5< LET>2.5;  
Onset LET for block errors~5; 
Onset LET for SEFI~ 2. 

maxm ~8x10-4 cm2 per device for 
SEU, ~1E-4 cm2 per device for 
block errors and~1x10-5 cm2 per 
device SEFI. 
Die revision variance in stuck bit 
susceptibility, see test report. [26] 
L: No SEU were observed. 

1.5 V 

4 parts 
tested, 
2 Rev. 
C die 
and 2 

Rev. D 
die 

MN101L Panasonic 
LDC NA; 
13-075 

Embedded 
Resistive 
Memory 

ReRAM, 
180 nm 
CMOS 

H: (TAMU13Dec) DC 

H: ReRAM array is immune to 
upsets. SEFI LETth ~ 3.1;  

 = 4 × 10-5 cm2/device at LET of 
70. [27] 

3.3 V 3 

Schottky Diodes:         

120720A 
Crane Aerospace & 

Electronics 

Wafer # 
1-T33;  
12-078 

Schottky 
Diode 

Si H: (TAMU13May) MCC 
No failures observed at 100% of 
reverse voltage when irradiated 
with 2076 MeV Ta. [28] 

45 V 4 

1N5819UB1 STMicroelectronics 
Wafer # 
31244A; 
13-035 

Schottky 
Diode 

Si 
H: (TAMU13June) 
MCC 

No failures observed at 100% of 
reverse voltage when irradiated 
with 1512 MeV Xe. [28] 

45 V 3 

95-9942U 
International 

Rectifier/Vishay 
Wafer # 

23; 13-048 
Schottky 

Diode 
Si 

H: (TAMU13June) 
MCC 

No failures observed at 100% of 
reverse voltage when irradiated 
with 1512 MeV Xe. [28] 

150 V 3 

95-9951U 
International 

Rectifier/Vishay 
Wafer # 7; 

13-047 
Schottky 

Diode 
Si 

H: (TAMU13June) 
MCC 

No failures observed at 100% of 
reverse voltage when irradiated 
with 1366 MV Xe. [28] 

45 V 3 

95-9953U 
International 

Rectifier/Vishay 

Wafer # 
320;  

13-049 

Schottky 
Diode 

Si 
H: (TAMU13June) 
MCC 

No failures observed at 67% of 
reverse voltage when irradiated 
with 1512 MeV Xe. [28] 

150 V 1 

96-1052U 
International 

Rectifier/Vishay 
Wafer # 1; 

13-046 
Schottky 

Diode 
Si 

H: (TAMU13June) 
MCC 

No failures observed at 100% of 
reverse voltage when irradiated 
with 1366 MeV Xe. [28] 

60 V 3 

96-1063U 
International 

Rectifier/Vishay 
Wafer # 4; 

13-045 
Schottky 

Diode 
Si 

H: (TAMU13June) 
MCC 

No failures observed at 100% of 
reverse voltage when irradiated 
with 1366 MeV Xe. [28] 

45 V 4 

STPS1045CS1FR STMicroelectronics 
wafer 

31203A; 
13-036 

Schottky 
Diode 

Si 
H: (TAMU13June) 
MCC 

No failures observed at 100% of 
reverse voltage when irradiated 
with1512 MeV Xe. [28] 

45 V 3 

STPS20100CFSY1FR STMicroelectronics 
wafer 

31013A; 
13-037 

Schottky 
Diode 

Si H: (TAMU13May) MCC 

Electrical characteristic 
degradation at 100% of rated 
voltage when irradiated with  
1512 MeV Xe. Immediate 
catastrophic failure with  
2076 MeV Ta. [28] 

100 V 3 

FPGA:         

Virtex 5QV Xilinx 
1217; 

12-003 
12-004 

Virtex 5 FPGA CMOS 
H: (TAMU13May;June; 
Dec) MB 

Contact PI for test results. [29] 4.5 V 2 

A3PE3000L Actel/Microsemi 
1108; 

12-052 
ProASIC 

FPGA 
CMOS H: (TAMU13Dec) MB 

Ongoing research investigating 
different mitigation strategies. 
[30] [31]  

1.5; 
2.5; 
and 

3.3 V 

2 

Miscellaneous:         

IS2981 Intersil 
0124;  

13-043 
Source driver CMOS 

H: (TAMU13May) 
DC 

SET 15.3<LETth<18.4  

σmaxm=1×10-3 cm2 [32] 
28 V 3 

LM6172 Texas Instruments 
1208A; 
13-076 

Operational 
Amplifier 

Bipolar H: (TAMU13Dec) MCC 
SET 0.14<LETth<0.87 

σmaxm=1×10-3 cm2 [33] 
±5 V 2 

ADV212 Analog Devices 

1216; 
1220;  

13-052; 
13-053 

Video Codec 
Hybrid 
0.18µ 
CMOS 

H: (TAMU13June) RG 
SEL 1.3< LETth <2.7;  
SEFI LETth < 1.3;  
Frame Upsets LETth < 1.3 [34] 

1.5 V;  
3.3 V 

3 
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Part Number Manufacturer 
LDC or 

Wafer #; 
REAG ID# 

Device 
Function 

Tech-
nology 

Particle: 
(Facility/Year/Month) P.I. 

Test Results:  
LET in MeV•cm2/mg,  

σ in cm2/device, unless otherwise 
specified S

u
p

p
ly

 

V
o

lt
a
g

e
 

S
a
m

p
le

 S
iz

e
 

(N
u

m
b

e
r 

T
e

s
te

d
) 

CMOS – Test Chip:         

32 nm SOI (Deneb) IBM 
Test Chip; 

13-067 

SET Pulse 
Width 

Measurement 

32 nm 
SOI 

CMOS 
H: (LBNL13Sept) JP 

SET pulse width data gathered 
from 2-59 MeV•cm2/mg.  This 
was an initial test of the device; 
follow-up testing will be required 
to complete the data set. [35] 

0.9 V 2 

32nm SOI (Hogwarts) IBM 

2291, 
2109; 
2210;  

12-033; 
A617 

SRAM 
32nm 
SOI 

H: (LBNL13Jan; 
TAMU13May) JP;  
P: (UCD13Nov) JP 

SRAM tested with the 10 
MeV/amu cocktail at LBNL, the 
25 MeV/amu tune at TAMU, 
protons from 64 MeV down to 
stopping at UCD, and alpha 
particles from 30 MeV down to 
stopping at UCD.  

σmaxm ~1×10-3 cm2/Mbit with an 
SEU LETth < 0.9. The SRAM was 
sensitive to low-energy protons. 
[36] 

0.77 & 
1.05 V 

1 

 

TABLE VIII: SUMMARY OF TID AND DD TEST RESULTS 

Dose rate (mrad(Si)/s) or Proton Energy (MeV) unless otherwise specified. 

Part Number Manufacturer 
LDC or  

Wafer #; 
REAG ID# 

Device Function 
Tech-

nology 
PI Results 

App. 
Spec 
(Y/N) 

Dose rate 
(mrad(Si)/s) 
or Proton 

Energy 
(MeV) 

Degradation 
Level (krad(Si)) 

or Proton 
Fluence 

Operational Amplifier: 

AD648 Analog Devices 
1225; 

13-005 
Operational 

Amplifier 
Bipolar MCC 

Input bias current and open 
loop gain out of spec between 
20 and 30 krad(Si). Parts 
experienced functional failure 
between 70 and 80 krad(Si). 
[37] 

N 10 20<IIB, AVO<30 

OP471 Analog Devices 
0646A; 
13-010 

Operational 
Amplifier 

Bipolar RL 

All parameters within 
specifications up to 50 
krad(Si); equipment failure led 
to VOS measurements being 
unusable [38] 

Y 
0.01 

rad(Si)/s 
>50 (VOS data 

invalid) 

OP484 Analog Devices 
1039; 

12-072 
Operational 

Amplifier 
Bipolar RL 

All parameters remained 
within specifications up to and 
including 15 krad(Si).  VIO 
went out of specification 
between 15 and 20 krad(Si).  
All other parameters remained 
within specification to 40 
krad(Si). [39] 

Y 
0.01 

rad(Si)/s 
15<VIO<20 

OP497 Analog Devices 
1118A  
13-041 

Operational 
Amplifier 

Bipolar MJC 
Input offset current out of spec 
>5 krad(Si). [40] 

Y 10 4.5<VCM<7 

Transistor:          

SFT2369 
Solid State Devices, 

Inc. 
1047; 

13-028 
Transistor Bipolar DC 

Gain degradation. No bias 
dependence. [41] 

N 10 >50 

SFT2907A 
Solid State Devices, 

Inc. 
1047;  

13-027 
Transistor Bipolar DC 

Gain exceeded specifications. 
No bias dependence. [42] 

N 10 20<hFE<40 

SFT2222A 
Solid State Devices, 

Inc. 
1046; 

13-026 
Transistor Bipolar DC 

Gain exceeded specifications. 
Minimal bias dependence. [43] 

N 10 30<hFE<50 

Analog/Linear:          

SMA1031 M/A-COM 
1218;  

12-051 
Amplifier Bipolar MJC 

All parameters remained in 
specification to 20 krad(Si). 
[44] 

Y 10 >20 

Miscellaneous:          

NB7L14MN On Semiconductor 
0936;  

12-055 

Differential 1:4 
LVPECL Fanout 

Buffer 
SiGe MJC 

All parameters remained in 
specification to 20 krad(Si). 
[45] 

Y 10 >20 
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Part Number Manufacturer 
LDC or  

Wafer #; 
REAG ID# 

Device Function 
Tech-

nology 
PI Results 

App. 
Spec 
(Y/N) 

Dose rate 
(mrad(Si)/s) 
or Proton 

Energy 
(MeV) 

Degradation 
Level (krad(Si)) 

or Proton 
Fluence 

STAR1000 
Cypress 

Semiconductor 
1207;  

13-042 
CCD Image 

Sensor 
CMOS MJC 

All parameters remained in 
specification. [46] 

Y 63 MeV 3.75x1011 

MAX5069 Maxim 
LDC NA; 
13-059 

Pulse Width 
Modulator 

BiCMOS DC 

The part recovered 
functionality after 10 minutes 
of annealing.  
The part was irradiated on an 
application test circuit, which 
contained several active 
components, which have 
greater TID tolerance than the 
DUT. [47] 

Y 50 rad(Si)/s 20 < FF < 25 

MT29F32G08ABAA
AWP 

Micron 1106; A536 32G Flash 
NAND 
Flash 

Memory 
DC 

Initial functional failure 
occurred between 20 and 50 
krad(Si). All parts failed after 
100 krad(Si). The failures 
result in an inability to perform 
block erase. [48] 

N 50 rad(Si)/s 20 < FF < 50 

SNJ54LVC14AFK Texas Instruments 
1137B;  
13-029 

Hex Schmitt-
Trigger Inverter 

BiCMOS DC 
Parameters within 
specification. [49] 

N 50 rad(Si)/s >30 

HMC6416 Hittite Microwave 
0271;  

12-083 
Latched 

Compatator 
SiGe MJC 

No parametric changes 
observed up to 20 krad (Si) 
[50]  

Y 10 > 20 

ADV212 Analog Devices 
1216; 1220;  

13-050;  
13-051 

Video Codec 
Hybrid 
0.18 

uCMOS 
RG 

All parts functional to 50 
krad(Si).  
Leakage current increased > 
50 krad(Si). [34] 

Y 56 rad(Si)/s 50 

 

TABLE IX: SUMMARY OF LOW DOSE RATE TID TEST RESULTS (ON-GOING) 

Dose rate (mrad(Si)/s) unless otherwise specified. 

Part Number Manufacturer 
LDC or  

Wafer #; 
REAG ID# 

Device Function 
Tech-

nology 
PI Results 

App. 
Spec 
(Y/N) 

Dose rate 
(mrad(Si)/s) 

Degradation 
Level (krad(Si)) 

or Proton 
Fluence 

Operational Amplifier: 

LM124 
(Ceramic DIP-14) 

National 
Semiconductor 

JM0591182; 
A010; A132; 

and A148 

Operational 
Amplifier 

Bipolar DC 
Parameters within 
specification. 

Y 

1 > 100 

0.5 > 60 

LM158AJRQMLV 
(Ceramic DIP-8) 

National 
Semiconductor 

JM084X27; 
A166 

Operational 
Amplifier 

Bipolar DC 

Input bias current degradation 
shows dose rate sensitivity 
below 10 mrad(Si)/s. However 
parameters are within 
specification for all dose rates. 

N 

5, 1 > 100 

0.5 > 70 

RH1013MH 
(TO-5 Metal Can) 

Linear Technology 
0329A; 
A152 

Operational 
Amplifier 

Bipolar DC 

Small levels of dose rate 
sensitivity in the input bias 
current degradation. 
Parameters within 
specification. 

Y 

1 > 20 

0.5 > 20 

RH1013MJ8 
(Ceramic DIP) 

Linear Technology 
0305A; 
A152 

Operational 
Amplifier 

Bipolar DC 

Small levels of dose rate 
sensitivity in the input bias 
current degradation. 
Parameters within 
specification. 

Y 

1 > 20 

0.5 > 20 

RH1078MH 
(TO-5) 

Linear Technology 
0741A;  
A224 

Operational 
Amplifier 

Bipolar DC 
Parameters remain within 
post-irradiation specification. 

Y 

1 > 40 

0.5 > 30 

RH1078W 
(Flatpack) 

Linear Technology 
0325A;  
A224 

Operational 
Amplifier 

Bipolar DC 
Parameters remain within 
post-irradiation specification. 

Y 

1 > 40 

0.5 > 30 

RHF310 
(Ceramic Flat-8) 

STMicroelectronics 
30849A; 

A256 
Operational 

Amplifier 
Bipolar DC 

Input bias current and input 
offset voltage within 
specification. 

N 

5 > 100 

1 > 80 

0.5 > 50 
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Part Number Manufacturer 
LDC or  

Wafer #; 
REAG ID# 

Device Function 
Tech-

nology 
PI Results 

App. 
Spec 
(Y/N) 

Dose rate 
(mrad(Si)/s) 

Degradation 
Level (krad(Si)) 

or Proton 
Fluence 

RHF43B 
(Ceramic Flat-8) 

STMicroelectronics 
30820A; 
A257 and 

A589 

Operational 
Amplifier 

Bipolar DC 
Minimal dose rate sensitivity. 
Parameters within 
specification. 

N 

10 > 100 

1 > 50 

0.5 > 50 

Transistor:          

2N2222 
(Engineering 

samples) 
Semicoa 

1001;  
13-024 

NPN Transistor Bipolar DC 
Minimal degradation. All 
parameters within 
specification. [43] 

N 

10 >100 

1 >20 

0.5 >10 

2N3811JS Semicoa 
1456; 

13-063 
NPN Transistor Bipolar DC 

No bias dependence 
Two devices exceeded 
specifications after 30 
krad(Si). 

N 

50 rad(Si)/s 30 < hFE < 50 

10 >15 

2N3811UX Semicoa 
1994; 

13-064 
NPN Transistor Bipolar DC 

Flatpack devices show slightly 
worse degradation than TO 
can packaged devices in 
general.  

N 50 rad(Si)/s 50 < hFE < 70 

2N2222AJSR Semicoa 
1364;  

13-017 
Transistor Bipolar DC 

LDR EF = 3.9 after 100 
krad(Si). 

N 

10 35 < hFE < 45 

5 65 < hFE < 90 

1 >15 

0.5 >10 

2N2907 Semicoa 
0932; 

13-023 
PNP Transistor Bipolar DC 

Low dose rate testing in 
progress. LDR EF = 1.78 after 
100 krad(Si). 

N 10 40 < hFE < 50 

2N2857 Semicoa 
1008; 
A538 

NPN Transistor Bipolar DC 

All parameters within 
specification up to 100 
krad(Si). Minimal LDR 
sensitivity. 

N 
50 >100 

10 > 100 

2N2369 Semicoa 
1934; 

A543, and 
13-020  

NPN Transistor Bipolar DC 

All parameters within 
specification up to 100 
krad(Si). Minimal LDR 
sensitivity. 

N 
50 

rad(Si)/s, 
10 

> 100 

2N3700JV Semicoa 
1109;  

A544, and 
13-022 

NPN Transistor Bipolar DC 

Strong bias dependence. 
Biased devices show 
enhanced degradation than 
grounded devices. 

N 

10 20 < hFE < 35 

5 25 < hFE < 35 

1 >17 

0.5 >8 

2N3700UBJV Semicoa 
J1935; 
13-021 

Transistor Bipolar DC 
Dose rate effect not evident at 
this stage 

N 
10 10 < hFE < 20 

1 >15 

2N5153 Semicoa 
1013;  

13-019 
PNP Transistor Bipolar DC Minimal LDR EF. N 1 > 30 

2N5154 Semicoa 
1023;  

13-018 
Transistor Bipolar DC Minimal LDR EF. N 1 > 30 

Voltage Reference/ Voltage Regulators: 

LM136AH2.5QMLV 
(3-lead TO-46) 

National 
Semiconductor 

200746K019; 
A164 

Voltage 
Reference 

Bipolar DC 
Exhibits no LDR 
enhancement. 

N 

5, 1 > 100 

0.5 >70 

LM317KTTR Texas Instruments 
0608;  
A113 

Positive Voltage 
Regulator 

Bipolar DC 

Parameters within 
specification. Observed LDR 
sensitivity for parts irradiated 
at 0.5 and 1 mrad(Si)/s after 
20 krad(Si). 

N 

5, 1 > 100 

0.5 > 70 

LT1009IDR Texas Instruments 
0606;  
A327 

Internal 
Reference 

Bipolar DC 
Parameters within 
specification. Parts exhibit 
minimal LDR enhancement. 

N 
5, 1 > 100 

0.5 > 70 

RHFL4913ESY332 
(TO257) 

STMicroelectronics 
30828A 

A258 and 
A259 

Voltage 
Regulator 

Bipolar DC 
All parameters within 
specification. Minimal dose 
rate sensitivity. 

N 
10, 5, 1 >100 

0.5 > 30 

RHFL4913KP332 
 (Flat-16) 

STMicroelectronics 
30814B 

A258 and 
A259 

Voltage 
Regulator 

Bipolar DC 
All parameters within 
specification. Minimal dose 
rate sensitivity. 

N 
10, 5, 1 >100 

0.5 > 30 
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Part Number Manufacturer 
LDC or  

Wafer #; 
REAG ID# 

Device Function 
Tech-

nology 
PI Results 

App. 
Spec 
(Y/N) 

Dose rate 
(mrad(Si)/s) 

Degradation 
Level (krad(Si)) 

or Proton 
Fluence 

Miscellaneous:          

LM139AWRQMLV 
National 

Semiconductor 

JM046X13; 
A009 and 

A095 
Comparator Bipolar DC 

Parameters within 
specification. 

Y 0.5 > 30 

TL750M05CKTRR 
(TO263-3) 

Texas Instruments 
0707;  
A112 

LDO Positive 
Voltage 

Regulator 
Bipolar DC 

One part irradiated at 1 
mrad(Si) exceeded 
specification at 40 krad(Si). 
Vout specification for full 
temperature range. 
(Characterization performed in 
DC mode.) Minimal dose rate 
sensitivity. 

N 

5 > 100 

1 30 < Vout < 40 

0.5 > 70 

 

IV. TEST RESULTS AND DISCUSSION 

As in our past workshop compendia of NASA Goddard 

Space Flight Center (GSFC) test results, each DUT has a 

detailed test report available online at 

http://radhome.gsfc.nasa.gov [11]. 

A. Aeroflex ACT4468 Transceiver SEE Test Results 

The ACT4468 is a dual transceiver manufactured by 

Aeroflex Plainview. We irradiated three devices with 15 

MeV/amu heavy ions at TAMU. The devices were biased with 

Vcc = 5 V. The input signal was a square wave, with VIL of 0.4 

V and VIH of 2.7 V, a frequency of 200 kHz, and a duty cycle 

of 50%. 

Fig. 1 shows SET cross sections as a function of effective 

LET for the different trigger conditions. Here, TX is the 

transceiver output and RX is the receiver output. We applied a 

pulse width trigger of 200 ns at the 0 V threshold. The error 

bars indicate the Poisson error at 95% confidence level. The 

error bars are not visible in cases where the data points are 

graphically larger than the error. 

The receiver (RX) configuration was most susceptible to 

SETs, with an 2.8 < LETth < 4.0 MeV•cm2/mg, for an 

oscilloscope trigger set at 1 V. The SETs are typically high to 

low or low to high signal distortions that affect half a clock 

cycle as shown in Fig. 2. Here, the oscilloscope is triggering 

on the transceiver output. Refer to the test report for additional 

details [13]. 

 
Fig. 1. SET cross sections as a function of effective LET for the different 
trigger conditions. 

 

 
Fig. 2. Examples of a SET. 
. 
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B. Analog Devices AD648 Operational Amplifier TID Test 

Results 

The AD648 is a matched pair of low power, precision 

monolithic operational amplifiers that offers both low bias 

current and low quiescent current. Twenty parts (LDC 1225) 

were irradiated at a rate of 10 mrad(Si)/s with gamma rays at 

GSFC’s Radiation Effects Facility to a final dose of 100 

krad(Si). Ten of the samples were irradiated with all pins 

grounded (unbiased), while the other ten were biased with ±15 

V on the power supply rails, +5 V on the non-inverting inputs, 

and the inverting input shorted to the output with a 1 kΩ 

resistor to ground. An additional two parts were not irradiated, 

and served as control parts. 

For all parameters measured, the greatest amount of 

degradation was observed in the parts irradiated with all pins 

grounded. All parameters remained within specification to 20 

krad(Si), but the input bias current and open loop gain 

exceeded their specifications (20 pA and 300 mV/V, 

respectively) between 20 and 30 krad(Si). Fig. 3 shows the 

input bias current as a function of dose. Likewise, Fig. 4 

shows the open loop gain as a function of dose. 

 
Fig. 3. The AD648 input bias current exceeds the specification of 20 pA 
between 20 and 30 krad(Si). 

 

 
Fig. 4. AD648 open loop gain as a function of dose. 

 

During the slew rate measurements, a large amount of 

ringing began appearing when the output was switching from 

low to high in the unbiased parts between the 30 krad(Si) and 

40 krad(Si) dose points. The output of one of unbiased 

amplifiers in the slew rate test circuit can be seen in Fig. 5. At 

each dose step after 40 krad(Si), the ringing continued to 

worsen in the unbiased parts, and the biased parts also began 

to show the same characteristics. At 80 krad(Si), the ringing 

became rail-to-rail, never attenuated, and the slew rate was 

impossible to measure. After 100 krad(Si), several of the 

irradiated parts from the unbiased group were tested in the 

engineering boards, but they were nonfunctioning. Fig. 6 

shows an oscilloscope capture of the output of one of the 

unbiased samples with no resistive load on the output, while 

Fig. 7 shows the same thing but with a 10 kΩ load on the 

output. 

 
Fig. 5. Oscilloscope display when measuring the slew rate of one of the 

unbiased AD648s with no load connected to the output at the 40 krad(Si) dose 
step. 

 

 
Fig. 6. Oscilloscope display when measuring the slew rate of one of the 
unbiased AD648s with no load connected to the output at the 100 krad(Si) 

dose step. 
 

 
Fig. 7. Oscilloscope display when measuring the slew rate of one of the 

unbiased AD648s with a 10 kΩ resistor connected to the output at the 100 
krad(Si) dose step. 
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These parts should be used with caution in environments 

that expect to see total doses higher than 30 or 40 krad(Si). 

Lot-specific testing is recommended in those situations. 

C. Analog Devices OP497 Operational Amplifier TID Test 

Results 

The OP497 is a precision picoampere input current quad 

operational amplifier (op amp). Three devices in an 

application-specific bias condition were irradiated at a rate of 

10 mrad(Si)/s with a 60Co gamma ray source. 

All parameters remained within specifications up to 

4.5 krad(Si) after which input offset current on one device 

exceeded specifications (150 pA) at the 7 krad(Si) reading. 

Fig. 8 shows the degradation due to exposure with the 

specification represented by a dashed line. Provided that the 

electrical design can sustain operation with this level of 

degradation, the part can be deemed usable in the application 

after low dose irradiation to 20 krad(Si). 
 

 
Fig. 8. Average Offset Current of OP497 parts at VCM of 0 V. 
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VI. SUMMARY 

We have presented current data from SEE, TID, and DD 

testing on a variety of mainly commercial devices. It is the 

authors' recommendation that these data be used with caution. 

We also highly recommend that lot testing be performed on 

any suspect or commercial device. 
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