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Abstract

This investigation is focused specifically on transfers from Earth-Moon L1/L2

libration point orbits to Mars. Initially, the analysis is based in the circular
restricted three-body problem to utilize the framework of the invariant mani-
folds. Various departure scenarios are compared, including arcs that leverage
manifolds associated with the Sun-Earth L2 orbits as well as non-manifold
trajectories. For the manifold options, ballistic transfers from Earth-Moon
L2 libration point orbits to Sun-Earth L1/L2 halo orbits are first computed.
This autonomous procedure applies to both departure and arrival between
the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle,
amplitudes and types of libration point orbits, manifold selection, and the
orientation/location of the surface of section all contribute to produce a va-
riety of options. As the destination planet, the ephemeris position for Mars
is employed throughout the analysis. The complete transfer is transitioned
to the ephemeris model after the initial design phase. Results for multiple
departure/arrival scenarios are compared.
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1. INTRODUCTION

The far side of the lunar surface has held global interest for many years.
One of the challenges in exploring the far side of the Moon is communications
from/to the Earth. Multiple satellites are required to maintain a continuous
link if a communications architecture relies only on lunar-centered orbits.
Farquhar and Breakwell suggested an unusual three-body approach in re-
sponse to this challenge in 1971 [1]. This concept requires only one satellite
by exploiting the characteristics of three-dimensional halo orbits in the vicin-
ity of the Earth-Moon L2 ( EML2) libration point. Unfortunately, this plan
was never implemented due to a shortening of the Apollo program. However,
interest in the exploration of the far side of the Moon has recently increased,
particularly in the aftermath of the successful Artemis mission [2]. In ad-
dition, a new exploration strategy has recently emerged, that is, possibly
establishing a space station in an EML1/L2 orbit and leveraging this station
as a hub for the exploration of the asteroids and Mars [3].

The potential of an EML1/L2 hub for further exploration is yet to be in-
vestigated extensively. To examine the feasibility, mission designers require
an improved understanding of the dynamics that influence a transfer tra-
jectory from EML1/L2 libration point orbits to possible destination objects,
and the capability to produce such trajectories via a reasonably straightfor-
ward and efficient design process. Analysis concerning possible trajectories
from EML1/L2 orbits to Mars is explored by applying dynamical relation-
ships available as a result of formulating the problem in terms of multiple
three-body gravitational environments.

2. PREVIOUS CONTRIBUTIONS

Within the last decade, interest in a mission design approach that lever-
ages the knowledge of dynamical systems theory (DST) has increased steadily
amongst scholars and trajectory designers. Howell et al. examined the ap-
plication of DST within a mission design process in the late 1990’s [4]. The
knowledge was actually applied to design the GENESIS mission trajectory,
launched in 2001 [5, 6]. GENESIS was the first spacecraft for which the con-
cept of invariant manifolds was directly applied to develop the actual path
of the vehicle [7]. The successful return of the GENESIS spacecraft demon-
strated that DST can be exploited for actual trajectory design in multi-body
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environments. Scientific missions such as MAP and WIND also relied upon
three-body dynamics for their successful trajectory designs in the same time
frame [8, 9].

As the result of a set of successful missions, interest in DST applications
to trajectory design has increased and researchers have expanded their in-
vestigation to exploit DST and better understand the dynamics in the more
complex four-body systems which consist of three gravitational bodies and
one spacecraft. In the early 2000’s, Gómez et al. introduced a methodol-
ogy to design transfer trajectories between two circular restricted three-body
systems by exploiting invariant manifold structures [10, 11]. They modeled
a four-body system by blending two CR3BPs. The investigations into such
system-to-system transfers was originally based on a Jupiter-moon system as
well as spacecraft moving in the Sun-Earth-Moon neighborhood [12, 13, 14].
But, Gómez et al. demonstrated the potential exploitation of the CR3BP as
a modeling tool to investigate four-body systems. Parker and Lo employed
the coplanar model to design three-dimensional trajectories from Low Earth
Orbits (LEO) to Earth-Moon L2 halo orbits [15]. In addition, Parker also
applied DST as a design tool to develop transfer strategies from LEO to a
broader range of EM halo orbits [16, 17, 18]. The investigation in the Sun-
Earth-Moon system eventually was extended to transfers between libration
point orbits in the Sun-Earth and Earth-Moon systems. Howell and Kakoi
introduced a model with an inclination between the Earth-Moon and the
Sun-Earth systems to design transfers between Earth-Moon L2 halo orbits
and Sun-Earth L2 halo orbits [19]. Canalias and Masdemont extended the
investigation to transfers between quasi-periodic Lissajous orbits in different
systems, i.e., Earth-Moon and Sun-Earth [20]. In addition, transfer trajec-
tory design methods between Earth-Moon and Sun-Earth systems have been
investigated using various other strategies as well [21, 16, 18, 22, 23].

Dynamical systems theory has also been suggested as a design tool for
interplanetary trajectory design [24, 25]. However, since manifolds associ-
ated with the Sun-Earth libration point orbits do not intersect manifolds
associated with other Sun-planet systems, such as Sun-Mars or Sun-Jupiter
systems, different techniques have been developed for interplanetary trans-
fer arcs. Alonso and Topputo et al. investigated techniques to link non-
intersecting manifolds with an intermediate high energy trajectory arc [26,
27, 28]. Nakamiya et al. analyzed maneuver strategies at perigee and peri-
areion for Earth-to-Mars transfers [29, 30]. As alternatives to the high energy
arcs, low-thrust arcs have also been investigated for transfers between the two
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systems [31, 32, 33, 22, 34]
The past investigations on the system-to-system transfer design strategies

have successfully contributed numerous design techniques and insight in the
four-body regime. However, trajectory design techniques from the Earth-
Moon libration point orbits to interplanetary destinations warrants further
examination.

3. SYSTEM MODEL

One of the most important trajectory design tools is a reasonable model
that represents the physical system to a certain level of accuracy and offers
the desired system characteristics. But the model must also be sufficiently
simple such that mission designers can readily analyze the dynamics and in-
teractions between various trajectory arcs. The circular restricted three-body
problem offers both the complexity and the well-known manifold structures
to represent the actual motion that can be exploited.

3.1. Circular Restricted Three-Body Problem

A schematic of the fundamental definitions in the circular restricted three-
body problem (CR3BP) appears in Figure 1. Primary bodies, P1 and P2,
rotate about their mutual barycenter at a constant distance and with a con-
stant angular velocity. The masses of P1 and P2 are defined as m1 and m2.
A massless body, P3, moves under the gravitational influence of the primary
bodies. An inertial frame is defined by a set of three orthogonal vectors
[X̂,Ŷ ,Ẑ]. The unit vector Ẑ aligns with the angular momentum vector for
the planar motion of the primary bodies. The unit vector X̂ is defined on
the plane of motion of the primaries. Then, the unit vector Ŷ completes
the right-handed triad. A set of three orthogonal vectors [x̂,ŷ,ẑ] defines a
rotating frame in which the equations of motion are derived. The unit vector
x̂ is defined in the direction from P1 toward P2, and the unit vector ẑ is
aligned with Ẑ. Then, the unit vector ŷ completes the right-handed triad.
Therefore, when the angle θ in Figure 1 is 0◦, [X̂ ,Ŷ ,Ẑ] and [x̂,ŷ,ẑ] are iden-
tically aligned. The nondimensional mass ratio μ is defined as μ = m2

m1+m2

.
Distances are nondimensionalized utilizing the distance between primaries as
the characteristic length, r∗. The nondimensional location of P3 with respect
to the barycenter in the rotating frame is denoted as r̄, and the nondimen-
sional vector is expressed as r̄ = xx̂+ yŷ + zẑ. Also, the location of P3 with
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Figure 1: Formulation of the Circular Restricted Three-Body Problem

respect to P1 and P2 is denoted as r̄13 and r̄23, respectively. Time is nondi-

mensionalized by the mean motion of primaries, n =
√

G(m1+m2)
r∗3

, where G is

the universal gravitational constant.
The differential equations governing the CR3BP do admit a constant of

the motion. The value of this Jacobi constant is defined as follows,

CJ = −(ẋ+ ẏ + ż) + x2 + y2 + 2(
1− μ

r13
+

μ

r23
). (1)

Dots indicate derivatives with respect to the nondimensional time, and r13
and r23 are magnitudes of r̄13 and r̄23, respectively. The Jacobi constant, CJ ,
is the only integral of motion and indicates the energy level of P3 in its orbit
as computed in the CR3BP.

3.2. Blending CR3BPs

The circular restricted three-body problem has been successfully demon-
strated as a powerful design tool to provide insight into the actual motion
of a body in space such as a spacecraft or a comet [35, 36]. Of course, the
number and types of gravitational bodies for the design of some specific tra-
jectory vary depending on the spacecraft destination, and the CR3BP itself
may not be sufficient to model the appropriate dynamical regime. Hence,
the capability to model a system with more than two gravitational bodies
is essential. One approach to model such a system that has been previously
explored is a blending of CR3BPs. For example, a four-body system such
as Sun-Earth-Moon can be modeled by overlapping Sun-Earth and Earth-
Moon systems at the common body, Earth. This technique can incorporate
the difference in the orientation of the fundamental orbital planes of the two
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systems to enhance the level of accuracy. In Figure 2, the location of the
Moon is defined relative to the other bodies in the system. The rotating
frame corresponding to the Sun-Earth system is defined as a set of three
orthogonal unit vectors [â1, â2, â3]. The Sun is located in the direction cor-
responding to −â1. Another set of three orthogonal unit vectors [̂b1, b̂2, b̂3]
reflects the rotating frame of the Earth-Moon system, and the orientation
of [b̂1, b̂2, b̂3] with respect to [â1, â2, â3] is defined by a Euler angle sequence,
i.e., body-two 3-1-3. The first angle α defines the orientation of the line of
nodes with respect to â1. The second angle i denotes the inclination of the
lunar orbit plane with respect to the Earth orbit. The third angle β identifies
the lunar location in the orbital plane relative to the line of nodes, i.e., the
ascending node.

A similar model formulation is possible to design interplanetary trajecto-
ries by blending a Sun-Earth system and a Sun-planet system. For example,
to design a trajectory from Earth to Mars, Sun-Earth and Sun-Mars systems
are overlapped at the common body, i.e., the Sun. In this case, the inclina-
tion of Mars’ orbit is generally neglected since the inclination relative to the
ecliptic plane is 1.51◦, relatively small compared to the lunar orbit inclina-
tion, 5.09◦ [37]. Then, the location of Mars with respect to the Sun-Earth
rotating frame is defined by only one angle. This assumption simplifies the
model and is generally adequate for a corrections process. However, the Mars’
orbit is more elliptic than the Earth’s or the Moon’s orbit. The eccentricity
of the Mars’ orbit is 0.0934 compared to 0.0167 and 0.0549 of the Earth’s
orbit and the Moon’s orbit, respectively [37]. Therefore, the exploitation of
a circular restricted model for the Sun-Mars system reduces the level of ac-
curacy. However, the goal is an effective initial guess for the higher-fidelity
model, i.e., one that can be transitioned while retaining similar trajectory
characteristics. This investigation examines the viability of such a model.

3.3. Dynamical Model for Transfers to Mars

To achieve a higher level of accuracy in the construction of a preliminary
path, the ephemeris Mars locations are incorporated into the system model.
Two options are available for this Mars’ orbit model. The first option in-
corporates the Mars’ gravitational force. The gravitational force from Mars
is computed in an inertial frame, based on the location of a spacecraft as
well as the epoch. Thus, the exploitation of the CR3BP is not trivial in
this formulation. An alternative strategy is the incorporation of only the
state information for the ephemeris locations of Mars. In this model, the
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Figure 2: Angle Definitions in the Three-Dimensional Model: Euler angle sequence body-
two 3-1-3

Mars data is transformed into the Sun-Earth rotating frame and the trajec-
tory design process is executed in the Sun-Earth system. This option allows
incorporation of Mars’ actual position into the CR3BP.

4. MULTIPLE SHOOTING

Trajectory design requires the capability to link different types of arcs,
including both two-body and three-body arcs, to meet mission requirements.
The same type of corrections process is also employed to transition to a
model of different fidelity or add new forces to an existing model. One pos-
sible strategy to accomplish such a task is a multiple shooting method [38].
Such a numerical corrections scheme has been demonstrated to be useful in
trajectory design [39, 40]. A multiple shooting schematic is illustrated in
Figure 3. The black dots represent 6-D states estimated to be on a desirable
path, that is, to serve as an initial guess. The states are denoted x̄i where
the subscript i is an index. Each x̄i is comprised of position components as
well as velocity components, e.g., x̄1 = [rx1, ry1, rz1, vx1, vy1, vz1]. Propagat-
ing a state, x̄i, over time, ti, by means of function f̄ yields the trajectory
represented by a solid arc in the figure. As an initial guess, the state x̄i

does not, in fact, reach the desired state x̄i+1 after the propagation. The
actual final state along each arc is denoted by f̄(x̄i, ti), and it is defined
by position components, rfxi, r

f
yi, r

f
zi and velocity components, vfxi, v

f
yi, v

f
zi as

f̄(x̄i, ti) = [rfxi, r
f
yi, r

f
zi, v

f
xi, v

f
yi, v

f
zi]. The superscript f indicates the final state

along arc i. If arcs are not linked, as in the figure, final states from the
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Figure 3: Illustration of Multiple Shooting

propagation, f̄(x̄i, ti), and the following initial states x̄i+1 are modified to
achieve a continuous trajectory. To achieve a continuous path, various types
of corrections strategies could be applied. From among many options, a free-
variable/constraint implementation of the corrections process is employed.
This corrections process is detailed in Pavlak [41]. A free variable vector, X̄ ,
and a constraint vector, F̄ , are defined as follows,

X̄ = [x̄1, t1, x̄2, t2, x̄3, t3]
T
, (2)

F̄ (X̄) =
[
x̄2 − f̄(x̄1, t1), x̄3 − f̄(x̄2, t2),

x̄4 − f̄(x̄3, t3)
]T

= 0̄, (3)

where X̄ is a column vector of free variables and F̄ is a column vector of
equality constraints. The superscript T indicates a transpose. Then, these
constraints are achieved numerically by the iterative application of a vector
Newton’s method. Generally, the number of free variables is larger than the
number of constraints. The DF (X̄j) matrix is not expected to be invertible.
Thus, the standard Newton update is modified employing a pseudo-inverse
of DF (X̄j), such that

X̄j+1 = X̄j −DF (X̄j)
T [DF (X̄j) ·DF (X̄j)

T ]−1F̄ (X̄j). (4)

where X̄j is a free variable vector at the jth iteration and DF (X̄j) is the
Jacobian matrix. The Jacobian matrix is constructed as partial derivatives
of the constraint vector with respect to the free variable vector evaluated
at the jth iteration. This formulation is generally quick to implement and
efficient.

In a multiple shooting process, introducing maneuvers to link multiple
arcs increases flexibility. A maneuver option is simply formulated by omitting
velocity components from the specified constraint. For example, define an
alternative constraint vector for f̄(x̄2, t2). To allow a maneuver at f̄(x̄2, t2),
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the new vector is formulated as follows,

F̄2 = [rx3, ry3, rz3]
T
− [rfx2, r

f
y2, r

f
z2]

T = 0̄. (5)

An additional scalar constraint to limit the velocity difference by the magni-
tude of the maneuver, ΔV , between x̄3 and f̄(x̄2, t2) is incorporated as the
following,

FΔV = (vx3 − v
f
x2)

2 + (vy3 − v
f
y2)

2 + (vz3 − v
f
z2)

2
−ΔV 2 = 0. (6)

The constraint FΔV actually specifies the allowable ΔV level. Thus, to im-
prove the application of the constraint FΔV to introduce flexibility, an in-
equality constraint is a better alternative. The inequality is formulated as
an equality constraint by introducing a slack variable, η, and the new formu-
lation is written,

FΔV = (vx3 − v
f
x2)

2 + (vy3 − v
f
y2)

2 + (vz3 − v
f
z2)

2

−(ΔV − η2)2 = 0. (7)

The slack variable η is squared such that ΔV - η2 is always smaller than or
equal to ΔV . Then, the final formulation with a scalar ΔV constraint at x̄3

is the following,

X̄ = [x̄1, t1, x̄2, t2, x̄3, t3, η]T , (8)

F̄ (X̄) =
[
F̄1, F̄2, F̄3, FΔV

]T
= 0̄, (9)

where

F̄1 = x̄2 − f(x̄1, t1), (10)

F̄2 = [rx3, ry3, rz3]− [rfx2, r
f
y2, r

f
z2], (11)

F̄3 = x̄4 − f(x̄3, t3), (12)

FΔV = ((vx3 − v
f
x2)

2 + (vy3 − v
f
y2)

2 + (vz3 − v
f
z2)

2

−(ΔV − η2)2. (13)

The maximum maneuver size, ΔV , and an initial guess for η are required
to solve for F̄ = 0̄. The initial guess for η is selected such that the scalar
constraint is satisfied, i.e., FΔV = 0.
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5. MANEUVER-FREE TRANSFERS BETWEENEARTH-MOON

AND SUN-EARTH SYSTEMS

One possible scenario for a transfer from a three-dimensional Earth-Moon
(EM) halo orbit to the planet Mars is the exploitation of unstable Sun-
Earth (SE) manifolds. However, to utilize this option, it is necessary to
transfer from an EM halo orbit to a manifold trajectory associated with a
SE halo orbit. Even though different techniques for such transfers have been
investigated by linking manifolds associated with EM halo orbits to those
corresponding to SE halo orbits, it is still challenging to compute maneuver-
free transfers between the Earth-Moon system and the Sun-Earth system.
Thus, it is crucial to establish a general process to construct maneuver-free
transfers for exploiting SE manifolds as a platform for departure to Mars.

5.1. Hyperplane and Reference Frame

A hyperplane is useful for computing halo-to-halo spacecraft transfers. In
Figure 4, the x-y projections of a hyperplane (black line) and Earth-Moon
manifold trajectories, in red, are plotted in Sun-Earth coordinates. The lo-
cation of the hyperplane is defined by an angle ψ, and it is measured from
the Sun-Earth x-axis in the counter-clockwise direction. Thus, ψ is negative
in Figure 4. State vectors corresponding to both Earth-Moon and Sun-Earth
manifolds are then projected onto the hyperplane as the paths pass through
the plane; this projected information offers valuable insight for the computa-
tion of maneuver-free transfer paths. To visualize the projected information
as phase plots, a new reference frame is defined on the hyperplane by a set of
orthogonal unit vectors [x̂ref , ŷref , ẑref ]. The intersection between the Sun-
Earth x-y plane and the hyperplane defines x̂ref , as viewed in Figure 4. The
direction of x̂ref is defined so that x̂ref becomes identical with x̂ in the Sun-
Earth system when ψ is equal to zero degrees. The unit vector ẑref is identical
to the Sun-Earth ẑ axis. The cross product between ẑref and x̂ref defines
ŷref . Position and velocity components expressed in terms of the hyperplane
reference frame are represented as [xref , yref , zref , ẋref , ẏref , żref ]. Phase plots
represented in this reference frame are exploited to discover the lunar loca-
tion and the appropriate Sun-Earth libration point orbit for a maneuver-free
transfer from an Earth-Moon halo orbit with a specified amplitude. The size
of a periodic halo orbit is distinguished by the z amplitude, Az, of the orbit
which is measured from the x-axis to the largest excursion of the orbit in the
ẑ direction, as viewed in Figure 5.
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Figure 5: Definition of Az: An Earth-Moon halo orbit projected onto the Earth-Moon x-z
plane

5.2. Phase Plots to Establish Orientation of Earth-Moon System

To achieve a maneuver-free transfer, the appropriate combination of all
variables must be determined including α, β, ψ, EMAz, and SEAz. Al-
though a challenging task, the procedure to compute the appropriate values
is simplified by exploiting the phase plots created by the projection of the
appropriate states on the hyperplane that is, essentially, a two-dimensional
space.

The location of a hyperplane is a key element in obtaining useful phase
plots. Generally, the desirable range for the value of the hyperplane angle,
ψ, is between −85◦ and −70◦ to achieve maneuver-free transfers from EML2

halo orbits to SEL2 halo orbits. Although the range varies as a function of
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Figure 6: Conditions for Maneuver-Free Transfers from EM halo orbits to SE halo orbits

the size of the departure halo orbit as well as the direction of the transfers,
examination of a specific transfer type, such as EML2-to-SEL2 transfers, sup-
plies useful information which is applicable to various transfer alternatives.
In Figure 6, conditions for maneuver-free transfers are displayed. In Figure
6(a), the required combinations of SEAz and EMAz at specified values of
ψ appear. Values for SEAz and ψ are then estimated for a specific EMAz

value from the figure. Plots in Figures 6(b)-(c) offer appropriate estimates
for α and β values, respectively, corresponding to the specific combination of
EMAz and ψ.

Various types of phase plots associated with the hyperplane are actu-
ally available. However, this investigation demonstrates that three phase
plots are sufficient to compute a transfer. The three phase plots selected
for analysis are: (i) ẋref vs xref , (ii) zref vs xref , and (iii) żref vs zref .
Some examples appear in Figure 7. In each phase plot, Earth-Moon and
Sun-Earth manifolds appear as closed curves due to the ‘tube-like’ struc-
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ture of the manifolds. Since the Jacobi constant value indicates the energy
level for a trajectory in the CR3BP, the Jacobi constant values correspond-
ing to the intersecting Earth-Moon and Sun-Earth manifolds must be equal
to achieve a maneuver-free transfer. In the Earth-Moon rotating frame, the
Jacobi constant value corresponding to any point along the manifold is equal
to the value of the associated Earth-Moon halo orbit. However, the value
is no longer constant after the states along the manifold are transformed
into the Sun-Earth rotating frame. Thus, the Jacobi constant value varies
along the EM manifold curve in the phase plots, which are represented in the
Sun-Earth system. A black circle on each phase plot in Figure 7 indicates
the location, along the EM manifold, that corresponds to a Jacobi constant
value that is equal to the value along the entire set of trajectories that define
the Sun-Earth manifold. The hyperplane guarantees the yref intersection by
definition. The intersection of the two curves in the ẋref vs xref phase plot
guarantees the existence of an EM manifold trajectory with a corresponding
match in ẋref and xref values along the SE manifold. Therefore, if the same
intersecting EM manifold trajectory possesses an intersection in the other
two phase plots, all states, except ẏref , are equal in value. Thus, it is neces-
sary to introduce an additional relationship related to ẏref . However, rather
than introducing another phase plot, Jacobi constant values are utilized in
this process to ‘match’ the last component, i.e., ẏref . In Figure 7, the black
circle clearly indicates the direction in which the red curve should be shifted
in each phase plot. For example, in Figure 7(a), it is clear that the red curve
should be shifted to the left to move the black circle towards the blue curve.

5.3. Guidelines

For a given halo amplitude EMAz, the orientation of the Earth-Moon
system determines the red curves in the phase plots, e.g., in Figure 7, for a
fixed value of ψ. Thus, changing the values of α and β shifts the red curves;
adjusting α and β essentially modifies the location of the Moon in its orbit.
The blue curves remain the same on the fixed hyperplane for a given value
of SEAz. The plots in Figure 8 demonstrate that various shifts of the red
curve in each phase plot slide the black circle toward the blue curve. The
process to achieve the intersection in all three phase plots is automated. The
guidelines for the process are summarized as follows:

• Plots (b) and (c) in Figure 6 correlate the values of α and β that are
necessary to achieve a maneuver-free transfer for a desired set of EMAz

13



Figure 7: Selected Phase Plots at Hyperplane: Blue and red curves are projections of
stable SE and unstable EM manifold trajectories, respectively, in the SE view. Black
circles highlight the EM manifold trajectory with the SE Jacobi constant value.

and ψ values in this model. These results are useful to estimate the
initial values for the design process.

• For the ẋref vs xref phase plot in Figures 7 and 8, either α or β can be
adjusted to shift the black circle closer to the blue curve.

• In the zref vs xref phase plot in Figure 7(b), most likely, the black
circle does not intersect with the blue curve, even after an intersection
is achieved in the ẋref vs xref phase plot. Thus, the black circle must
be shifted to intersect with the blue curve by modifying the values of
α and β. However, such an update also changes the ẋref vs xref phase
plot. Maintaining the summation of α and β as a constant reduces
the effect on the ẋref vs xref phase plot in Figures 7(a) and 8(a). For
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Figure 8: Phase Plots as Trajectory Design Tools: Blue and red curves are projections of
stable SE and unstable EM manifolds. Black circles highlight the location, along the EM
manifold, with the SE Jacobi constant value. The arrow indicates the direction in which
the red curve shifts.

example, if α is shifted by 1◦, β is altered by −1◦. Physically, the
adjustments in α and β change the location of the Moon by month
and day, respectively. Updating β in the opposite direction reduces the
shift of the state along the manifold. However, the shift reduction is
small in the z-component.

• To achieve the intersection in the żref vs zref phase plot, the Sun-Earth
amplitude (Az value) is adjusted. Since this adjustment affects other
phase plots, both ẋref vs xref and zref vs xref phase plots are then
re-evaluated.

Sample phase plots that are produced at the completion of the process ap-
pear in Figure 9. The black circle intersects the blue curve in all the phase
plots and a maneuver-free transfer is constructed. In Figure 10, the black
trajectory is computed from the state identified in the final phase plots.
This trajectory links an unstable Earth-Moon manifold trajectory and ap-
proaches a Sun-Earth halo orbit. In this figure, the trajectory shifts from a
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Table 1: Sample Results for EM-SE Transfers
Type EMAz

[km]
SEAz
[km]

ψ [deg] α [deg] i [deg] β [deg]

EML2 to SEL2 25,000 163,200 -70 144.47 5 -127.88
EML2 to SEL2 26,000 167,900 -70 143.20 5 -126.60
EML2 to SEL2 27,000 171,800 -70 142.17 5 -125.80
SEL2 to EML2 25,000 163,900 70 35.89 5 -52.68
EML2 to SEL1 25,000 162,600 110 -37.38 5 -124.68
SEL1 to EML2 25,000 163,000 -110 -142.46 5 -55.59

stable Sun-Earth manifold to an unstable Sun-Earth manifold such that the
path actually departs the SE halo orbit. It can be numerically corrected to
remain on the SE halo orbit if desired.

These guidelines are sufficiently general to be applied to different transfer
types including Earth-Moon L2 halo orbits to/from Sun-Earth L2 halo orbits
and Earth-Moon L2 halo orbits to/from Sun-Earth L1 halo orbits. Sample
results are summarized in Table 1. The first three examples in the table
represent the same transfer type, Earth-Moon L2 to Sun-Earth L2, but in-
corporating different Earth-Moon Az values. As the Earth-Moon Az value
changes, the Sun-Earth Az value and phase angles shift. However, since
the changes are small, these values of the SEAz amplitude and phase angles
yield a reasonable initial guess for different Earth-Moon Az amplitudes. The
fourth example in Table 1 is a transfer in the opposite direction, i.e., from
Sun-Earth L2 to Earth-Moon L2; such a path reflects a return to the Earth-
Moon neighborhood. When the transfer direction is reversed, the ψ value
reverses sign from −70◦ to 70◦ while the Az value is barely affected. The
SEL2-to-EML2 transfer is plotted in Figure 11(a). The transfer is nearly sym-
metric as compared to the EML2-to-SEL2 transfer, in Figure 10, across the
Sun-Earth x-axis. Similarly, the EML2-to-SEL1 and SEL1-to-EML2 trans-
fers in Figures 11(b)-(c), respectively, are symmetric to each other across the
Sun-Earth x-axis.

6. TRANSFER SCENARIOS

Multiple departure scenarios are examined in this investigation. Since
each scenario possesses its own advantages and disadvantages, one scenario
may be better suited for certain mission requirements, and/or different des-
tinations.
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Figure 9: Phase Plots for Earth-Moon L2 Halo Orbit to Sun-Earth L2 Halo Orbit Transfer

6.1. Transfers via Sun-Earth Manifold

The first type of scenario to produce a Mars transfer utilizes a halo-to-
halo transfer. This transfer scenario does not offer much flexibility in the
departure date since the combination of α and β values to compute a halo-
to-halo transfer between selected EMAz and SEAz is limited as is apparent
in Figure 6. Based on the α and β values, multiple possible departure dates
can be identified. However, the location of Mars at the arrival time limits
the possible date ranges. Although this process is automated, the guidelines
for computing successful transfers under this scenario are:

• Possible departure dates are identified by comparing the angle combina-
tion (α, i, and β) with the phase angles corresponding to the ephemeris
Moon’s orbital position. Multiple departure dates are available based
on the angle information.
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Figure 10: Transfer from Earth-Moon L2 Halo orbit to Sun-Earth L2 Halo Orbit: EMAz
= 25,000 km, SEAz = 163,200 km, ψ = -70 deg. A trajectory propagated from the phase
plots’ conditions is in black. Arrows indicate the direction of flow.

• Time-of-flight to Mars from a Sun-Earth manifold trajectory is initially
estimated by computing a Hohmann transfer arc. Based on possible
departure dates and the total time-of-flight, the appropriate locations
of Mars at various arrival times are identified. Under the assumptions
in this analysis, it becomes apparent that most of the possible departure
dates are not feasible due to Mars’ location at arrival.

• Based on an estimated feasible arrival date, the actual ephemeris loca-
tion of Mars is obtained from the Mars database. Then, an osculating
semi-major axis for the Mars’ orbit at the arrival time is computed.
Re-computing the Hohmann transfer trajectory to Mars with the new
semi-major axis improves the ΔV estimation.

• Previous contributers have exploited unstable Sun-Earth manifolds in
the exterior region for departure arcs. However, in this scenario, stable
Sun-Earth manifolds are exploited for the departure arcs, as viewed
in Figure 12, since the time-of-flight becomes significantly shorter. In
addition, consistent with a two-body analysis, the energy change, or the
ΔV value, is slightly improved by the exploitation of stable manifolds.
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Figure 11: Various Transfers between an Earth-Moon L2 Halo orbit and Sun-Earth L1/L2

Halo Orbit: EMAz = 25,000 km: unstable manifold trajectories in red, stable manifold
trajectories in blue. Arrows indicate the direction of flow.

Also, the maneuver magnitude, i.e., ΔV , tends to be smaller when
applied along the stable SE manifold near x-axis.

• Two maneuvers are applied by implementing a multiple shooting scheme.
The first maneuver is applied to depart a Sun-Earth stable manifold
path. The location of the second maneuver is free to shift along the
path as required.

In Figure 12, a transfer trajectory to Mars is constructed by modification of
the conditions from the first case in Table 1. The ephemeris Mars’ orbit is
displayed in green in Figures 12(c)-(d). Earth-Moon manifold trajectories are
in red in Figures 12(a)-(b) and Sun-Earth manifold trajectories are plotted
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Figure 12: Transfer from Earth-Moon L2 to Mars via Sun-Earth Manifold: EMAz =
25,000 km, SEAz = 163,200 km, ψ = -70 deg

Table 2: Sun-Earth Manifold Transfer
Case Departure Date Total TOF [day] ΔV [km/sec]

One Maneuver June 16, 2022 277 3.869
Two Maneuvers June 16, 2022 350 3.495

in blue. Results for a departure date of June 16, 2022 appear in Table 2. The
results demonstrate that the application of two maneuvers allows a reduction
of the total ΔV from 3.869 km/sec to 3.495 km/sec. Two locations where
maneuvers occur are indicated in Figures 12(b)-(c). Since an unstable EM
manifold trajectory is exploited to leave the EM halo orbit, no significant
ΔV is required. However, the increase in the time-of-flight from 277 days
to 350 days is notable. In this example, the ΔV is reduced as the arrival
approach to Mars becomes more tangential. The value of ΔV is higher than
the estimated value from the planar Hohmann transfer which is 2.8 km/sec
from the same location along the manifold. The balance of the total ΔV

is mostly due to targeting the z-component of the ephemeris Mars position.
The ephemeris Mars’ orbit is described with an the average inclination of
1.85◦ [37]. However, this small inclination has a significant impact on the
ΔV value.

20



6.2. Transfers via Earth-Moon Manifold

For the second scenario, an Earth-Moon manifold is again exploited to
depart an Earth-Moon L2 halo orbit. However, in this scenario, rather than
shifting to a Sun-Earth manifold path, the trajectory continues on the Earth-
Moon manifold and returns to the vicinity of the Earth to gain energy via an
Earth “gravity assist” to depart the vicinity of the Earth. Not surprisingly,
this scenario offers more flexibility in departure dates compared to the first
example. To effectively accomplish a gravity assist and gain the promised
flexibility, certain conditions must be satisfied. One of the conditions is a
relatively close pass distance; another is a perigee location in the fourth
quadrant relative to the Sun-Earth frame. Earth-Moon manifold paths as
viewed in the Sun-Earth rotating frame are plotted in red in Figure 13.
The hyperplane orientation is fixed at ψ = −95◦; the angles α and β are
each equal to 0◦. To observe the flow of the trajectories along the manifold
passing through the hyperplane, the states at the hyperplane crossing are
integrated forward in the Sun-Earth system. The integrated trajectories
appear in black in the figure. Since the behavior of these trajectories is
complex, it is extremely challenging to predict the variations in the path
as a function of the variations in α, β, and ψ. Therefore, thousands of
combinations of α, β, and ψ are examined and reflected in the final strategy.

The location of perigee associated with each combination of α, β, and
ψ must be identified. Thus, the perigee location is defined by an angle κ

as displayed in Figure 14. The angle κ is measured from the Sun-Earth x-
axis in the counter-clockwise direction. The plot in Figure 15 demonstrates
the perigee conditions corresponding to the Earth-Moon manifold trajecto-
ries for hyperplane orientations in terms of ψ from 0◦ to 360◦. The desired
conditions recur periodically and offer possibilities for potentially promising
flyby conditions. The guidelines to design transfers from the Earth-Moon L2

orbit to Mars, through Earth-Moon manifold trajectories and incorporating
a close Earth pass, are summarized as follows:

• The perigee condition for the trajectory integrated in the Sun-Earth
system must be verified. Generally, Earth passage distances that equal
thousands of kilometers or even tens of thousands of kilometers are ad-
equate initial guesses to be employed in a multiple shooting scheme. A
maneuver is applied at the apogee location along the manifold trajec-
tory to achieve the desired perigee condition as demonstrated in Figure
16. If the perigee condition is not desirable, there are three options to
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Figure 13: Earth-Moon Manifolds in Sun-Earth Frame: ψ = −95◦, α = β = 0◦

Figure 14: Definition of κ: Perigee location

improve the perigee guess. The first option is the selection of a different
manifold path. The second option involves the selection of alternate
values for the α and β combination. Changing two angles in an open
search for desirable perigee conditions without any guidance is clearly
not a good design strategy. However, by linking the ephemeris lunar
location to the system model, the departure date automatically deter-
mines α, i, and β. The third option is the inclusion of a maneuver
ΔV to better incorporate the perigee conditions before the multiple
shooting algorithm is applied.

• To achieve a desirable flyby altitude, it is necessary to numerically
correct the trajectory. A multiple shooting scheme supplies a robust
algorithm for this task. A logical selection for the estimate of the ΔV

location to update the perigee conditions is the apogee of the extended
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Earth-Moon manifold trajectory. In fact, the ΔV location varies by
only slightly during the numerical corrections process. In Figure 16,
the near-Earth views of an Earth-Moon manifold transfer are plotted.
The apogee maneuver location is indicated as ΔV1.

• The second ΔV is applied at the corrected perigee location for depar-
ture to Mars. A departure ΔV is estimated by computing a Hohmann
transfer arc. Since the spacecraft is very near the Earth, it is conve-
nient to calculate a V∞ value and use the two-body energy equation to
estimate the ΔV at the perigee.

• When a transfer trajectory is computed, it is necessary to verify the
location of Mars corresponding to the specified time-of-flight. The best
possible arrival date is determined by identifying the best arrival condi-
tions at Mars from a set of the possible locations. The potential arrival
dates do not necessarily supply the desirable target location. Thus, the
initial date requires modification to improve Mars’ location at arrival.
This modification obviously shifts the orientation of the Earth-Moon
system, and results in a change in the flyby conditions at perigee. To
minimize the change, the departure date is varied by increments, each
approximately 29.5 days, i.e., the lunar synodic period. Thus, the Moon
remains approximately at the same location in the Sun-Earth frame.

• After one possible Mars’ arrival location is determined, additional po-
tential final Mars’ locations are identified by varying the final time with
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Figure 16: Earth-Moon Manifold Transfer from Earth-Moon L2: Views near the Earth

the step size corresponding to Mars’ synodic period which is approxi-
mately 780 days.

• Generally, additional ΔV locations lower the total ΔV requirements.
A suggested initial guess for an additional maneuver location is the
maximum y-excursion along the transfer path. The final location of
the maneuver after the numerical corrections process tends to remain
close to this region even without a location constraint as demonstrated
in Figure 17.

• In this transfer scenario, the transfer arc associated with a Hohmann
transfer is not a sufficiently accurate approximation to serve as an ade-
quate initial guess. The initial guess can be improved by adjusting the
ΔV before the multiple shooting procedure is applied.

The results from these sample cases appear in Table 3. The EMAz ampli-
tude is 25, 000 km. The departure opportunity recurs every two years. The
time spent near Earth until the second maneuver is approximately 160 days
because of the low energy dynamics associated with the manifold trajecto-
ries. The flyby altitude is selected to be equal to 1, 000 km. The resulting
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Figure 17: Earth-Moon Manifold Transfer from Earth-Moon L2: The location of the third
maneuver is indicated by ΔV3.

total ΔV is significantly lower than the first scenario via Sun-Earth manifold
trajectories. However, the total time of flight is 100− 200 days longer than
in the first scenario.

Similar guidelines apply to EM manifold transfers from EML1 halo orbits.
In this case, unstable EM manifold trajectories are propagated toward the
Moon to escape to the exterior region as demonstrated in Figure 18(a). This
type of transfer, exploiting the exterior region, is defined as an exterior trans-
fer. The general transfer paths are similar to the transfers from the L2 side
as displayed in Figure 18(b); sample results are listed in Table 3. As in the
L2 examples, the time spent prior to the second maneuver is approximately
160 days. For transfers from the L1 side, an additional scenario is considered
where unstable EM manifold trajectories are propagated towards the inte-
rior region. A sample trajectory arc originating from an EML1 halo orbit in
the Earth-Moon rotating frame appears in Figure 19(a). This transfer type,
exploiting the interior region, is defined as an interior transfer. In the figure,
an unstable manifold arc is plotted in red. Two maneuvers are applied to
target an desired Earth flyby. The first maneuver occurs at a perigee and
the second at an apogee. A sample trajectory arc in the Sun-Earth rotating
frame is displayed in Figure 19(b). Results from sample cases for the L1

interior transfers appear in Table 4. Generally, the time-of-flight values are
lower, but total ΔV values are higher than in exterior transfer cases.
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Figure 18: Earth-Moon L1 Manifold Exterior Transfer from Earth-Moon L1: Unstable
manifold trajectories propagated towards the exterior region

6.3. Direct Transfers

The third scenario involves direct transfers that do not exploit manifolds.
In this example, a maneuver is applied to depart an EML2 halo orbit and
target a close flyby at the Earth. In Figure 20, a departure trajectory in
an Earth-Moon view is plotted in red. Since this scenario does not exploit
manifolds, the time-of-flight is reduced significantly. However, the direct
transfer requires a significant level of ΔV to depart an EML2 halo orbit.
The corresponding guidelines are:

• In the departure EM halo orbit, a maneuver is introduced at the loca-
tion where the y-component is zero and the z-component is a maximum,
as indicated in Figure 20. This maneuver allows the spacecraft to move
along a trajectory arc and pass close to the Earth. The magnitude of
the ΔV is adjusted to achieve a desired perigee altitude.

• The propagated trajectory is transformed into the Sun-Earth frame by
use of the phase angles, α, i, and β. The direct transfers offer more
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Figure 19: Earth-Moon L1 Manifold Interior Transfer from Earth-Moon L1: An unstable
manifold trajectory propagated towards the interior region

flexibility in selecting values of α and β than other scenarios. The
angles (i.e., the location of the Moon in its orbit) are selected such that
the perigee occurs in the fourth quadrant in the Sun-Earth frame for
promising flyby conditions. In Figure 21(a), the x-y projection of the
transformed path appears in red.

• The process to compute the transfer trajectory from the Earth flyby to
Mars is the same as the procedure in the second scenario.

The results from the sample cases are summarized in Table 5. The EMAz

value is specified as 25, 000 km. This scenario delivers spacecraft to Mars in a
significantly shorter time than the second scenario. In Figure 21(a), the gray
arc represents the trajectory originally computed in the Earth-Moon system,
as displayed in Figure 20. The time-of-flight along the arc is only about 6
days. However, the ΔV cost is higher due to the fact that the maneuver to
depart the EM halo orbit is larger. Approximately 925 m/sec is required to
depart a halo orbit and reach a suitable perigee point, i.e., 1, 000 km altitude
at Earth passage.
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Table 3: Earth-Moon L2 Manifold and L1 Manifold Exterior Transfers: EMAz = 25,000
km; Leg 1 is from the departure from EM halo to ΔV1. Leg 2 is from ΔV1 to ΔV2. Leg 3
is from ΔV2 to ΔV3.

Departure Date: Leg 1 Leg 2 Leg 3 Total

EML2 Departure
May 28, 2026 TOF [days] 75 90 35 424

ΔV [km/sec] 0.020 0.570 0.331 0.921
July 3, 2028 TOF [days] 75 77 45 380

ΔV [km/sec] 0.003 0.450 0.307 0.759
October 7, 2030 TOF [days] 80 71 46 467

ΔV [km/sec] 0.046 0.515 0.684 1.245

EML1 Exterior Departure
May 16, 2026 TOF [days] 89 73 41 441

ΔV [km/sec] 0.006 0.391 0.500 0.897
June 21, 2028 TOF [days] 90 69 50 388

ΔV [km/sec] 0.030 0.517 0.254 0.802
September 26, 2030 TOF [days] 90 71 46 487

ΔV [km/sec] 0.020 0.463 0.207 0.690

Table 4: Earth-Moon L1 Manifold Interior Transfer: EMAz = 25,000 km; Leg 1 is from
the departure from EM halo to ΔV1. Leg 2 is from ΔV1 to ΔV2. Leg 3 is from ΔV2 to
ΔV3. Leg 4 is from ΔV3 to ΔV4.

Departure Date: Leg 1 Leg 2 Leg 3 Leg 4 Total

EML1 Interior
September 27, 2026 TOF [days] 16 17 14 37 318

ΔV [km/sec] 0.200 0.252 0.583 0.166 1.201
November 03, 2028 TOF [days] 16 17 14 36 266

ΔV [km/sec] 0.200 0.252 0.555 0.499 1.505
November 03, 2028 TOF [days] 16 17 14 36 252

ΔV [km/sec] 0.200 0.252 0.367 0.701 1.520

Similar guidelines apply to produce transfers from L1 halo orbits. A
generally successful location for placement of the first maneuver to depart an
L1 halo orbit also occurs where the y-component is zero, but the z-component
is a minimum as plotted in Figure 22. The size of the ΔV is still significant,
e.g., 575 m/sec to depart an L1 halo orbit corresponding to an amplitude of
25,000 km Az, as noted in Table 5.

6.4. Transfers with Lunar Flyby

The fourth scenario is a transfer that exploits manifolds as well as a
lunar flyby. Instead of applying a maneuver to depart an L2 halo orbit
and constructing Earth flyby conditions, a maneuver is applied at perilune
along an unstable EM manifold trajectory, one that is approaching the Moon,
to produce Earth flyby conditions. Once the Earth flyby conditions are
achieved, the guidelines are the same as the third scenario for direct transfers.
The time-of-flight from an L2 halo orbit to Earth is approximately 20 days

28



Figure 20: Direct Transfer from Earth-Moon L2: ΔV is applied to leave a halo orbit.

for the sample results in Table 6. Note that the selected EMAz is 5, 000
km. The value of the ΔV at the lunar flyby increases as a function of the
EMAz. However, an additional maneuver to depart a halo orbit reduces
the amount of ΔV to achieve the Earth flyby for larger halo orbits [42]. A
sample trajectory with a departure maneuver appears in Figure 23. The
departure along the gray trajectory appears smooth in the x-y projection,
Figure 23(a), but not in the x-z projection, Figure 23(b). The maneuver,
ΔV1, primarily adjusts the velocity in the z direction to achieve a lunar flyby
at a 100-km altitude. A similar scenario is constructed to depart from EML1

halo orbits. The gray trajectory departs an L1 halo orbit with a seemingly
sharp change in direction in Figures 24(a)-(b), a shift reflected in the ΔV . As
predicted, the departure maneuver ΔV1 is higher in L1 cases as summarized
in Table 7. The total maneuver to achieve the Earth flyby from the EML2

orbit and EML1 orbit are 329 m/sec and 500 m/sec, respectively. However,
in both cases, the maneuver value is reduced from the direct examples, e.g.,
925 m/sec for the L2 departure and 575 m/sec for the L1 departure.
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Figure 21: Direct Transfer from Earth-Moon L2: Two additional ΔV s are applied to reach
Mars.

6.5. Transition to Higher-Fidelity Model

To evaluate the functionality of the blended model, results from each
transfer scenario are transitioned to a higher-fidelity model with ephemeris
positions of Sun, Earth, Moon, and Mars. Sample results from the ephemeris
model are listed in Table 8. Departure dates predicted from the blended
model are reasonable estimates for use in the ephemeris model. Also, time-
of-flight values are estimated quite well by the blended model. The total ΔV

values generally increase after the transition, but the increases are within
a few hundred m/sec. Sample results from an L1 transfer scenario with a
lunar flyby are displayed in Figure 25; the path originates from an EML1 halo
orbit. The original EM halo orbit is in cyan, and the transfer path is plotted
in gray in Figures 25(a)-(b). The trajectory in the ephemeris model is plotted
in magenta. The results in the eleventh and twelfth rows in Table 8 indicate
that the EMAz increases from 25, 000 km to 29, 000 km after the transition
to the ephemeris model. However, the gray path is a good estimate and
the magenta trajectory appears to possess similar characteristics. In Figure
25(c), the trajectory from the blended model is plotted in black, and the
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Figure 22: Direct Transfer from Earth-Moon L1: ΔV is applied to leave a halo orbit.

trajectory from the ephemeris model is plotted in magenta in the Sun-Earth
rotating frame. The magenta trajectory follows a path similar to the black
path.

7. CONCLUSIONS

General design procedures for four transfer scenarios from Earth-Moon
L1/L2 halo orbits to Mars are developed. In addition, to exploit Sun-Earth
manifolds as an option for transfers to Mars, a general procedure to compute
maneuver-free transfers between Earth-Moon L2 halo orbits to Sun-Earth L2

halo orbits is described. This procedure is sufficiently general to support the
construction of maneuver-free transfers between Earth-Moon L2 halo orbits
from/to Sun-Earth L1/L2 halo orbits. The model of a five-body regime in
which gravitational bodies are Sun, Earth, Moon, and Mars is constructed by
blending Earth-Moon and Sun-Earth systems with the ephemeris Mars loca-
tion. Then, the results produced in the blended model are transitioned to a
higher-fidelity model with ephemeris Sun, Earth, Moon, and Mars locations.
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Table 5: Direct Transfers: EMAz = 25,000 km; Leg 1 is from the departure from EM halo
to the Earth flyby. Leg 2 is from the Earth flyby to ΔV3. Leg 3 is from ΔV3 to Mars.

Departure Date: Leg 1 Leg 2 Leg 3 Total

EML2 Departure
November 4, 2026 TOF [days] 6 38 228 272

ΔV [km/sec] 0.925 0.581 0.088 1.593
December 11, 2028 TOF [days] 6 38 162 206

ΔV [km/sec] 0.925 0.580 0.130 1.635
March 18, 2031 TOF [days] 6 37 300 343

ΔV [km/sec] 0.925 0.512 0.013 1.450

EML1 Departure
November 4, 2026 TOF [days] 5 39 234 277

ΔV [km/sec] 0.575 0.591 0.049 1.215
December 11, 2028 TOF [days] 5 40 182 226

ΔV [km/sec] 0.575 0.631 0.217 1.423
January 18, 2031 TOF [days] 5 38 150 193

ΔV [km/sec] 0.575 0.450 0.550 1.575

Table 6: EM L2 Manifold Transfers with Lunar Flyby: EMAz = 5,000 km; Leg 1 is from
the departure from EML2 to the Earth flyby. Leg 2 is from the Earth flyby to ΔV3. Leg
3 is from ΔV3 to Mars.

Departure Date: Leg 1 Leg 2 Leg 3 Total

October 21, 2026 TOF [days] 20 39 233 292
ΔV [km/sec] 0.236 0.612 0.074 0.923

November 26, 2028 TOF [days] 20 39 195 253
ΔV [km/sec] 0.236 0.590 0.165 0.991

January 3, 2031 TOF [days] 20 38 160 218
ΔV [km/sec] 0.236 0.416 0.591 1.243

The comparison of the results demonstrates that the trajectories computed
from the blended model produce a reasonable guess to be transitioned to the
ephemeris model.
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Figure 23: Transfer with Lunar Flyby from Earth-Moon L2: ΔV1 is applied to leave a
halo orbit. ΔV2 is applied at a perilune.

Table 7: L1 and L2 Direct Transfers with Lunar Flyby: EMAz = 25,000 km; Leg 1 is
from the departure from EM halo to the lunar flyby. Leg 2 is from the lunar flyby to the
Earth flyby. Leg 3 is from the Earth flyby to ΔV4. Leg 4 is from ΔV4 to Mars.

Departure Date: Leg 1 Leg 2 Leg 3 Leg 4 Total

EML2 Departure
October 25, 2026 TOF [days] 10 5 39 230 284

ΔV [km/sec] 0.079 0.250 0.650 0.102 1.082
December 1, 2028 TOF [days] 10 5 40 195 249

ΔV [km/sec] 0.079 0.250 0.666 0.155 1.150
January 7, 2031 TOF [days] 10 5 40 148 202

ΔV [km/sec] 0.079 0.250 0.487 0.557 1.373

EML1 Departure
November 2, 2026 TOF [days] 2 3 34 231 271

ΔV [km/sec] 0.230 0.270 0.495 0.324 1.319
December 9, 2028 TOF [days] 2 3 35 175 215

ΔV [km/sec] 0.230 0.270 0.498 0.260 1.258
January 16, 2031 TOF [days] 2 3 36 170 210

ΔV [km/sec] 0.230 0.270 0.304 1.038 1.842
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Figure 24: Transfer with Lunar Flyby from Earth-Moon L1: ΔV1 is applied to leave a
halo orbit. ΔV2 is applied at a perilune.
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Table 8: Comparison of Results, Blended Model and Ephemeris: EMAz for the ephemeris
case is the mean of maximum Az values of the quasi-halo orbit. (*: direct case with an
additional maneuver)

Case EMAz
[km]

Departure Date TOF
[day]

ΔV

[km/sec]

1 SE Transfer
Blended

25,000 June 16, 2022 350 3.495

2 SE Transfer
Ephemeris

25,000 June 16, 2022 350 3.645

3 L2 EM
Blended

25,000 July 3, 2028 380 0.759

4 L2 EM
Ephemeris

23,000 July 3, 2028 377 0.850

5 L1 EM Ext.
Blended

25,000 June 21, 2028 388 0.802

6 L1 EM Ext.
Ephemeris

24,000 June 21, 2028 388 0.997

7 L1 EM Int.
Blended

25,000 November 3, 2028 266 1.505

8 L1 EM Int.
Ephemeris

24,000 November 3, 2028 267 1.731

9 L2 Direct
Blended

25,000 December 11, 2028 257 2.235

10 L2 Direct
Ephemeris

25,000 December 11, 2028 248 2.568

11 L1 Direct
Blended

25,000 December 4, 2028 226 1.423

12 L1 Direct
Ephemeris

29,000 December 4, 2028 214 1.615

13 L2 Lunar
Blended

5,000 November 26, 2028 253 0.991

14 L2 Lunar
Ephemeris

6,000 November 26, 2028 250 1.096

15 L2 Lunar*
Blended

25,000 December 1, 2028 249 1.150

16 L2 Lunar*
Ephemeris

27,000 December 1, 2028 249 1.413

17 L1 Lunar*
Blended

25,000 December 9, 2028 215 1.258

18 L1 Lunar*
Ephemeris

29,000 December 9, 2028 212 1.415
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Figure 25: Direct Transfer with a Lunar Flyby from EM L1 Halo Orbit: EMAz = 25, 000
km. The departure date is December 9, 2028. The trajectory in the ephemeris model is
plotted in magenta.
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