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In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed
several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater
Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with
the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol
layers beneath the aircraft, including an accurate estimate of aerosol optical depth.
This work illustrates the merits of polarization measurements in detecting variations of ocean surface prop-
erties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in
the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness
of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the
polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are neg-
ligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint pro-
file at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and
direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive
index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly
lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components
of the ocean wave spectrum.
The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of estab-
lished procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the
RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by
the HSRL, was in this specific case hampered by prohibitive variability in atmospheric conditions (very inho-
mogeneous aerosol distribution and cloud cover). Although the results presented for the surface are essen-
tially unaffected, we discuss the results obtained by typing algorithms in sorting the complex mix of
aerosol types, and show evidence of oriented ice in cirrus clouds present in the area. In this context, polari-
zation measurements at 1880 nm were used to infer ice habit and cirrus optical depth, which was found in
the subvisual/threshold-visible regime, confirming the utility of the aforementioned RSP channel for the re-
mote sensing of even thin cold clouds.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

On 20 April, 2010, the Deepwater Horizon offshore platform
(28∘44′12″ N, 88∘23′13″ W) catastrophically exploded, killing 11
crew members and initiating an unprecedented leakage of “Louisiana
sweet” crude oil that continued until the well was successfully

capped on 15 July and declared “effectively dead” on 19 September.
The National Incident Command Flow Rate Technical Group estimat-
ed that during this time 4.93 million barrels of oil were released from
the well, with impacts on the surrounding ecosystem that are still
largely unknown (Oil Budget Calculator Science and Engineering
Team, 2010). This tragic event has once again alerted the global com-
munity to the importance of monitoring oil spill dynamics, which has
been the subject of a number of studies mostly based on the Synthetic
Aperture Radar (SAR) technique (Brekke & Solberg, 2005; Nunziata et
al., 2008). The SAR measurements have the advantage of being
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unaffected by the weather and can operate at nighttime, but require
specification of the wind vector at the surface. In the visible range
of the electromagnetic spectrum, oil spills in marine environments
are difficult to detect by passive airborne and satellite remote sensors
(Brekke & Solberg, 2005; Goodman, 1994) because the oil only par-
tially darkens the already dark ocean surface. Only under viewing
conditions affected by specular reflection of solar radiation, often re-
ferred to as “sunglint”, oil slicks can appear in stark contrast (see
also Fig. 4). Sunglint has long been regarded as a challenge in remote
sensing, since it masks the quantities of interest to the ocean color
community with an overwhelmingly larger signal capable of saturat-
ing most of the instruments. Incidentally, data obtained from the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) on the same
day as the data presented in this work, were discarded because of sun-
glint contamination (Clark et al., 2010). The extent of the sunglint
“patch” is governed by thewave slope distribution, commonlymodeled
as a linear function of windspeed w as proposed by Cox and Munk
(1954, 1956). There is a small and often neglected dependence on
wind direction, and the first-order result is a Gaussian distribution of
wave slopes with a variance σ2=0.5×(0.003+0.00512×w). The
intensity depends on the relative viewing geometry and the index of
refraction of the underlying medium.

Expected physical effects of the oil include both a damping of the
smaller-scale waves, due to the higher viscosity of oil with respect to
water, and an increase in the surface refractive index. Both these factors
lead to a higher peak intensity of the glint, because a narrower wave
slope distribution reduces the angular extent of the reflection cone
and higher refractive index implies higher reflectivity. Measurements

in atmospheric windows in the Short-Wave InfraRed (SWIR) range,
where virtually all of the observed signal is generated by the surface,
readily show these effects.

The Degree of Linear Polarization (DoLP) is defined as the fraction
of the total reflectance which is linearly polarized. Sunglint is one of
the most polarizing natural phenomena (Ottaviani et al., 2008c), and
exhibits a DoLP which overwhelms that of any diffuse component.
For measurements taken with a very narrow Instantaneous Field Of
View (IFOV), the DoLP within the glint region is unaffected by surface
roughness and is determined exclusively by the Fresnel equations
(Born & Wolf, 1999). This perhaps counterintuitive concept is mathe-
matically understood considering that the dependence of both the
total and polarized reflectance on the wave slope distribution disap-
pears upon taking their ratio. Physically, it is explained by considering
that a nearly monodirectional viewing direction automatically deter-
mines the one tilt angle at the surface required to specularly reflect
the incident beam into the detector's field of view (Ottaviani et al.,
2008a). The 0.8° IFOV of the NASAGISS Research Scanning Polarimeter
(RSP, see Section 2) fulfills this condition. From typical airborne survey
altitudes, its footprint at the surface (in the order of 100 m) includes a
number of wave facets large enough to sample the whole distribution
of slopes. Among these, the slopes at the “right” angle for specular re-
flection, and responsible for the observed DoLP, belong to an angular
range as narrow as the IFOV.

Because of the sensitivity to refractive index, DoLP measurements
in the SWIR domain can therefore be very useful for oil slick detection
provided appropriate observation geometries are used.

The paper proceeds with a sensitivity analysis which demonstrates,
using Radiative Transfer (RT) simulations, that the DoLP in the glint re-
gion is not affected by surface waviness and is largely independent of
the aerosol load, followed by a description of the theoretical basis for
the method employed in the inversion of the photopolarimetric mea-
surements collected by the RSP. Section 3 is divided into three subsec-
tions: the first discusses the results of the inversion leading to the
detection of an altered ocean surface during the surveys over the Deep-
water Horizon spill. A search for a complete set of aerosol descriptive
parameters can be runwithin the implemented scheme, but prohibitive
environmental conditions (mainly high aerosol spatial variability and
uncharacterized and variable cirrus contamination above the aircraft)
spoiled this possibility. The second and third subsections support
these claims by building a context for the atmospheric conditions and
presenting retrievals of the properties of a particular cirrus cloud that
showed evidence of oriented ice crystals. Conclusions regarding the
use of multi-angle polarization measurements to characterize the pres-
ence of oil are presented in Section 4.

2. Methods

2.1. Sensitivity study

We first confirm via RT simulations that the DoLP in the glint region
is not affected by surface roughness. We employ a Doubling-Adding
code (DeHaan et al., 1987; Hansen & Travis, 1974)which has the option
to use a rough ocean surface (Cox &Munk, 1954; Cox &Munk, 1956) as
the bottom boundary condition. It also includes a full treatment of mul-
tiple scattering processes, essential for accurate simulations in presence
of aerosols (Ottaviani et al., 2008b).

In Fig. 1, different colors represent the DoLP computed at 2264 nm
for different values of the Solar Zenith Angle (SZA), for a purely
Rayleigh scattering atmosphere without gaseous absorption. The sim-
ulations in the top panel pertain to the principal plane of reflection,
where sunglint is maximized at all viewing angles. For each SZA,
the surface is modeled with a light wind (w=3.3 m/s, corresponding
to a Cox–Munk variance σ2=0.01, solid curves) and with a strong
wind (w=11.1 m/s or σ2=0.03, dashed curves). The same plot also
includes (dotted lines) the theoretical values of the DoLP computed

Fig. 1. Degree of Linear Polarization (DoLP) for different values of wind speeds (solid
and dashed lines) and solar zenith angles (different colors) at 2264 nm. The observa-
tions are simulated at the top of the atmosphere along the principal plane (top panel)
and at a Sun-sensor relative azimuth equal to 90° (bottom panel). The dotted lines rep-
resent the DoLP predicted by the Fresnel equations, and star symbols in the top plot
mark the direction of specular reflection. These results validate the claim that the
DoLP in the glint region is independent of the wind speed and is that predicted by the
Fresnel relations.
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from the Fresnel equations for specular reflection. For ease of refer-
ence, all curves are simulated at the Top Of the Atmosphere (TOA)
since they do not appreciably vary above typical RSP flight altitudes
(∼9 km, i.e. above most of the atmospheric scattering).

For each SZA, the curves for both wind speeds overlap with the
corresponding Fresnel DoLP in a range of viewing angles whose mid-
point is roughly the direction of specular reflection (marked with a
star symbol). This angular range identifies the glint region. The curves
depart from each other at the edge of the glint, where the strong po-
larization introduced by the sunglint decays and becomes comparable
to the polarization effects introduced by the diffuse skylight.

Light of any polarization state impinging on a surface at Brewster's
angle (∼53° for pure water in the visible part of the spectrum) is con-
verted upon reflection to light that vibrates only in the direction per-
pendicular to the plane of incidence. This suppression of the parallel
component implies that for this angle of incidence the DoLP of the
reflected radiation equals 100%. The viewing angle at which this con-
dition is fulfilled obviously depends on the SZA, as clearly visible in
the figure.

Although still governed by Fresnel reflection, the leftover sunglint
reflectance in the backscattering half-plane is dim compared to any
other source of polarization (Rayleigh scattering in the case of Fig. 1).
For example, the DoLP predicted by the Fresnel formulae is zero at
exact backscatter, given the equal reflectivity of the perpendicular and
parallel components at normal incidence. However, when either the
Sun or the sensor are far from zenith, steeper slopes are required to
redirect specular reflection into the field of view, and slopes larger
than 25° are rarely occurring (Cox & Munk, 1956). While strong winds
can still originate a few facets with extreme slopes, on a calm ocean
this probability plummets, explaining the larger overlap between the
predicted Fresnel reflectance in the high wind case compared to the
low wind case.

Off principal plane, the sunglint reflectance dominates over a smal-
ler range of viewing angles, apart from the trivial case of SZA=0° for
which there is no azimuthal dependence. The assumption that the
DoLP is independent of the surface roughness holds well for SZAs up
to 35°, or 55° if the wind speed is significant (Fig. 1, bottom panel).

To mimic a more realistic situation, the same calculations were re-
peated for an atmosphere where the Planetary Boundary Layer (PBL),
here set to an altitude of 1 km, was injected with aerosols typical of a
marine environment. The presence of non-absorbing, salt-like parti-
cles was modeled with a log-normal distribution (Hansen & Travis,
1974) characterized by an effective radius reff=1.5 μm and an effec-
tive variance σeff=1.0. The real part of the refractive index was set
to 1.37 and the number density adjusted to give increasing optical
depth up to a value of 0.11 at 532 nm (∼0.09 at 2264 nm). These mi-
crophysical parameters are translated into optical properties within
the Doubling–Adding code according to the Lorenz-Mie theory
(Mishchenko & Travis, 2008). It is not important at this stage to detail
effects due to fine-mode aerosols, since their contribution to scatter-
ing at 2264 nm is negligible (optical depth on the order of 0.001) as
long as the loading is limited to reasonable amounts (Chowdhary et
al., 2005).

Figure 2 collects the results of the computations, focusing on prin-
cipal plane observations since flying close to this direction provides
the best observations of sunglint (as shown in Fig. 1), and also maxi-
mizes the range of scattering angles probed by the RSP instrument.
Two pairs of significantly different SZA (20° and 40°) and windspeed
(3.3 and 7.0 m/s), are arranged into two columns to allow the compar-
ison between the variability of the total reflectance versus that of the
DoLP, as the viewing angle points into, or outside of, the glint region.
This variability is quantified by the dashed lines corresponding to
the DoLP absolute difference from the Rayleigh case (black solid
curves), which serves as convenient reference (in the glint region

Fig. 2. The colored solid curves in this figure show the effect of a progressive increase in coarse-mode aerosol optical depth (specified in the legend at 532 nm) on glint total reflec-
tance (top row) and its degree of linear polarization (bottom row) at 2264 nm. The observations are simulated at the top of the atmosphere and along the principal plane. Left
column: SZA=20°, w=3.3 m/s; Right column: SZA=40°, w=7.0 m/s. The aerosol is modeled with the parameter set: nr=1.37, reff=1.5 μm, σeff=1.0. The absolute differences
from a purely Rayleigh scattering atmosphere (black solid curves) are quantified by the dashed lines, with scales on the right y-axes. As in Fig.1, the star indicates the direction
of specular reflection.
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the difference between the DoLP of a Rayleigh atmosphere and that
predicted by the Fresnel model is less than 0.05%). Around the back-
scatter direction (positive angles), the glint contribution decreases
and the signature of coarse-mode aerosol scattering is apparent. At
negative angles, near the center of the glint, the departures are appre-
ciable for the total reflectance (over 10% in relative terms for the larg-
est load), while it is restricted for the DoLP to very small values even at
very significant aerosol optical depths. From the discussion following
Fig. 1, it is clear that the larger departures in the bottom right panel
are attributable to the higher SZA (40°) rather than to the increased
windspeed (7.7 m/s). Indeed, a larger SZA implies a longer path in
the atmosphere which augments the probability for the aerosol layer
to scatter the direct beam. Even if coarse-mode maritime aerosols
rarely exhibit significant absorption, test cases were also run by pro-
gressively increasing the imaginary part of the refractive index up to
0.02 for the aerosol amount corresponding to the largest load, for
the same viewing geometry as in the left column of Fig. 2. Very similar
ranges were found for the departures (∼10% for the total reflectance
and b1% for the DoLP).

For the reader interested in more investigations on the DoLP rela-
tive to the atmosphere–ocean system, we point to the works of Stam
et al. (1999) and Shaw (1999, 2001).

Fig. 3 summarizes the sensitivity of the previous curves to a change
in refractive index of the underlying medium. Several studies exist in
literature about the effect of certain types of crude oil on the refractive
index of pure water at visible wavelengths, indicating that most emul-
sions can easily exhibit values up to 1.5 or even higher (Król et al.,
2006; Otremba, 2000; Otremba & Piskozub, 2003). Unfortunately,

data in the SWIR are scarce and somewhat dated, but seem to indicate
that also in this spectral region a similar increase can be expected
(Al'perovich et al., 1978; den Boer et al., 1995). A possible reason for
the lack of data in the SWIR is the difficulty in resolving oscillations
of the real part of the refractive index in regions with strong absorp-
tion features (as predicted by the Kramers–Kronig dispersion rela-
tions), and reflectance spectra of the Deepwater oil indeed show
alkane absorption in the SWIR region (Clark et al., 2010).We therefore
chose to examine the differences in DoLP caused by gradual incre-
ments in refractive index relative to that of pure water, here taken as
1.2815 at 2264 nm as recommended by the International Association
for the Properties of Water and Steam (IAPWS) (Harvey et al., 1998).

Each panel in Fig. 3 is for a value of SZA, and the vertical scale is
the absolute value of the absolute change in observed DoLP with re-
spect to that expected for pure water. For clarity, each curve is plotted
only in the range of viewing angles corresponding to the relative sun-
glint region. Following Fig. 1, this region was determined as that for
which both curves are within 5% of the theoretical Fresnel curve.

Within the glint region, a change in the refractive index causes very
significant changes in the DoLP. In most situations, a variation from
1.28 to 1.30 (only 2%, gray curves) is sufficient to produce a change
in DoLP well above the detection capabilities of an instrument such
as the RSP whose polarimetric accuracy is 0.2%. Exceptions occur (i)
in conditions of overhead Sun, which generates very little polarization
(exactly zero at backscatter), and (ii) at the Brewster's angle, where
the suppression of the component of light parallel to the plane of re-
flection creates 100% polarization. The Brewster's angle shifts from
52° to 56.3° over this range of refractive indices, and close to this inter-
val the DoLP difference plummets to very small values. Operationally,
observations along the principal planewith SZAs between 20° and 40°
are therefore most convenient, because they guarantee both that suf-
ficient polarization is generated to detect its variations with high
signal-to-noise ratio, and that the conditions for Brewster geometry
are not met near the center of the glint region.

This brief excursus shows that the DOLP measured in the SWIR,
preferably at moderate SZAs, is largely dominated by variations in
surface refractive index.

2.2. Instrumentation and research flights

The RSP (Cairns et al., 1999) and the Langley airborne High
Spectral Resolution Lidar (HSRL) (Hair et al., 2008; Rogers et al.,
2009) were mounted on the B200 King Air aircraft based at NASA
Langley Research Center, Hampton, VA. Flying these two instruments
side-by-side is of high value since the HSRL provides profiles of aero-
sol layers below the aircraft. The vertical structure of the scene con-
text can then be used to constrain the RSP observations; this
synergistic exploitation for the retrieval of aerosol descriptive param-
eters has been the subject of recent studies (Knobelspiesse et al.,
2011).

Surveys over the region affected by the oil spill began inMay 2010,
exploiting transit flights to California where the B200 participated in
the Research at the Nexus of Air Quality and Climate Change (CalNex)
campaign, a joint effort involving the California Air Resources Board
(CARB), the National Oceanic and Atmospheric Administration
(NOAA) and the California Energy Commission (CEC). Other flights
over the same area occurred on 9 and 10 July, and 28 September. Con-
currently with lidar-dedicated science objectives, the flight patterns
were designed with long, straight segments covering regions of shal-
low waters, open-ocean clean waters, and waters contaminated by
the spill following the predictions of transport models.

The instantaneous field of view (14 mrad) of the RSP is continu-
ously scanned within ±60° from nadir by a polarization-insensitive
scan mirror system, leading to approximately 150 viewing angles for
each scan. Scanning along-track, the same scene is therefore viewed
from multiple angles in successive scans. The optical assembly

Fig. 3. Absolute value of the change in the Degree of Linear Polarization at the TOA
when the refractive index of water at 2264 nm changes from 1.28 to 1.30 (gray),
1.32 (blue), 1.36 (purple), 1.40 (cyan) and 1.50 (green). The different panels corre-
spond each to a different SZA, and all pertain to principal plane observations. The ver-
tical dotted lines indicate the direction of specular reflection.
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consists of three pairs of boresighted refractive relay telescopes, col-
lecting measurements in 9 channels overall from the visible to the
SWIR portion of the spectrum (410, 469, 55, 670, 864, 960, 1594,
1880 and 2264 nm). The paired design is required to determine the
I, Q and U Stokes parameters (Hansen & Travis, 1974) of light from
the simultaneous measurement of the two orthogonal polarization
states at 0° and 90° to the meridional plane of the instrument (first
telescope), and the equivalent intensities at 45° and 135° (second tele-
scope). The orthogonal polarization states of the incoming light are
spatially separated by a Wollaston prism and measured
simultaneously.

The reflectances measured by the RSP are related to the first three
components of the Stokes vector I, Q and U, as follows:

RI ¼
πr20

F0 μ0
I ð1Þ

RQ ¼ πr20
F0 μ0

Q ð2Þ

RU ¼ πr20
F0 μ0

U ð3Þ

where F0 is the annual average extraterrestrial irradiance (W m−2),
r0 is the solar distance in AU, and μ0 is the cosine of the SZA. The
high absolute accuracy of polarization measurements (0.2% for
DoLP), achieved with an internal relative calibration performed dur-
ing each scan, is a fundamental characteristic of the RSP.

Along-track scanning relies on the same feature being observed in
consecutive scans as the aircraft proceeds. The simplest analysis of
RSP data in fact requires identifying the same feature in consecutive
scans to form the angular behavior of its reflectance (see Fig. 4). For

this reason, the effective use of data is deeply affected by variations
in aircraft attitude. A relatively small aircraft like the B200 operates
with a positive pitch (the angle of attack) typically in the 2.5°−4°
range depending on speed. Pitch is the largest source of error when
collecting multi-angle measurements, since it directly impacts the
viewing zenith angle, but for the same reason it is easily corrected
for provided a reliable Inertial Measurement Unit (IMU) is available.
Yaw can also be easily accounted for since it only modifies the Sun-
RSP relative azimuth, but it prevents large fore and aft angles from
scanning along-track and therefore causes a feature to not be seen
at all available angles. If not limited to small values (typically between
1.5° and −1.5°), roll presents the greatest challenge for correction
since it simultaneously influences both zenith and azimuth angles,
leading to continuous off-track excursions.

Optimal RSP data are collected in flight legs oriented close to the
principal plane (Sun-RSP relative azimuth equal to 0° or 180°), where
the range of scattering angles collected by the instrument in successive
scans is maximized. The present analysis benefits from this general re-
quirement since the sunglint signal is strongest in the principal plane.

Specific routines have been implemented for datamining, highlight-
ing RSP data segments where both aircraft attitude parameters and
orientation relative to principal plane are contained within desired
tolerance values.

2.3. Algorithm

As a first step, the reflectance measured at 2264 nm was corrected
for gaseous absorption. Water vapor amounts to approximately 0.33%
of the mass of the atmosphere, and peak values near the surface can
reach ∼4% of the mass of air. At 10 km this value is ∼0.04%, so that
for typical B200 altitudes around 8–9 km, practically all water vapor
is found below the aircraft. In this case, the ratio between the signal
in a channel subject to water vapor absorption and one in a window

(A) (B)

RSP scan-to-scan RGB

aggregated RGB

ci
rr

us

(B)(A)

(B)(A)

B200 nadir camera view

B200
ground track

2264nm DoLP deviation from clean water (%)

Imagery: MODIS Aqua, 18.92 UTC, 11 May 2010Imagery: MODIS Aqua, 18.92 UTC, 11 May 2010

Scene A, BScene A, B

OIL NO OIL

Deepwater HorizonDeepwater Horizon

RSP 18.88RSP 18.88

RSP 19.30RSP 19.30

RSP 19.75RSP 19.75
RSP 18.61RSP 18.61

Fig. 4. Left: Selected RSP flight legs on 11 May, 2010 over the oil spill overlaid to MODIS imagery acquired by a nearly-simultaneous overpass of Aqua. Variations in refractive index
of the ocean surface are readily highlighted by analyzing the RSP channel at 2264 nm with the method presented in this work. The Deepwater Horizon oil rig was located roughly
50 mi southeast of the Mississippi river delta. In the MODIS RGB composite image, the oil slick is obvious because it is occurring in the sunglint area, where the mirror-like reflection
of the Sun off the water gives the Gulf of Mexico a washed-out look. Right: Image acquired with the B200 nadir-looking camera (top), showing the analyzed oil sheen. In the lower
panel, the RSP channels at 670, 555 and 469 nmwere used to obtain an RGB composite. In this scan-to-scan pseudo-image, 500 successive RSP scans are stacked one after the other
as the aircraft proceeds, so that the horizontal axis represents the direction of aircraft motion (approximately 7 min worth of data) and the vertical axis coincides with the instru-
ment field of view. Features at different altitudes exhibit different slant angles determined by speed and distance from the aircraft. This fact explains the skew glint off the ocean
surface as opposed to the scans affected by cirrus immediately below the B200 (the cirrus is subvisual and was scoped by the 1880 nm channel). The “aggregated” pseudo-image at
the very bottomwas obtained by accounting for aircraft speed and attitude to track the same point at the surface in adjacent scans. As a result, each column shows a specific point at
the surface seen from different angles. The two analyzed scenes are marked with (A) and (B).
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can be used over bright areas to retrieve the precipitable amount
(Gao & Kaufman, 2003). The RSP offers this possibility through the
reflectances measured at 960 nm and 864 nm which were used to
calculate:

RI 960ð Þ
RI 864ð Þ ¼ exp −α am Wvð Þβ

h i
ð4Þ

where am is the airmass,Wv is the water vapor column (in precipitable
cm), and α=0.31607 and β=0.595575 are instrument-specific con-
stants (Halthore et al., 1997). The optical depth at 2264 nm associated
to the retrieved column amount was then evaluated based on look-up
tables previously compiled using solar spectrally weighted values
with correlated-k distributions (Cairns et al., 2003; Lacis & Oinas,
1991; Rothman et al., 2003). Because water vapor absorption in this
band is dominated by the continuum, this procedure defines an effec-
tive absorption optical depth τabs below the aircraft and a transmit-
tance T1 linked to strong line absorption by methane and the portion
of water vapor located above the aircraft. The two-pass transmittance
is therefore:

T μv; μ0;Wvð Þ ¼ T1 μ0;Wvð Þ exp −τabs
1
μ0

þ 1
μv

� �� �
: ð5Þ

The absorption optical depth is allowed to depend on the cosine of
the SZA, μ0, to improve the fit to the exact calculations, even though
the variation of τabs with SZA is less than 0.006 for solar zenith varying
from 65° to 0° for 5 cm of precipitable water vapor. In the analyzed
scenes, retrieved water vapor amounts were close to 3.85 cm leading
to a two-pass transmittance at 2264 nm of ∼86% for angles of observa-
tion close to nadir. The glint region was selected by thresholding the
total reflectance signal at 2264 nm, and the DoLP obtained from the
ratio of the polarized to the total reflectance.

In the main body of the algorithm, the output of the Doubling–
Adding model is optimized by means of an Interactive Data Language
(IDL) inversion routine (MPFIT) of the Levenberg–Marquardt kind
(Moré, 1978), translated from the FORTRAN package MINPACK and
offered publicly by Markwardt (2009). This particular implementation
was found useful for its robustness, and because it is very flexible in
constraining the optimization as explained below.

An inversion problem is most often based on the minimization of a
cost function Φ(x):

Φ xð Þ ¼
������ Y−G xð Þ½ � C−1

Y Y−G xð Þ½ �T
������2 ð6Þ

which describes the misfit between a model function G(x), of the set
of parameters forming the state vector x, and the vector of observa-
tions Y. A coherent application of the method requires that the mea-
surement errors be specified, for the role of the inverse of covariance
matrix CY is to weight the observations according to their
uncertainties.

Minimizing this function, which for non-linear problems becomes
an iterative procedure, involves first the use of derivatives (Jacobians)
to realize the local topography of the cost function, and then some tech-
nique to determine the length of the step attempted in the direction of
an alleged minimum. The most popular methods are the steepest
descent and the Newton method, which perform best in different situ-
ations: the former consistently proceeds with small steps in the direc-
tion of the largest gradient, while the latter converges quadratically in
the vicinity of minimum based on the information on concavity
contained in the second derivative (or Hessian) of the function. The
Levenberg–Marquardt algorithm combines these two methods and
can significantly improve the search by alternating “long steps” in re-
gions of low concavity and quadratic convergence near a minimum.

Inverse methods can provide optimal solutions (in a statistical
sense), but it is generally very hard to find this solution when

estimating many parameters at once (Rodgers, 2000). In regions of
rapid variations in reflectance, as is the case of sunglint, the search
space presents several minima because unconstrained pitch and yaw
can accommodate variations in refractive index or other parameters.
To mitigate such uniqueness problems and ensure convergence to a
physically meaningful solution, choosing the variables appropriate to
the available information content is as important as starting the itera-
tions with a sensible choice of the initial values. Full control on these
parameters and improved stability in iterations involving values
close to their bounds are advantageous features offered by MPFIT
when exploring the sensitivity to aircraft attitude.

For the reasons listed above, a simultaneous fit is attempted for
the DoLP in the glint region and the total reflectance, with the surface
refractive index, pitch and yaw, and windspeed as free parameters.
Although the windspeed does not affect the DoLP, it is useful to simul-
taneously fit the glint reflectance, since the angular position of its
peak provides constraints on pitch and yaw offsets. Potential uncer-
tainties due to wind direction are believed to be negligible since the
retrieved wind speed is significantly smaller than the threshold
(5 m/s) above which this effect starts manifesting its importance
(Masuda, 1998).

3. Results and discussion

3.1. Surface properties retrievals

In the left side of Fig. 4, the percent difference of measured DoLP
from that expected from clean water is color coded over a background
image obtained by the MODIS instrument onboard the Aqua satellite
at 18.92 UTC, and therefore very close in time to the B200 survey.
Liquid water clouds and cirrus clouds are visible all around the region,
but the oil slick emerges in stark contrast because of the sunglint, as
anticipated in the Introduction section. The right side of Fig. 4 contains
an image captured by the B200 nadir camera togetherwith the portion
of RSP data (RGB composite) containing the scans of interest.

The measured DoLP drops in regions of the ocean visibly affected
by the oil spill, that exhibit higher refractive index. A selected portion
of the data, corresponding to the area marked with the “Scene A, B”
label, is plotted in Fig. 5. This section was chosen because it is closely
aligned to the principal plane (∼8° away from it) and will be further
analyzed in the remainder of the paper. The effects of bright clouds
below the aircraft are obvious in the correlations between the DoLP
and peaks in the reflectances at 670 nm (top panel). The subvisual
cirrus present under the aircraft at 18.74 UTC, as revealed by the
1880 nm channel (located within a strong water vapor absorption
band), has negligible effects on the DoLP, as discussed in Section 3.
In view of the previous discussion on the advantage of a straight
and level attitude, pitch, yaw and roll stored from the IMU are over-
plotted in color; the scale on the y-axis for these parameters has
units of degrees. As previously noted, a rather stable positive pitch
(green curve) is expected from flight mechanics, and the RSP viewing
zenith angles are corrected accordingly.

Sidewind conditions are responsible for the yaw, suggesting that
tail- or headwind was likely encountered during the lower transect in
Fig. 4 forwhich “crabbing” is minimal (not shown). Especially for angles
close to nadir, features along the flight track are captured even in the
presence of yaw, which is accounted for by choosing aircraft heading
rather than track direction when calculating the Sun-RSP relative
azimuth. After these corrections, there is a residual correlation between
percent DoLP difference and roll. A further exploration of this correla-
tion could help “cleaning up” the signal, but the effects of roll are clearly
small compared to the effects of surface oil and water clouds.

The sparse cloud cover forbids a systematic translation of the glint
reflectancemeasured along the flight track into absolute values for the
refractive index, because of uncertainties in the illumination condi-
tions. To gain more insight on the relationship between surface oil
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and the variations in glint brightness apparent in the RSP images
(Fig. 4, right), we limited the investigation to a small area at the
edge of the sheen where we can assume that the cirrus cover above
the aircraft, if present, provides a constant attenuation of the incoming
sunlight. Note that it is sufficient for this assumption to hold over the
range of RSP viewing angles needed to assemble the portion of the
glint passed to the optimization routine.

The two analyzed scans are referred to as “Scene A” (18.75 UTC, af-
fected by oil on the surface) and “Scene B” (18.76 UTC, over clear
water), and are only about 45 s apart on either sides of the edge of
the sheen. As a first step, the inversion procedure was run on Scene
B allowing as free parameters the refractive index of the surface, the
wind speed, and a scaling factor for the total reflectance. Since this
same scaling factor is applied also to the polarized reflectance, it
does not affect the DoLP. No offsets are allowed for yaw given the rel-
ative stability of aircraft heading along the transect, which defines an
accurate Sun-RSP azimuth. Pitch is also stable, but we left it uncon-
strained to absorb the combined effect of systematic offsets and roll
(see discussion at the end of Section 2). This way, the correction can
be regarded as an effective pitch which anchors the model to the an-
gular position of the maximum of the sunglint peak.

The results of the fitting are reported in Fig. 6, in which the most
apparent feature is the twofold increase in glint brightness for scans
over oil (right panels). The retrieved refractive index of the surface
for Scene B is at the lowest limit of the allowed interval, which coin-
cides with that of pure water at 2264 nm (1.28). The scaling factor
for the total reflectance amounts to 0.92±0.01, reasonable consider-
ing that the operator's notes report cirrus above (see Section 3 for a
more thorough discussion). The pitch correction found is 1.20±
0.05∘. An average of the pitch offsets for adjacent scenes was
accounted for when plotting the DoLP in Fig. 5, and it is noteworthy
that this procedure helped shifting the signal to a baseline around
zero over clear water.

The uncertainties listed above are a convenient byproduct of
MPFIT and of any optimal estimation method. For fits of good quality
as is the case here, a simple form of the error covariancematrix can be
obtained by considering uncorrelated noise and equal weights for all
data points in a signal. Errors were set to 7.5% for both DoLP and total

reflectance, because the RSP polarimetric and calibration errors are
dominated by the error sources associated with instabilities in aircraft
attitude.

If the optimization is then run on Scene A (top two panels)with the
scaling factor for reflectance kept fixed at 0.92, the retrieved refractive
index increases to 1.345±0.001 while the windspeed decreases to
3.26±0.03 m/s (the pitch offset is in this case 0.30±0.04°). To test
the algorithm stability, the optimization was repeated by varying in
sequence the parameters previously kept fixed. As expected, the scal-
ing factor showed variability within themeasurement error set for the
reflectance, but the variations in refractive index andwind speedwere
negligible (0.01 and 0.01 m/s, respectively). This confirms that the
search for the optimalwind speed is stable and not affected by the par-
ticular value of the scaling factor, and the determination of an absolute
value for the refractive index should be feasible provided observation-
al conditionsmore ideal than here aremet along the track (minimized
roll, absence of cirrus cover). The very good quality of the fitting and
the magnitude of the differences between the two scenes, as large as
1.2 m/s for windspeed and 0.07 in refractive index, seem to exclude
the possibility that these variations are coincidental or caused by
modeling errors.

The detection of a smaller apparentwind speed for scene Awith re-
spect to scene B is therefore an interesting result. It suggests that the
presence of oil on the surface dampens at least part of the capillary
waves, increasing the glint brightness as a consequence as does the si-
multaneous increase in refractive index. This behavior is in agreement
with what reported in the original studies of Cox and Munk (Cox &
Munk, 1954; Cox & Munk, 1956).

Finally we note that including coarse-mode particles in the model-
ing, with an optical depth consistent with HSRL measurements, im-
proves the model fit at off-glint angles while not changing the values
retrieved for wind speed and refractive index.

Whether the oil located in the area examined in this study is partly
organized in a slick with a well-defined thickness remains to be estab-
lished. This analysis is limited to the region at the edge of the slick
where the thinning layer can break due to Langmuir circulation and
oil droplet dynamics (Farmer & Li, 1994; Lehr & Simecek-Beatty,
2000; Thorpe, 2000). Also, the highly volatile Louisiana crude can

Fig. 5. Main panel: Percent variations in DoLP (thick black line) measured at 2264 nm by the RSP along the upper transect in Fig. 4, for a viewing angle pointing at the center of the
glint region. Similar behavior occurs along the second transect. These variations are indicative of changes in the surface properties, attributable to the presence of oil as a medium of
different refractive index. To show the disentanglement from other potential variables, the aircraft attitude parameters are overplotted in color, showing nearly stable pitch (green)
and “crabbing” (yaw, magenta). The pitch offset derived from the inversion routine helped to shift the baseline for the DoLP over clear water to values around zero, as expected;
oscillations in roll are limited to ±1° and correlate well with the leftover noise. The aerosol optical depth measured by the HSRL is also overlapped (red curve and scale on the
right), to show the lack of correlation with the mentioned oscillations. Upper panel: Clouds beneath the aircraft revealed by the RSP channels at 1880 nm (gray) and 670 nm (pur-
ple). The feature at 18.74 UTC, only affecting the brightness of the SWIR channel, corresponds to the subvisual cirrus discussed in Section 3. The peaks at around 18.65 UTC and 18.68
UTC are bright marine cumuli at an altitude of 1500 m directly affecting the DoLP difference: the slight shift in time of the purple curve is an effect of the different viewing angle
used to avoid glint contamination in the 670 nm channel.
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lose up to half of its mass during the first days at sea and subse-
quent weathering supports in many cases a marked tendency of
this oil to emulsify (Oil Budget Calculator Science and Engineering
Team, 2010). In this respect, it has been shown by Clark et al.
(2010) in laboratory measurements that the spectrum of the oil in
the visible is not affected by oil thickness as much as it is affected
by the oil-to-water ratio. Thicknesses up to a few microns, of a
film of higher refractive index deposited on water, can be estimated
from the color shift caused by the interference between the (180°
out-of-phase) electromagnetic waves reflected from the film first
surface and the (in-phase) waves reflected from the second surface
(Born & Wolf, 1999). The multispectral capabilities of the RSP can in
principle be used for this purpose and we have included in A an es-
timate of how interference affects visible color. However, the dis-
tance from the target needs to be optimized with respect to the
IFOV to properly resolve such effects.

3.2. Aerosol scenario

In this section we discuss the high variability of the aerosol scenar-
io characterizing the survey, exploiting among the rest an aerosol typ-
ing algorithm based on cluster analysis of the HSRL data products
(Burton et al., 2012). The HSRL data from the transit flight on 10
May over the Carolinas onward to Alabama andMississippi evidenced
an elevated layer of dust, easily identified by its high depolarization
values (up to 25%). The analysis of back trajectories simulated with
the HYSPLIT (Draxler & Rolph, 2010) online tools is shown in Fig. 7
and points to a possible Asian origin for the airmass at these
latitudes. Significant storms were indeed observed by the MODerate
resolution Imaging Spectroradiometer (MODIS) in India and Pakistan

in the beginning of May, and in Western China during the last week
of April. Caution should be used however in linking the effects of the
observations to such remote dust events, due to the uncertainty asso-
ciated with back trajectories extending so far back in time.

Closer to the Gulf area the dust lessened, gradually mixing with a
layer of radically different properties, specifically low depolarization,
high extinction-to-backscatter (lidar) ratio, and high backscatter
wavelength dependence. Both smoke and urban pollution can be re-
sponsible for such a behavior, and discriminating between the two is
challenging. The ratio of depolarization (1064 nm/532 nm) can some-
times aid the distinction, but carries high uncertainty due to the low
depolarization values.

A dusty mix with the same properties of that previously described
was also encountered on 11 May over Texas, with the B200 on its way
to California. Back trajectories initiated at an altitude of 4 km in prox-
imity of the flight track show that this area was at the confluence of
two airmasses: the one already ascribed to a possible long-range
transport from Asia, and another with air which had been circulating
for a few days around the Mexican plateaus with a good degree of
vertical excursion, making it possible for these parcels to have carried
particulates from lower altitudes.

A multitude of agricultural fires had been burning in several
Mexican locations for about two weeks. Forward trajectories for
three sample locations initiated at ground level indicate more or less
constant transport of airmasses originating in the Yucatan peninsula
along the eastern coast of Mexico into Texas, although the model
does not account for pyroconvection caused by burning fires. On 1
May, there was significant transport directly into the Gulf. It seems
safe at this point to assume the presence of some Mexican smoke, up
to a couple of weeks old, at low elevations around the Deepwater

Scene A ( OIL)

Scene B ( NO OIL)

Fig. 6. Model fit for Scene A over oil (top panels) and Scene B over clear water (bottom panels). RSP data are plotted with solid black lines. Dashed red lines represent the model
results for the 2264 nm band. The left panels pertain to the DoLP, used to retrieve the surface refractive index from the fit in the sunglint region which is highlighted in yellow. The
right panels show the total reflectance; in the legend an asterisk indicates a parameter that was left to vary during the inversion. The signals are plotted versus the RSP viewing
angles, with sunglint in the negative half-plane since the B200 was flying with the Sun behind. The SZA and relative azimuth were ∼17° and ∼188°, respectively, so these angles
roughly correspond to the [90°, 180°] range in scattering angles for the direct beam from left to right. Note the similarity to the viewing geometry used to simulate the DoLP in the
left column of Fig. 2.
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site, but the trajectories also suggest that some smoke might have
been transported there via a longer and higher-altitude path through
theMexican/US border, possibly beingmixedwith dust in the process.

These arguments are supported by data from an overpass of the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite (Winker et al., 2007, 2009) on 10 May. The

Fig. 7. Back trajectories (red, blue and green segments initiated at 500, 2000 and 5000 m, respectively) from the NOAA HYSPLIT model. The results of an aerosol typing algorithm
based on HSRL measurements (Burton et al., 2012) are included in the insets with black frames (legend at the bottom). They are to be interpreted as “curtains” along the flight track
with time on the abscissae and altitude in the ordinates, analogous to those obtained by the CALIPSO satellite. An elevated dust layer (color coded in magenta) was observed during
both transit flights (black dashed lines) from Virginia to the Gulf and from the Gulf to California. Higher-altitude (5000 m) airmasses likely carried dust and smoke from the Mexican
plateaus, mixing with Pacific air of possible Asian origin in the case of the transit flight on 10 May. Agricultural fires burning in Yucatan likely contributed to the low-altitude
(500–2000 m) airmass composition over the Gulf (inset at lower right), where the typing indicates that smoke (orange/red) and urban (green) polluted the maritime aerosol back-
ground (light blue/brown). The CALIPSO feature mask for the South–north transect indicated by the dashed turquoise segment confirms the presence of a complex smoke/dust/
pollution mix over Southern Mexico and the presence of elevated dust over Texas.
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CALIPSO aerosol subtyping algorithm (Vaughan et al., 2004) success-
fully detected the complex mix of smoke, pollution and dust near
the Southern border of Mexico (see light blue inset in Fig. 7). Also,
the same algorithm evidenced elevated dust over Texas as confirmed
by the B200 observations. CALIPSO also flew in the early morning of
11 May in near proximity of the Deepwater Horizon platform, effec-
tively resolving the two aerosol layers observed by the HSRL later in
the day. The upper one at 4 km was classified as polluted dust, in
agreement with the HSRL. Note, anyway, that this upper layer is opti-
cally very thin (the HSRL subtyping algorithm does not use thresholds
for the optical thickness). Also, the lowest layer preserves the polluted
component although the majority of it is classified as clean marine
aerosol by CALIPSO, while the HSRL feature mask offers higher and
meaningful speciation into polluted maritime (brown), fresh smoke
(orange) and urban components (green).

The highly intricate aerosol situation is likely to be further compli-
cated by the dynamics of oil evaporation. Recent studies identified sec-
ondary organic aerosol formation downwind of the Deepwater Horizon
site, together with small fractions of oil converted to black carbon (de
Gouw et al., 2011). This overall complexity does not affect the primary
goal of this study, but together with cirrus clouds above the aircraft it
prevented the determination of detailed aerosol microphysics.

3.3. Cirrus clouds contamination

Cirrus clouds can form by homogeneous freezing at temperatures
below about −38 °C, but also at warmer temperatures via heteroge-
neous ice nucleation (Pruppacher & Klett, 1997). At the location of
the observation, HYSPLIT provided values for ambient temperature
and relative humidity ranging from −17 °C and 54% at 7 km to
−24 °C and 78% at 8 km. The persistent layer of mineral dust ob-
served in the adjacent days and descending in altitude towards the
Gulf could have contributed to nucleation (DeMott et al., 2003). How-
ever, MODIS imagery showed a massive synoptic system traversing
the continental US from West to East on 11 May. Deep convection,
recognized as a major engine for cirrus formation (Sassen et al.,
2009), reached an altitude of 15 km and spanned a region nearly
20° in latitude over the Midwest at the time of the CALIPSO nighttime
overpass (7.92 UTC). By the time of the concurrent B200 observations,
the system had shifted its center over the Great Lakes. The ice/water
phase classification indeed shows several ice clouds (also visible in
Fig. 4) detaching from the outer regions of the storm and descending
in altitude towards the Gulf down to 7 km.

The presence of cirrus clouds above the aircraft is a nuisance for
RSP retrievals of surface and aerosol properties, because of the uncer-
tainty introduced on the illumination condition; here, it offers the
possibility to report on an interesting observation. As discussed in
Section 1, the scaling factor needed to fit the data is likely due to a
thin cirrus layer above the aircraft, as also noted in the HSRL opera-
tor's notes. At 18.74 UTC, the top panel of Fig. 5 shows an increase
of the signal at 1880 nm, which is mostly sensitive to high clouds
due to strong water vapor absorption in the lower troposphere at
these wavelengths (Gao et al., 2004), but no associated increase in
visible reflectance is observed. Inspection of the images collected by
the downward-looking camera did also not reveal cloud formations
above the visual threshold at 18.74 UTC. Since co-located HSRL mea-
surements confirm high backscatter and depolarization immediately
below the B200 down to an altitude of approximately 7300 m, we
conclude that the aircraft must have undergone brief incursions in
the sparse cirrus cover, of which a fraction was then present under
the aircraft. Note that the peaks in the signal at 670 nm slightly antic-
ipate those at 1880 nm because, in order to provide visible-channel
reflectance that does not suffer from glint contamination, a forward
RSP viewing angle well away from the direction of specular reflection
had to be used. The 1880 nm channel is unaffected by the surface due

to the heavy attenuation by water vapor, and so the same viewing
angle as the DOLP difference could be used.

Again looking at Fig. 5, the step-function-like decrease of the DoLP
measured at 2264 nm due to the water clouds at around 18.65 UTC
and 18.68 UTC is clear, and attributed to the relatively high total re-
flectance of these clouds. However, the effect of the subvisual cirrus
at 18.74 UTC on the DoLP is not obvious. Although the portion of this
cirrus below the aircraft could partially affect Scene A, it would do so
outside the sunglint range of importance for the retrievals discussed
in Section 1. Nevertheless, in this section we investigate whether sub-
visual cirrus beneath the aircraft would influence retrievals of surface
refractive index and windspeed if ignored. We first characterize the
cirrus cloud properties, and subsequently perform forward simula-
tions to estimate the effect of such clouds on the observed DoLP.

Fig. 8 shows the angular behavior of the 1880 nm reflectance aver-
aged over 5 RSP scans at 18.74 UTC. The flight trajectory was oriented
only 8° away from the principal plane, so that RSP viewing angles of
−20° and 20° correspond to directions very close to specular reflec-
tion and backscatter, respectively, as indicated by the top x-axis.

Fig. 8. Data from the RSP channel at 1880 nm (black lines), usually very dark, revealing
presence of cirrus beneath to the aircraft at 18.74 UTC. The x-axes are the same for the
three panels, with the top axis converting RSP viewing angles into scattering angles.
Top panel: the peak in total reflectance around the direction of specular reflection (scat-
tering angle ∼140°) is an almost certain indication of horizontally oriented ice crystals.
The dip near backscatter is the aircraft shadow. Lower panels: polarized reflectance and
degree of linear polarization. The red curves are the RT simulations for a cirrus imme-
diately below the aircraft totaling 0.08 in optical depth, and composed of small ice
plates with an effective ratio of 9 μm, an aspect ratio of 0.25 and roughness parameter
of 0.55. This particle class was selected by minimizing the residuals between the mea-
sured DoLP and the P21/P11 elements of phase matrices computed with a ray-tracing
method (inset in the lowest panel).
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The peak in total reflectance (partially recognizable also in the polar-
ized reflectance) was attributed to reflection from a small fraction of
Horizontally Oriented Ice (HOI) crystals, and is also known as “sub-
sun” (Borovoi et al., 2007; Brèon & Dubrulle, 2004; Chepfer et al.,
1999; Lavigne et al., 2008; Noel & Chepfer, 2004). Noel and Chepfer
(2010) report that near the tropics oriented crystal are found to
occur in 30% (and up to 50% at higher latitudes) of the ice clouds
forming at temperatures warmer than −30°, which is consistent
with our observations. Note that while the CALIPSO ice/water classifi-
cation does not exclude the possibility for HOI, this product is too
noisy to draw definitive conclusions.

Specular reflection from perfectly horizontal facets is observable
only on the principal plane: had the aircraft flown even closer to it,
the peak intensity would have been even larger. The small dip near
backscatter is instead caused by the shadow of the airplane, unavoid-
able when flying very close to a target, and that does not carry any po-
larization signature. This feature would mask any peak found at
backscatter due to planar crystals with internal reflections between
perpendicular facets (Sherwood, 2005).

Very low lidar depolarization is theoretically expected from HOI,
since according to the Fresnel formulae both polarization components
have the same reflectivity for perpendicular incidence on a flat sur-
face, while depolarization values found here by the HSRL (20–25%
and above) are similar to those associated with cirrus clouds com-
posed of randomly oriented ice particles. However, minimal devia-
tions from nadir lidar incidence due to varying alignment of the
crystals and/or off-nadir pointing of the lidar beam have been shown
to be responsible for the loss of the low depolarization characteristic
of HOI backscatter (Hu et al., 2007; Noel & Chepfer, 2010; Noel et al.,
2002). The HSRL beam is offset from nadir by 3° relative to aircraft,
and additional deviations follow those of aircraft attitude (mainly
pitch, about 2° in this case); together with possible swinging motions
of falling plates, these facts could explain the higher-than-expected
depolarization values.

This cirrus was further investigated in order to attempt an estima-
tion of its crystal habit and optical depth. We used geometric optics
(Macke et al., 1996) to construct a database with optical properties
of single plates and columns with varying sizes, aspect ratios and
small-scale roughness parameters (seeMacke et al. (1996) for the def-
inition). Plate aspect ratios were varied between 0.1 and 1 with a step
size of 0.05 (corresponding reciprocal values are used for columns).
Roughness parameters were varied from 0.2 to 0.8 with a step size of
0.05. Small and large particles with effective radii of about 9 μm and
30 μm, respectively, were included. From this database, the particle
class was first selected whose P21/P11 element of the phase matrix op-
timally reproduced the degree of linear polarization at 1880 nm (see
inset in the lowest panel of Fig. 8). The DoLP is a convenient modeling
choice because it is independent of the optical depth within a single-
scattering approximation, which should apply for thin cirrus in the
SWIR and can thus be directly compared to the P21/P11 elements of a
modeled phase matrix. At scattering angles larger than about 100°,
typical of RSP measurements, distinctive features that facilitate the
discrimination among different ice crystal models are an inversion in
the sign of polarization near backscatter, and a more or less pro-
nounced modulation at side-scattering angles. These structures are
suppressed in presence of irregular crystal habits, small-scale surface
roughness, or by inclusion of air bubbles (Baran, 2009). A change in
sign in Q would manifest as a discontinuity at the minimum for the
polarized reflectance ( Rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
Q þ R2

U

q
), but this feature is absent

near backscatter, where the signal smoothly declines toward zero.
This fact, together with the smooth increase toward side-scattering
angles, points to the dominant presence of roughened particles. The
optimal fit was obtained for small ice plates (effective radius ∼9 μm)
characterized by an aspect ratio AR=0.25 and a roughness parameter
δ=0.55. This roughness parameter is close to values generally found
from analyses of global POLDER data (Baran & Labonnote, 2006;

Knap et al., 2005). Interestingly, the obtained effective radius and as-
pect ratio correspond reasonably well with those (8.82 μm and 0.17,
respectively) found by Lawson et al., (2008) using in situ measure-
ments, although they probed subvisual cirrus at much colder
temperatures.

The particle number concentration (between 7300 and 7800 m to
simulate the cirrus) was then adjusted in the forward radiative trans-
fer model to simultaneously fit the total reflectance, leading to an
optical depth of 0.08. This value places the observed cirrus in the
threshold-visible category (Sassen & Cho, 1992), where actual visibil-
ity depends on illumination conditions that in our case did not make
the cloud perceivable to the naked eye. Anyway, the important point
is that this result is encouraging because of the difficulty in detecting
cirrus clouds of such small optical depths which are nonetheless sus-
pected to have important effects on climate (McFarquhar et al.,
2000). The fit to the polarized reflectance is remarkable. The fit to
the total reflectance is also satisfactory, considering that the model
does not simulate the specular peak. A slight underestimation of
this signal at side-scattering (b140°) angles results in a small degrada-
tion in the quality of the fit to the DoLP, compared to the fit to P21/P21
used to select the particle class from the phase matrix database.

A final remark on the retrieved optical depth concerns the scaling
factor found in Section 1 for the total reflectance (0.92), attributed to
cirrus over the aircraft as noted by the operator. The corresponding
optical depth obtained by applying Lambert–Beer's law is about 0.08,
that is, the same optical thickness retrieved for the cirrus overflown
less than a minute before and discussed in this section. A sensible
explanation for this match is that the B200 was traversing whiskers
of cirrus clouds of similar optical depths, sometimes overflying and
sometimes underflying their thickest portions.

The optical and microphysical properties of the cirrus cloud deter-
mined above were used to model the effect of a cirrus cloud beneath
the aircraft on the DoLP at 2264 nm, for a viewing geometry and
ocean state (no oil included) similar to those characterizing the obser-
vations on 11May. It was found that, in the glint region, a 1% (15%) de-
crease in the DoLP requires a cirrus optical depth of 0.14 (0.7). No
appreciable differences in DoLP are therefore expected to be caused
by thin cirrus clouds, as confirmed by the absence in Fig. 5 of a sudden
drop in DoLP associated with this particular cirrus.

In summary, it is likely that roughened ice crystals formed in the
outflow of a large system were descending under the effect of gravity
before sublimating. A small percentage of oriented plates explains the
appearance of a measurable specular reflection peak; swinging mo-
tions during the fall would then be responsible for the angular broad-
ening of the peak, for attenuating its polarized reflectance, and for the
lack of low lidar depolarization. Forward simulation showed that no
appreciable differences in DoLP are expected to be caused by thin cir-
rus clouds, so the retrieved surface refractive index and windspeed
should be unaffected by cirrus contamination.

4. Conclusions

This work presents the straightforward application of a technique
based on first principles, namely the Fresnel formulae, to detect vari-
ations of surface optical properties. The method exploits sunglint, a
highly directional feature that can be modeled with satisfactory accu-
racy by current (in fact, more than 50 years old) models. More specif-
ically, variations in the degree of linear polarization in the sunglint
region are indicative of changes in the refractive index caused by
the presence of an oil sheen on ocean waters. From a remote sensing
perspective, the success of this technique is yet another example of
the usefulness of a polarization channel in the SWIR, a unique feature
of the GISS Research Scanning Polarimeter.

For the case analyzed here, a survey over the Deepwater Horizon
oil spill site three weeks after the well-known disaster, it is found
that the oil altered the surface optical and physical properties by
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both affecting the refractive index and suppressing the capillary
waves. The latter effect is manifested in the reduction of the apparent
wind speed which is part of the presented retrievals.

Operationally, straight-and-level transects closely alignedwith the
principal plane of reflection can be flown tomap the extent of the spill,
preferably in clear (i.e., cirrus-free) conditions. An estimation of the
absolute value of the refractive index is possible, but its accuracy is
linked to optimal flight attitude. While fulfilling this condition can be
challenging with small aircraft, it can be mitigated by flying larger
sub-orbital platforms at low altitudes, and is of special interest in per-
spective of satellite missions with polarization capabilities, for which
attitude instabilities are virtually absent. For well-established oil slicks
observed in more favorable conditions than those presented here, fur-
ther investigations could be aimed at estimating the thickness of a
slick, crucial for the evaluating the evolution of a spill and its impacts
on the ecosystem.

Spatial variability and a vast assortment of aerosol types on 11
May prevented us from running the inversion scheme including a
full set of aerosol microphysical parameters, but this does not affect
the results since the surface contribution is successfully isolated. A
simple approximation was used to constrain the retrieval with the
aerosol amount measured by the HSRL, to improve the fit to the RSP
observations at off-glint angles, therefore outside the range signifi-
cant for the inversion.

Additional noteworthy results include the good agreement found
between CALIPSO and HSRL typing products, providing context for
the analyzed scenes, and the detection of horizontally-aligned ice
plate signatures in some of the cirrus clouds overflown by the RSP.
As expected, the band at 1880 nm proved adequate in estimating
low optical thicknesses close to the visual threshold (0.08) which,
as is the case for aerosols, do not appreciably affect the variations in
degree of linear polarization in the glint exploited in the retrievals
of the surface properties.
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Appendix A. Optical signatures of thin-film interference

Interference patterns caused by thin films are responsible for the
iridescent colors observed everyday in soap bubbles or fuel on as-
phalt, and are exploited for technological purposes in the construc-
tion of anti-reflective coatings and interferometers. Calculation of
the intensity of the fringes and their spacing is a classical exercise in
fundamental optics (Born &Wolf, 1999). This section applies a simple
model to describe the theoretical effects of film thickness on the ob-
served reflectance.

Fringes of equal inclination (or Heidinger fringes when observing
at near-normal incidence) are formed when a non-parallel bundle of
rays strike a surface, and require an imaging lens focused at infinity.
Rays emerging from different points at the surface but reflected to-
wards the detector at the same angle are imaged in different regions
of the detector, as a function of the incident angle. When the source is
moved at great distance or anyway collimated, fringes of equal thick-
ness (or Fizeau fringes when observing at normal incidence) are in-
stead observed at a single angle as different wavelengths experience
different path lengths within the film. They can be interpreted as a
contour map, with isolines connecting points of equal thickness.
This latter case is what can potentially be observed by the RSP.
When illumination comes from a broadband source, at appropriate
film thicknesses the fringes assume bright rainbow colors.

In our context, solar radiation is incident on the water surface from
the air above. If the water surface is coated by a substance with a differ-
ent refractive index, two interfaces (top and bottom) are created. Elec-
tromagnetic waves reflected off the top interface interfere with those
penetrating in the film, reflecting at the bottom interface, and then
emerging back in air. The additional path length experienced by the
waves traveling in the film determines the amount of interference.
The refraction angle θt is connected to the incidence angle θi via Snell's
law. Given a certain thickness d of oil with a refractive index noil, and
if nair=1, maximum (minimum) interference occurs when the path
length 2d cos θt is equal to an odd (even) number of half-wavelengths:

2m−1ð Þλmax

2
¼ 2 noil d cosθt ðA:1Þ

2m
λmin

2
¼ 2 noil d cosθt ðA:2Þ

The positive integer m is the order of interference, and the equa-
tions above account for the additional phase shift of π experienced
by waves reflected at the top interface because they impinge on a me-
diumof higher reflective index. Since oil has typically higher refractive
index than water, this phase shift does not apply to the waves reflect-
ing from the bottom interface. Between these maxima and minima,
the intensity oscillates according to the relative phase shift and can
be calculated applying the principle of superposition to the amplitude
components perpendicular and parallel to the plane of incidence (see,
for example, http://laser.physics.sunysb.edu/~ett/report/). The reflec-
tion coefficient is different for the two components and varieswith the
angle of incidence, as predicted by the Fresnel equations. Nonetheless,
this difference disappears in conditions of normal incidence at which
the reflectivity is R=[(1−noil)/(1+noil)]2 and the intensity as a func-
tion of wavelength and thickness assumes the relatively simple form:

I λ;dð Þ
I0

¼ R 2−R2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2

p
cos

4πnoil d
λ

−π
� �� �

ðA:3Þ

A similar expression, albeit in transmittance, was obtained by
Huibers & Shah, (1997). In the simulations we have employed a con-
stant, plausible refractive index for oil noil=1.48, normal incidence con-
ditions (overhead sun and nadir observation), and assumed that the
solar radiation is white in the visible with irradiance I0. In Fig. 1A, the
contour plot of the normalized intensity I/I0 clearly shows the first
different orders of interference that could cause differential reflectance
and therefore observable colors in the visible. Details are better
understood looking at some horizontal and vertical sections (lower
panels).

All wavelengths experience destructive interference when the
thickness approaches zero, which also poses a limit for thickness
measurements to a few tens of nanometers. Taking as representative
a triplet of RGB wavelengths, we observe how the silvery appearance
of a sheen with noil=1.48 is justified as the thickness grows to 75 nm,
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because the intensity increases similarly for all wavelengths. Dark
colors are expected at around 150 nm, but it is for thickness values
of approximately 200 nm, and onward to values comparable to the
visible wavelengths, that the brightest colors appear as a result of
large differences in reflected intensity for the different wavelengths.
Finally, note how the intensity peaks have equal maxima, since we
have not considered absorption in the film.

The actual color theoretically observed by the human eye is
“modeled” in the lowest panel for four thickness values. The dark ap-
pearance of a very thin layer is shown by the curve for 25 nm. At
100 nm, almost all wavelengths have high reflectance (although the
decrease in the blue might leave an orange hue). The case of a

250 nm-thick film can be taken as good example for a film showing
a decisive blue-green tint, while 500 nm are expected to depress
that very same color promoting red and violet hues. In this plot we
have also indicated with vertical colored bars the location of the RSP
bands in the visible, which can in principle be exploited to detect
such oscillations.
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