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ABSTRACT

We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global

CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4.

Vibrational fundamentals, combinations and overtones are obtained using vibra-

tional second-order perturbation theory (VPT2) and the vibrational configuration-

interaction (VCI) approach. Agreement is within 10 cm−1 between the VCI calculated

fundamentals on the QFF and PES using the MULTIMODE (MM) program, and

VPT2 and VCI results agree for the fundamentals. The agreement between VPT2-

QFF and MM-QFF results is also good for the C4 combinations and overtones. The

J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the

PES and VPT2 on the QFF calculations. The spectroscopic constants of 12C4 and

two C2v-symmetry, single 13C-substituted isotopologues are presented, which may

help identification of cyclic C4 in future experimental analyses or astronomical ob-

servations.
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b)Electronic mail: Timothy.J.Lee@nasa.gov
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I. INTRODUCTION

Carbon clusters have attracted great interest over the years for many reasons. Small

carbon clusters Cn are important intermediates in chemical reactions and have been ob-

served in interstellar space, and tetracarbon is one of the most important species. Larger

clusters, notably C60, have unusual and technologically important electrical and physical

properties. They are challenging theoretically, owing to substantial multi-reference charac-

ter and low-lying electronic states. There is a large amount of literature on the electronic

spectroscopy of small clusters but less on the vibrational spectroscopy. This is important

for possible detection of the clusters in the interstellar medium. Previous work dealing with

small carbon clusters is summarized in the reviews of Weltner and Vanzee1 and Orden and

Saykally.2 For the C2n clusters, such as C4, C6 and C8, ab initio calculations predict two

low-energy structures, linear (3
∑−

g ) and monocyclic (1Ag ). For C4, it has been known that

the linear and cyclic isomers are almost isoenergetic, with the highest level calculations of

previous studies finding the cyclic isomer to be the lower energy structure.3,4

Experimentally, coulomb explosion imaging5,6 and electron photodetachment7 provided

evidence of the existence of cyclic C4 isomer. In the latter experiments, three distinct

photo detachment wavelengths indicated three different structures for the C4 anions and

the neutrals. However, these experiments did not report any determination of vibrational

excitations, and as far as we know, no experimental spectroscopic data of the cyclic C4 are

available in the literature.

Theoretical methods have been utilized to study the C4 vibrations. Based on an MP2/6-

311G* study, Martin et al.8,9 suggested that a 1284 cm−1 matrix infrared (IR) feature10

belongs to cyclic C4. In a later study, Martin et al.11 constructed a CCSD(T)/cc-pVTZ

quartic force field (QFF) for cyclic C4, and re-evaluated the assignment of the 1284 cm−1

feature. The estimate for the ν6 mode of cyclic C4, 1320± 10 cm−1, raised doubt about the

earlier assignment. More recently, Senent et al.12 reported MRCI+Q/cc-pVTZ QFFs for

both the linear and cyclic C4. Their computed vibrational perturbation theory (VPT2)13

fundamentals of cyclic C4 showed differences as large as 50 cm−1 when compared to Martin’s

results. In addition, Martin et al. reported a strong Fermi resonance between ν6 and ν3+ ν5
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for cyclic C4, which contributed to a significant anharmonicity for the ν6 mode.

In this paper, we report a new ab initio QFF constructed at the CCSD(T)/cc-pCV5Z

level, and a semi-global potential energy surface (PES) fitted from CCSD(T)-F12b/aug-cc-

pVTZ (aVTZ) energies for the singlet cyclic C4. The vibrational configuration-interaction

(VCI) calculations are performed using the MULTIMODE (MM)14–16 program, and VPT2

analyses are performed with the SPECTRO17 program. Consistent, reliable and highly accu-

rate vibrational (and ro-vibrational) energy levels and spectroscopic constants are generated

for the singlet cyclic 12C4 and
13C isotopologues. Such QFF+VPT2/VCI and PES+VCI cal-

culations have been widely used to determine the ro-vibrational spectroscopic constants and

vibrational fundamentals of many astronomically interesting molecules in recent years.11,18–20

The paper is organized as follows. The next section describes the computational details of

the new QFF and PES and vibrational methods. Then in Section III, both VPT2 results

on the QFF and MM results on the QFF and the PES are reported and discussed. Finally,

a summary and conclusion are given in Section IV.

II. COMPUTATIONAL METHODS

All the ab initio calculations for the electronic groud state energies are performed using

the coupled-cluster single and double excitation method that includes a perturbation treat-

ment of triple excitations, CCSD(T), with MOLPRO 2008.1.26 The linear C4 system shows

a strong multiconfigurational character, however, the non-dynamical correlation effects are

not significant for the configurations around cyclic C4, with the T1 diagnostic
21 smaller than

0.02.

A. Quartic Force Field

Our initial QFF constructions followed the procedure described in Ref 22 and Ref 23.

Six symmetry-adapted internal coordinates have been defined11 and grids with step size

0.005Å/rad adopted for the evaluation of QFF constants. The CCSD(T) single point cal-

culations are carried out on 114 symmetry-unique geometries with aug-cc-pVXZ (aVXZ)
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and cc-pCVXZ (CVXZ) basis sets, X=T,Q,5. The aVXZ and CVXZ energies are extrapo-

lated to the complete basis set (CBS) limit using a three-point formula.24 The extrapolated

aVXZ energies are further refined by adding the CCSD(T) core-correlation effects using the

Martin-Taylor basis25 or cc-pCVXZ (X=T,Q) basis, and scalar relativistic (cc-pVTZ-DK)

corrections.

Next, for each set of ab initio calculations, 225 symmetry-redundant geometries are fit-

ted to 52 non-zero force constants (up to quartic level) in the six symmetry-adapted internal

coordinates. The average root mean square (RMS) fitting errors range from 8.2E-07 cm−1 to

1.7E-05 cm−1. Spectroscopic constants, vibrational energy levels, and vibrationally averaged

geometries are computed using VPT2 with the SPECTRO program.

The fitted force constants for the QFF can be directly used for SPECTRO calculations.

However, for VCI calculations, in order to ensure correct limiting behavior of the potential,

Morse-cosine coordinates are required using the QFF potential. The fitted force constants

are converted to Cartesian derivatives at the exact QFF minimum by the INTDER 2005

program.27 Then it is transformed back to a new set of force constants defined with 5 C-C

bond stretches and 1 torsion coordinate. In this way, the diagonal quadratic and cubic force

constants for the 4 single C-C bond stretches are determined which are necessary to derive

the appropriate alpha value for the Morse function.28 With this alpha value, a new coordinate

space includes the symmetry-adapted Morse functions (for stretches), cosine (for bending

angles) and sine (for torsion angles) coordinates, while the symmetry-adaption formula and

the order and the symmetry type of 6 coordinates are the same as defined before.11 The

same set of 225 energies are re-fitted with these symmetry-adapted Morse/cosine/sine ba-

sis to get a new set of 52 non-zero coefficients which can then be used in the VCI calculations.

The VPT2 calculations using the QFF obtained from extrapolated, CBS-limit energies

give an unstable vibrational fundamental for the out-of-plane mode ν4. This mainly results

from the carbon-carbon multiple bond sensitivity with respect to the basis set superpo-

sition error.29 This unstable behavior essentially compromises the reliability of the CBS

limit extrapolation in this case. In a previous study of benzene with similar issues,29 use of

an Atomic Natural Orbital (ANO) basis was suggested. For the singlet cyclic C4 system,
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we choose another path, which is to find a high-level QFF least impacted by such C=C

multiple bond sensitivities. The CCSD(T)/cc-pCVXZ (X=T,Q,5) series of QFFs have the

most consistent ν4 anharmonicities. Thus, the CCSD(T)/cc-pCV5Z (with core) QFF is

selected to report in this paper. It is denoted as ”QFF” or ”CV5Z QFF” hereafter. The

results using all other QFFs are available upon request. Note that the scalar relativistic

correction is not included in the CV5Z QFF we choose to report here, as its effects on the

6 fundamentals are all less than 1.6 cm−1.

B. Semi-global PES and MULTIMODE Calculations

As already noted, we also developed a limited potential energy surface for the singlet

cyclic C4, on which we compute ro-vibrational energies variationally. The electronic struc-

ture energies are computed using the CCSD(T)-F12b30,31 method, with aVTZ basis. For

the generation of PES points, the majority of the configurations are obtained by running

classical direct-dynamics calculations, using density functional theory (DFT) with the aug-

cc-pVDZ basis. Additional points are generated by randomly sampling around the cyclic

C4 minimum. Finally, 2,914 CCSD(T)-F12b/aVTZ electronic energies are used for the PES

fitting. The PES of C4 is six dimensional, and is invariant with respect to all permuta-

tions of the four C atoms. We use the invariant polynomial fitting method,32,33 in which

the polynomials are functions of Morse variables with alpha value fixed at 2.0 bohr. The

coefficients in the potential expression are obtained using standard weighted least-squares

fitting subroutines. The total power of fitting polynomial is restricted to 7, the number of

coefficients is 123, and the overall root mean square (rms) fitting error is about 30 cm−1.

Figure 1 shows the number of configurations in different energy ranges and the correspond-

ing rms fitting error, both in kcal/mol. Most of the configurations are sampled around the

cyclic C4 minimum, plus 52 additional points at energies 30 - 75 kcal/mol relative to the

minimum. These high energy points are necessary to ensure the PES behaves properly in

the high energy region. Since the number of high energy points is small, the overall PES

accuracy around the minimum is not affected. The fitting rms below 5000 cm−1 and 10,000

cm−1 are 14 cm−1 and 25 cm−1, respectively.

Ro-vibrational calculations are performed using the MULTIMODE (MM) program, which
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has been described in detail elsewhere.14–16 Therefore, we only give a brief review here. MM

is based on the Watson Hamiltonian in mass-scaled normal mode coordinates. The key

feature of MM is the hierarchical n-mode representation (nMR) of the potential. For C4,

the exact potential is six dimensional, however, our tests of 4MR and 5MR calculations

demonstrate that the 4MR convergence for most energy levels discussed here is better than

1 cm−1. See more details in the Results Section, where 4MR and 5MR results are presented.

In MM calculations, the number of basis function is restricted by the maximum excita-

tion quanta on each mode, and the maximum sum of excitation quanta on all modes. In

our calculation, 26 primitive harmonic-oscillator basis functions are included with 18 Gauss

Hermite integration points for each mode. The maximum quanta for single mode are tested

from 8 to 12, and we obtained the convergence within in 0.1 cm−1. For J >0, vibrational

basis is coupled with a rotational basis, and a detailed description can be found in references

14–16.

III. RESULTS

The equilibrium structure, rotational constants, and the harmonic frequencies of the

cyclic C4 are listed in Table I. The definition of structural parameters in this paper are con-

sistent with that in Ref. 11.2,11 As shown in Table I, our CCSD(T)-F12b/aVTZ structure

is very similar to the CCSD(T)/pVQZ structure in Ref. 11. However, R12 and R13 from

a previous MRCI+Q study12 are longer than the CCSD(T)/CV5Z values by 0.007 Å and

0.015 Å, respectively. It is not unusual to see MRCI calculations overestimate the bond

lengths and its deviations are mainly caused by the ab initio method limitations (com-

pared to the error compensation in the CCSD(T) method), basis set incompleteness and

the core correlation effects. Such structural deviations consequently lead to the large de-

viations in the MRCI vibrational frequencies. The harmonic frequency differences between

the CCSD(T)-F12b/aVTZ PES and the CV5Z QFF are 2-10 cm−1; these relatively small

differences are reasonable considering the ab initio method and basis differences. The QFF

harmonic frequencies are typically a little higher than the PES values, and this is a result

of including core-correlation in the QFF calculation but not in the PES computations. The
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CV5Z QFF force constants are tabulated in Table II.

The computed fundamental frequencies of 12C4 using the PES and QFF with both VPT2

and VCI are presented in Table III. In addition, the IR intensities are estimated using the

standard double-harmonic approximation using MP2/aVQZ theory. The results are 53.5,

29.9 and 203.2 km/mol for the three IR-active modes, which in the present notation are

mode 4, 5, and 6, respectively. The MM-PES calculations are performed using both 4-mode

representation (4MR) and 5-mode representation (5MR). The 4MR VCI results agree with

5MR to within 0.3 cm−1. In addition, we test the convergence with respect to the number

of the contracted basis functions and the allowed mode excitations. Less than 0.2 cm−1

differences are found for fundamentals, which clearly indicates the VCI basis convergence. In

Table III, both VCI (MM-4MR) and VPT2 results are given for the CV5Z QFF. Agreement

for the six vibrational fundamentals is 0 - 3 cm−1, except ν2 where the VPT2 energy is 7

cm−1 higher than the VCI energy. The ν2 vibration is an in-plane breathing mode altering

the bond angles within the original symmetry. The anharmonicity of the ν2 fundamental

increases by -4.4 cm−1 from -9.8 cm−1 (CVTZ) to -12.9 cm−1 (CVQZ) and -14.2 cm−1

(CV5Z), but the ν2 harmonic frequency rises faster by 9.3 cm−1 from 940.3 cm−1 (CVTZ),

944.1 cm−1(CVQZ) to 949.6 cm−1 (CV5Z). This suggests that convergence with respect

to the one-particle basis set is reasonably good. The larger difference between VCI and

VPT2 for the ν2 fundamental suggests that second-order perturbation theory may not be

as adequate for this particular mode, but the difference is still relatively small.

The VCI fundamental frequencies using the PES differ by less than 9 cm−1 compared

to the VCI and VPT2 results using the QFF. The differences may partially result from the

ab initio method, while they could also partially come from the fitting of the PES and QFF.

Comparing the results in detail, we find that the harmonic frequency of the torsion mode ω4

on the PES is about 7 cm−1 lower than that on the QFF, but the VCI ν4 fundamentals are

almost the same, 301.02 cm−1 (PES) vs. 300.62 cm−1 (QFF). Conversely, we see enlarged

differences of mode 6 for which the harmonic frequency difference is 3.6 cm−1 while the

MM fundamentals differ by 7.6 cm−1. The PES vs. QFF harmonic frequency differences

of the other 4 fundamentals are similar to their corresponding PES vs. QFF variational

fundamentals. Comparing to previous studies, overall consistency with Martin’s CCSD(T)
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fundamentals is very good. By contrast, the results of the previous MRCI+Q QFF calcu-

lation have about 60 cm−1 deviations for some modes. They are mostly the result of the

large differences in the MRCI+Q structure and harmonic frequencies (see Table I), which is

mainly attributed to the ab initio method and basis limitations.

As noted already, Martin et al. reported the Fermi resonance ν6 = ν3+ν5 raises ν6 by

9 cm−1.11 To investigate this, we examined the force constants in Table II. The off-diagonal

cubic constant F653 is unusually large, 7.9852 aJ/Å2rad. It leads to an exceptionally large

k356 = -295.9 cm−1. In off-diagonal quartic constants, F6531 is also unusually large, i.e.

-20.2 aJ/Å3rad, which leads to k1356 = -55.0 cm−1. They are highly consistent with the

two corresponding normal coordinate QFF constants reported in Ref. 11: -295.0 cm−1

and -54.8 cm−1, respectively. This agreement confirms the consistency of both studies.

Note that the k356 value quoted in the Ref. 11 text and introduction was actually for

k166. Combined together, they render significant anharmonicities for ν6, i.e. 80 cm−1. From

the eigenvector analysis of the final VCI (MM) states, ν6 is found to be strongly coupled

with ν3+ν5. The ν3+ν5 CI basis contributes about 23% of the ν6 fundamental wavefunction.

However, using the CV5Z QFF, the regular VPT2 ν6 fundamental estimated without the

explicit Fermi resonance ν6 = ν3+ν5 treatment is 1313.15 cm−1, i.e. just 1.4 cm−1 lower

than the value we report in Table III, which is estimated with explicit Fermi resonance

treatment. The other component, ν3+ ν5, is 1.5 cm−1 higher, 1561.53 cm−1 (regular VPT2)

vs. 1560.14 cm−1 (explicit Fermi resonance treatment), vs. 1555.15 cm−1 (MM-QFF 4MR).

In addition, two more Fermi resonances (Type I) have been explicitly treated. Compared

to VPT2 without including these resonances, ν1 is reduced by 0.5 cm−1 and ν2 is raised

by 1.0 cm−1. Therefore, all the Fermi resonance effects we observed using the CV5Z QFF

fundamentals are smaller than those reported in Martin et al.. It is well known that the

resonance effects can vary from one QFF to another.

Combination and overtone excitation energies of C4 given in Table IV and are computed

with regular VPT2, i.e., no explicit Fermi resonance treatment is included. For most energy

levels the agreement between VCI (MM) and VPT2 results is within 10 cm−1, with the

VPT2 energies generally somewhat higher. For the states in Table IV where there are 3-5
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cm−1 differences between MM and VPT2, the differences are totally consistent with the

limitations of VPT2 treatment. There are only two exceptions: ν3 + ν6 and ν5 + ν6. For

ν3+ν6 and ν5+ν6; the MM-QFF energies are higher than the VPT2-QFF energies by 13-20

cm−1, while the VPT2-QFF energies agree well with the corresponding MM-PES energies.

This could be accidental. For the MM-PES results, we obtain good agreement between

the 4MR and 5MR results as well. Comparing MM-QFF to MM-PES, most differences are

within 5 - 15 cm−1. In addition, we note the strong coupling of 2ν6 with 2ν3 + 2ν5 and

ν6 + ν3 + ν5. The MM calculations give two 2ν6 states separated by about 200 cm−1, as

shown in Table IV. The leading CI coefficients in both 2ν6 states are about 0.67. In this

situation, assignment of 2ν6 becomes problematic due to the severe mixing, and the labels

are considered somewhat arbitrary.

In addition to the vibrational frequencies, vibrationally averaged structure, vibration-

rotation interaction constants and rotational constants of cyclic C4 are obtained using

VPT2 and the results are given in Table V. The zero-point averaged values of R12 and

R13 are longer than their equilibrium values by 0.0055 Åand 0.0081 Å, respectively. The

zero-point averaged rotational constants are smaller than Ae, Be, and Ce by 0.0075 cm−1,

0.0019 cm−1, and 0.0020 cm−1, respectively. The MRCI+Q/pVTZ rotational constants

reported in Ref.12 and given in Table V are almost certainly less accurate than the present

ones owing to the higher accuracy of the present ab initio methods. For quartic centrifugal

distortion constants, agreement between our CV5Z QFF and Ref.12 is just qualitative, with

the present dJ and dK smaller by one order of magnitude. From the VPT2 calculations,

when vibration-rotation terms are taken into account, the Av, Bv and Cv values vary by

0.01-0.02 cm−1 for the ν=1 states. Details can be found in the supplementary material

(SM)34.

We also obtain ro-vibrational energies of cyclic C4 from the MM and the SPECTRO calcula-

tions. The ro-vibrational energies of the J = 1 and J = 2 levels computed with the MM-PES

and VPT2-QFF approaches are given in Table VI, where we give Eν(J = 1, 2)−Eν(J = 0).

In addition to spectroscopic constants, SPECTRO also computes the ro-vibrational energy

levels through diagonalizing the rotational energy matrices for both S and A reduced Hamil-

tonians. The vibrationally-dependent spectroscopic constants can be found in the SM. Note
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the differences between S-reduced and A-reduced Hamiltonian energy matrices are much

smaller than 1.0E-06 cm−1, so we do not need to label them. The MM ro-vibrational en-

ergies calculation are obtained by diagonalizing the full ro-vibrational Watson Hamiltonian

matrices with the nMR potential representation. Cyclic C4 is not a rigid symmetric top, so

there is no exact expression that relates the ro-vibrational energies of MM with the effective

rotational constants. However, we use an approximate expression to represent the energy

levels of the asymmetric rigid rotor is given by35:

E =
1

2
(A+ C)J(J + 1) +

1

2
(A− C)Eτ

where Eτ is tabulated according to the asymmetry parameter κ, which is defined as

(2B − A − C)/(A − C). κ is equal to about -0.72 for cyclic C4, and the values of Eτ

can be found in Ref. 35. According to this expression, effective A and C can be calcu-

lated through linear least squares fitting from the MM-PES ro-vibrational energies. Here

if the effective rotational constants from SPECTRO are substituted into this expression to

calculate the ro-vibrational energies, good consistency can be obtained comparing with the

MM-PES energies, with differences less than 0.4 cm−1. The differences are partly due to the

simple approximation in the formula, they are also traced to differences in the equilibrium

structures between the QFF and PES.

Finally, we consider two cyclic C4 isotopologues. The MM and SPECTRO results for

the two single 13C-substituted isotopologues are shown in Table VII, including the zero-

point structure, 6 vibrational fundamentals, and vibrationally averaged rotational constants.

Additional VPT2 analyses for all other possible 13C isotopologues are available in the SM.

As seen in Table VII, good consistency is found between the three approaches for both

isotopologues. We expect similar consistency for the fundamentals. The VPT2/QFF iso-

topic shifts are explicitly included as it is usually more accurate than the absolute values of

fundamental frequencies. Compared to 12C4, the shifts are relatively small for the bend and

torsion modes, decreasing by less than 5 cm−1. For the stretching modes, for example mode

ν1 and ν6, the differences can be as large as about 14 cm−1 for the single 13C isotopologues.

Note the same Fermi resonance treatments are included in the VPT2 analysis on both

isotopologues, although their effects are small, i.e. about 1 cm−1.
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IV. SUMMARY AND CONCLUSIONS

We reported a CCSD(T)-F12b/aug-cc-pVTZ potential energy surface and a CCSD(T)/cc-

pCV5Z quartic force field for the singlet cyclic C4. Three different methods were adopted

to calculate the vibrational states of cyclic C4: variational calculations (VCI) using MUL-

TIMODE with the PES and the QFF, and second-order perturbation calculation using

SPECTRO with the QFF. Even though the PES and QFF were constructed using different

ab initio methods and basis sets, the VCI calculations using the PES and QFF are in very

good agreement with each other for fundamentals, overtones, and combinations. On the

CV5Z QFF, the VPT2 fundamentals agree excellently with the variationally calculated

energies. From the VCI calculations, the coupling between the mode ν6 and ν3 + ν5 com-

bination is quite strong, but the VPT2 calculations with the Fermi resonance treatment

explicitly included only change the ν6 fundamental by 1.4 cm−1. The other two Fermi

resonance effects are less than 1 cm−1. Ro-vibrational energies for J = 1 and J = 2

were reported from MM calculations on the PES and VPT2 calculations with the QFF.

Spectroscopic constants including vibrationally averaged structures were determined by the

VPT2 method and reported for the main isotopologue as well as two 13C singly-substituted

isotopologues. The accuracy of vibrational fundamentals is estimated to be better than 5

cm−1. Rotational constant are estimated to be accurate to within 0.1-0.5% and quartic

centrifugal distortion constants are estimated to be accurate to within 5-10%. The results

reported in this study may help identification of cyclic C4 in future experimental analyses

or astronomical observations.

The PES and QFF are available upon request.
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FIG. 1. Root-mean-square (RMS) of the PES fitting error vs. relative energy with respect to cyclic

C4 minimum. The numbers in parenthesis are the number of configurations in the energy range.
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TABLE I. Computed equilibrium geometries (Å), rotational constants (cm−1), and harmonic fre-

quencies (cm−1) of cyclic C4 from the PES and ab initio calculations.

PES CCSD(T)-F12b QFF Ref.

/aVTZ CV5Z CCSD(T)a MRCIb

Equilibrium geometires

R12 1.4481 1.4494 1.4439 1.4492 1.4510

R13 1.5121 1.5110 1.5057 1.5125 1.5204

Ae 1.2277 1.2295 1.2383 1.2149

Be 0.4599 0.4586 0.4623 0.4599

Ce 0.3346 0.3345 0.3366 0.3336

Harmonic frequencies

ZPE 2736.8 2730.5 2751.3 2731.4 2815.9

ω1(ag) 1267.9 1264.3 1272.2 1262.7 1306.6

ω2(ag) 947.4 942.5 949.6 944.2 989.5

ω3(b1g) 1029.4 1030.8 1038.9 1030.8 1079.1

ω4(b1u) 299.4 301.4 306.1 304.7 284.3

ω5(b2u) 537.1 534.3 539.9 534.5 523.1

ω6(b3u) 1392.3 1386.6 1396.0 1385.9 1449.2

a Ref. 11 CCSD(T)/pVQZ calculation

b Ref. 12 MRCI+Q/pVTZ calculation
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TABLE II. CCSD(T)/CV5Z QFF force constants in symmetry coordinates of cyclic C4. Coordi-

nates 1-6 follow the definitions in Ref. 11. All force constants are given in aJ/Ån · radm where n

and m are the orders of bond length coordinates and angle-related coordinates.

ij Fij ij Fij ij Fij

11 5.513082 21 -0.503134 22 1.770448

33 0.737645 44 0.068348 55 3.815147

66 4.730368

ijk Fijk ijk Fijk ijk Fijk

111 -15.6237 211 1.1212 221 -3.3525

222 3.5236 331 -3.9763 332 -1.7894

441 -0.1205 442 0.3723 551 -14.2755

552 0.6873 653 7.9852 661 -14.6209

662 0.2381

ijkl Fijkl ijkl Fijkl ijkl Fijkl

1111 36.18 2111 -2.42 2211 6.02

2221 -10.21 2222 15.92 3311 5.94

3321 4.70 3322 1.04 3333 10.55

4411 0.20 4421 -0.89 4422 0.19

4433 -0.37 4444 0.43 5511 37.77

5521 0.16 5522 -5.64 5533 10.68

5544 -0.47 5555 41.66 6531 -20.20

6532 -4.32 6611 35.92 6621 -0.29

6622 0.82 6633 9.45 6644 -0.20

6655 40.01 6666 29.57
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TABLE III. Computed zero-point energy (ZPE) and fundamentals (cm−1) of cyclic 12C4 using

different methods

Harm. MM-PES Harm. MM-4MR VPT2 Refs.

PES 4MR 5MR QFF QFF QFF CCSD(T)aCCSD(T)bMRCIc

ZPE 2736.84 2716.37 2716.36 2751.34 2729.76 2726.35 2713.6 2698.1

ν1(ag) 1267.88 1250.26 1250.26 1272.25 1256.66 1256.36 1248.6 1241.4 1285.9

ν2(ag) 947.39 928.32 928.24 949.60 928.62 935.44 926.9 920.7 949.4

ν3(b1g) 1029.39 994.34 994.27 1038.85 1002.40 1002.93 998.7 989.3 981.5

ν4(b1u) 299.44 301.02 300.96 306.10 300.62 302.87 302.3 300.3 279.2

ν5(b2u) 537.15 520.86 520.81 539.91 520.59 522.60 520.2 511.6 522.5

ν6(b3u) 1392.33 1308.91 1308.64 1395.97 1316.57 1314.54 1313.5 1294.2 1378.0

a Ref. 11 CCSD(T)/pVTZ variational calculation

b Ref. 11 CCSD(T)/pVTZ perturbation calculation

c Ref. 12 MRCI+Q/pVTZ perturbation calculation
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TABLE IV. Low-lying combinations and overtones of cyclic 12C4 (cm−1)

Assignment MM-PES MM-QFF VPT2-QFF

4MR 5MR 4MR

2ν4 606.69 606.58 603.21 608.67

ν4 + ν5 822.06 821.93 818.93 824.44

2ν5 1036.72 1036.61 1035.27 1037.84

ν2 + ν4 1232.92 1229.41 1225.84 1232.20

ν3 + ν4 1290.72 1290.48 1296.18 1299.06

ν2 + ν5 1439.13 1438.76 1435.14 1444.90

ν3 + ν5 1549.74 1549.66 1555.15 1561.52

ν1 + ν4 1556.93 1553.26 1559.61 1561.33

ν6 + ν4 1605.78 1604.97 1611.58 1611.72

ν1 + ν5 1773.20 1773.09 1779.88 1785.04

ν6 + ν5 1787.13 1786.16 1797.19 1784.11

2ν2 1853.43 1853.11 1855.11 1861.14

ν3 + ν2 1918.21 1918.01 1925.05 1923.23

2ν3 1984.99 1984.69 2000.95 2003.75

ν1 + ν2 2176.93 2173.39 2183.01 2184.35

ν2 + ν6 2218.54 2216.13 2225.79 2234.58

ν1 + ν3 2232.38 2232.20 2245.38 2245.56

ν3 + ν6 2247.65 2246.83 2264.19 2244.26

2ν1 2495.22 2495.17 2508.59 2508.82

ν1 + ν6 2547.08 2546.36 2561.28 2560.05

2ν6
1 2589.08 2587.19 2607.76 2617.20

2ν6
2 2794.38 2793.19 2810.37

1 Lower energy component of ν6 overtone

2 Higher energy component of ν6 overtone
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TABLE V. VPT2 vibrationally averaged structure (Å), vibration-rotation coupling constants (10−3

cm−1), rotational constants (cm−1) and centrifugal distortion constants (10−6 cm−1) of cyclic C4,

in the Watson A reduced Hamiltonian.

Zero-point Ref.a Vib-rot constants

R12 1.4494 Mode αA αB αC

R13 1.5138 1 5.25 0.92 0.76

A0 1.2308 1.2178 2 2.71 -0.37 0.66*

B0 0.4604 0.4570 3 2.70 1.51 1.82*

C0 0.3346 0.3319 4 29.64 -1.01 -1.38

DJ 0.2267 0.2129 5 -28.30 1.85 1.66

DJK 0.7299 0.6571 6 5.16 1.53 1.11

DK 5.4165 4.5530

dJ 0.0630 0.592

dK 0.7992 7.157

* means the values are affected by Coriolis resonance

a Ref. 12 MRCI+Q/pVTZ calculation
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TABLE VI. Ro-vibrational energies of J = 1 and J = 2 from 4MR MM calculation with the PES

and VPT2 calculation with the QFF, and the energies are shown as νi(J=1,2) − νi(J=0). (cm
−1)

11,0 11,1 10,1 22,0 22,1 21,1 21,2 20,2

MM ZPE 1.6701 1.5449 0.7898 5.6533 5.6400 3.3748 2.9994 2.3561

ν1 1.6668 1.5412 0.7872 5.6462 5.6318 3.3686 2.9909 2.3479

ν2 1.6670 1.5405 0.7884 5.6421 5.6285 3.3707 2.9914 2.3515

ν3 1.6661 1.5395 0.7857 5.6422 5.6280 3.3652 2.9853 2.3435

ν4 1.6674 1.5426 0.7920 5.6366 5.6278 3.3760 3.0017 2.3670

ν5 1.5919 1.4675 0.7866 5.3521 5.3376 3.2907 2.9176 2.3454

ν6 1.6578 1.5327 0.7861 5.6165 5.5995 3.3588 2.9817 2.3432

VPT2 ZPE 1.6912 1.5653 0.7950 5.7321 5.7179 3.4071 3.0295 2.3708

ν1 1.6850 1.5593 0.7933 5.7095 5.6953 3.3974 3.0203 2.3658

ν2 1.6889 1.5620 0.7947 5.7213 5.7068 3.4052 3.0245 2.3697

ν3 1.6870 1.5608 0.7917 5.7181 5.7038 3.3965 3.0180 2.3608

ν4 1.6626 1.5371 0.7974 5.6164 5.6018 3.3829 3.0064 2.3776

ν5 1.7177 1.5920 0.7915 5.8413 5.8276 3.4263 3.0493 2.3609

ν6 1.6845 1.5591 0.7924 5.7088 5.6947 3.3949 3.0184 2.3630
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TABLE VII. The VPT2 zero-point vibrationally averaged structures (Å, deg), rotational constants

(cm−1), zero-point energy (ZPE) (cm−1), fundamentals (cm−1) of single 13C isotope substituted

cyclic C4, and shifts of vibration energies comparing with 12C4 based on VPT2 results.

Zero-point Vibrational Energies Shift

Harm-QFF MM-PES MM-QFF VPT2-QFF

13CCCC R12=R14 1.4492 ZPE 2721.98 2687.64 2699.84 2697.62 -28.73

R23=R34 1.4494 ν1 1258.93 1237.12 1243.34 1243.59 -12.77

� 123 62.960 ν2 941.08 920.77 920.37 922.18 -13.26

A0 1.1825 ν3 1023.51 980.25 987.80 988.67 -14.26

B0 0.4605 ν4 303.13 298.09 297.66 299.96 -2.91

C0 0.3309 ν5 534.39 515.66 515.22 517.38 -5.22

ν6 1382.92 1296.76 1303.83 1302.39 -12.15

C13CCC R12=R23 1.4493 ZPE 2726.96 2692.60 2704.75 2702.47 -23.88

R34=R14 1.4493 ν1 1260.34 1238.56 1243.90 1244.33 -12.07

� 143 62.965 ν2 938.59 917.23 917.54 919.34 -10.77

A0 1.2308 ν3 1033.43 989.33 996.97 997.88 -5.05

B0 0.4424 ν4 303.13 298.10 297.67 299.98 -2.89

C0 0.3249 ν5 534.60 515.96 515.50 517.67 -4.93

ν6 1383.82 1299.15 1306.24 1304.52 -10.02
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