An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

Jeffrey J. DeMange and Shawn C. Taylor
The University of Toledo

Patrick H. Dunlap, Bruce M. Steinetz, Joshua R. Finkbeiner & Margaret P. Proctor
NASA Glenn Research Center

AIAA Propulsion and Energy Forum and Exposition 2014
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Cleveland, OH
July 28-30, 2014

This research was funded by the U.S. Government under NASA Contract NNC08CA35C and NNC13BA10B. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.
Content of Discussion

• Our Story: History of Thermal Seals Work at NASA GRC
 - Vehicles/Programs
 - Technologies
• Our Tools: Current Test Capabilities
 - Leakage/flow
 - Load/resiliency
 - Durability
• Our [Desired] Path - Technology Thrusts
• Conclusions
OUR STORY:

HISTORY OF THERMAL SEALS DEVELOPMENT AT NASA GRC
The Beginnings at GRC

- Time: Mid 1980’s - Early 1990’s
- Vehicle: NASP (National Aerospace Plane)
 - Passenger space plane
 - M25 (New York to Tokyo in 2 hrs)
- Advanced hypersonic propulsion system with variable flow path geometry
 - Need to minimize core flow leakage around variable geometry
 - Developed specialized/unique seals
 - Wafer seals
 - Braided rope seal
Amidst the Tragedy

- Time: 1990’s – 2000’s
- Vehicle: Challenger (1986)
- Loss of crew and vehicle due to o-ring field joint failure in starboard SRB during STS-51-L
- Redesign effort to improve reliability of SRB joints
- C-fiber rope seal developed at GRC (nozzle joint)
 - Survived 5500°F for 3X mission life
 - Successful motor testing
 - Implementation in SRB in 2003
 - Used on Atlas V SRB since 2003
The Hypersonics Age

- Time: 2000 - Current
- Vehicles
 - X-38 CRV
 - X-37 OTV
 - Falcon
 - Orion MPCV
- Control surface and acreage TPS thermal seals
- Significant testing of thermal seals against hot structure materials
 - C/C and C/SiC CMC’s
 - Acreage tile
The Push for Better Performance

- Time: 2002 - Present
- Permanent set noted in Shuttle thermal barriers → open gap
- Development of high temperature preloaders
 - Rene 41 spring tubes
 - Refractory alloy preloaders
 - Single crystal preloaders
- Thermal seals with improved durability
OUR TOOLS:

TEST CAPABILITIES AT NASA GRC
Thermal Seals Testing Methodology
Advancing the Technology Readiness Level (TRL)

Coupon level tests at GRC
- **Features:**
 - Extreme temperature
 - Scrubbing or compression
 - Load cycling
 - Leakage

System/component level tests in Arc Jet, DCR, GRC Cell 22, etc.
- **Features:**
 - Combined high temp. heat flux, flow/pressure, scrubbing in realistic environment

Flight level tests/operations
- **Features:**
 - Final verification

Pictorial Diagram:
- **Left Side:**
 - **Wafer seals**
 - **Seal holder**
 - **Silicon carbide rub surfaces**

Right Side:
- **System:**
 - **Features:**
 - TRL 3-5 → TRL 5-6

- **Flight Level:**
 - **Features:**
 - TRL 5-6 → TRL 7-9
Coupon Level Mechanical Testing

Capabilities:

High Temperature Compression / Scrub Rig
- **Purpose:** Assess loads, resiliency, wear at temp.
- **Temp.:** RT to 3000°F
- **Environment:** Air
- **Max. loads:** ±3300 lbf
- **Max. stroke range:** ±3 in.
- **Stroke rate:** 0.001 to 6 in./s
- **Furnace working size:** 9 x 14 x 18 in.

Multi Temperature Compression Rig
- **Purpose:** Assess loads, resiliency at temp.
- **Temp.:** -238 to 1100°F
- **Environment:** Air
- **Max. loads:** ±33.7 kip
- **Max. stroke:** 49.6 in.
- **Stroke rate:** 0 to 0.5 in./s
- **Chamber working size:** 15 x 15 x 22 in.

High Temperature Rotary Wear Rig
- **Purpose:** Assess wear, loads at temp.
- **Temp.:** RT to 1500°F
- **Environment:** Air
- **Max. torque:** ±885 in.-lbf
- **Rotation range:** ±30°
- **Rot. speed:** 0.1 to 370 deg/s
- **Furnace working size:** 12 x 12 x 13 in.
Coupon Level Room Temp. Leakage Testing

Ambient Linear Flow Rig #1

Capabilities:
Purpose: Assess leakage against smooth substrates
Temp.: RT
Environment: Air
Flow rates: 0 to 88 SCFM
Gap range: 0 to 0.4 in.
Compression range: 0 to 55%
Pressure range: 0 to 100 psid
Max sample size: φ1.5 in. dia. x 12 in. long

Ambient Linear Flow Rig #2

Capabilities:
Purpose: Assess leakage against variable substrates
Temp.: RT
Environment: Air
Flow rates: 0 to 88 SCFM
Gap range: Variable
Compression range: 0 to 70%
Pressure range: 0 to 100 psid
Max sample size: φ2.5 in. dia. x 5 in. long
Coupon Level High Temp. Leakage Testing

Capabilities:
- **Purpose:** Assess seal leakage at temp.
- **Temp.:** RT to 1200°F
- **Environment:** Air/Nitrogen
- **Flow rates:** 0 to 3.5 SCFM
- **Pressure range:** 0 to 25 psid
- **Furnace working size:** φ9.5 in. ID x 11 in. tall

Capabilities:
- **Purpose:** Assess turbine seal leakage/torque loss at temp.
- **Temp.:** RT to 1200°F
- **Environment:** Air
- **Speeds:** Up to 1200 ft/s
- **Pressure range:** 0 to 250 psid
- **Max sample size:** φ8.5 in. dia.
Thermal Testing

Mach 0.3 Torch Testing

Capabilities:
- Purpose: Assess performance under moderate heat flux conditions, evaluate thermal cycling performance
- Location: GRC
- Temp.: 700 to 2500°F
- Heat Flux: 10 to 20 W/cm²
- Fuel: Jet + Air

QARE Testing

Capabilities:
- Purpose: Assess performance under high heat flux conditions, evaluate environmental durability
- Location: GRC
- Temp.: 2500°F+
- Heat Flux: Up to 400 W/cm²
- Fuel: H₂ + O₂

Arc Jet Testing

Capabilities:
- Purpose: Assess performance under reentry-like conditions
- Location: ARC
- Facility: PTF, IHF
- Temp.: 2500°F+
- Mach No: 5.5 – 7.5
- Heat Flux: Up to 750 W/cm²
- Gas: Air
- Hardware config.: Static
OUR [DESIRED] PATH:
WHERE WE HOPE TO GO
Key Approaches: Thermal Seals

- **Materials & Design** – Develop/identify/test materials and unique configurations to meet requirements
 - Improved material systems/configurations
 - High temp (3000°F), oxidation resistant, flexible fibers and batting
 - Aerogels
 - OFI (opacified fibrous insulation)
 - MLI (multi-layer insulation)
 - Functionally graded thermal seal systems (e.g., inboard preloaders, thermal + environ. barriers)
 - Coatings (thermal, wear-resistant, etc.)
 - Design tools (e.g., preliminary sizing calculator, config. design guide, etc.)
 - Game-changing designs
 - Smart seals (e.g., SMA)
 - Seal-less interfaces (e.g., physics-based approaches)

- **Testing/Characterization Capabilities** – Develop/identify test methods/facilities to better characterize performance
 - Mechanical testing under realistic temp., temp. gradient, and partial pressure O₂ conditions
 - Testing under simultaneous conditions (temperature, pressure, vibrations, etc.)
 - Quantifying thermal transfer mechanisms under different conditions for optimized thermal seal design
Key Approaches: Thermal Seals (cont’d)

- **Modeling** – Develop/identify/incorporate methodologies/modeling approaches to help predict/optimize thermal seal system performance
 - Thermal modeling (heat transfer mechanisms, design effects)
 - Mechanical modeling (design, environ. effects)

- **Integration & Implementation** – Provide aerospace vehicle developers with tools to confidently implement thermal seals in various subsystems
 - Design for implementation
 - Accurate documentation/databases of previous testing and implementations in heritage vehicles
 - Improved methods for verifying proper thermal seal installation/operation
 - Health and condition monitoring for multiple missions: retire for cause
Conclusions

• NASA GRC has had a long history in high temperature thermal seal development and testing
 ➢ NASP
 ➢ Shuttle
 ➢ X-vehicles
 ➢ MPCV

• NASA GRC has extensive thermal seal testing capabilities/experience
 ➢ Temps: Near-cryogenic to 3000°F
 ➢ Types of tests: Mechanical, physical, thermal
 ➢ Both static and dynamic (durability) testing capabilities

• NASA GRC is looking to advance the technologies across many facets of thermal seal development
 ➢ Materials and Design
 ➢ Testing/characterization Capabilities
 ➢ Modelling
 ➢ Integration & Implementation
Points of Contact

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff DeMange</td>
<td>jeffrey.j.demange@nasa.gov</td>
<td>216-433-3568</td>
</tr>
<tr>
<td>Pat Dunlap</td>
<td>patrick.h.dunlap@nasa.gov</td>
<td>216-433-3017</td>
</tr>
</tbody>
</table>