Cryogenic Boil-Off Reduction System Testing

David Plachta,¹
Wesley Johnson,¹ Jeff Feller²
¹Glenn Research Center
³Ames Research Center

2014 Propulsion and Energy Forum
Cleveland, OH
July 28 - 30
Introduction

- Liquid hydrogen (LH_2) and oxygen (LO_2) are highly efficient propellants
 - Upper stages utilizing LH_2 and LO_2 are competitive in mission architecture studies for upper stages and depots
 - Low LH_2 and LO_2 boiling points, however, mean they boil-off propellant in low Earth orbit
 - Extra propellant must be tanked and launched from Earth

- Reducing boil-off requires good insulation
 - Multi-layer Insulation (MLI) used

- For long duration missions, however, active refrigeration of propellant tanks is being considered
Potential NASA Uses for Boil-Off Reduction System

NASA is Developing capabilities to take exploration crews beyond low Earth orbit (LEO)

Cryogenic Propulsion Stages

Nuclear Thermal Propulsion Stages

In-Space Cryogenic Propellant Depots
Needs and Goals

• Need:
 • Enable long-term cryogen storage for future exploration missions beyond Earth’s orbit
 • Validate cryogenic boil-off reduction system (CBRS) scaling study that predicts this system reduces mass after just several weeks loiter in low Earth orbit

• Goal:
 – Efficiently reduce or eliminate tank boil-off
 • Determine integrated system performance
 • Validate system model

Assembled test article being lowered into SMiRF vacuum chamber at NASA Glenn Research Center.
Cryogenic Boil-Off Reduction System

• Uses a cryocooler to transfer heat from propellant tank to reduce or eliminate cryogen boil-off
 – Primary application is LH₂ and LO₂ storage

• Incorporating existing 90 K cryocoolers that can substantially reduce propellant boil-off
 – Similar to a vapor cooled shield, but coupled with a cryocooler
 – Cool struts and plumbing in addition to insulation system

• Lack of large scale 20 K class cryocoolers limits current availability to achieve zero boil-off with liquid hydrogen
CBRS Background/Definitions

- NASA has been developing two approaches
 - For LH2 Reduced Boil Off (RBO) propellant storage applications,
 - A *tube-on-shield* approach is used where a tubing loop is attached to a aluminum sheet embedded in the propellant tank Multi-Layer Insulation (MLI)
 - Integrates existing flight-type warmer temperature cryocoolers (e.g. 90K) to intercept some of the heat before it reaches the tank
 - For LH2 Zero Boil Off (ZBO) propellant storage applications,
 - A *tube-on-tank* approach is used with the tubing loop attached directly to the outer tank wall of the propellant tank.
 - Unfortunately, at this time there are no flight-type cryocoolers available that remove heat at 20K with sufficient heat removal capacity to be useful for LH2 Zero Boil Off (ZBO) propellant storage applications
 - For LO2 ZBO *tube-on-tank* approach integrating existing flight-type warmer temperature cryocoolers can be used
Key Technology Developments

• Demonstrate the low loss integration of a reverse turbo-Brayton cycle cryocooler with a propellant tank to reduce and eliminate boil-off
 • Demonstrate ability to control tank pressure using active cooling system.
• Determine the tank applied self-supporting multi-layer insulation (SS-MLI) performance
 – Uses polymer spacers to maintain layer separation
 – Can reduce heat leak through the insulation system
• Its advantages over conventional MLI include:
 – Improved thermal performance per layer
 – Estimated lower fabrication and installation cost
 – More predictable and repeatable performance
RTBC Cryocooler Layout

- Turbo Alternator
- Recuperators
- Compressor
- Aftercooler
- Aluminum mounting structure
- Radiator mounting plate

Flight heritage cryocooler design, evolved from NICMOS
Test Program

• Tests conducted at NASA Glenn SMiRF in vacuum chamber with cryoshroud providing LEO temperature.
• Three test series, all with 1.2 m dia 1.4m³ tank, with same reverse turbo-Brayton cycle cryocooler and heat pipe radiator

• Test Series 1
 • LH₂ test with 60 layers of traditional MLI used
 • Cooled shield located after 30 layers of MLI
• Test Series 2
 • LH₂ test with 30 layers of traditional MLI over shield
 • Inner MLI was 18 layers of SS-MLI
• Test Series 3
 • ZBO tube-on-tank test with 75 layers of traditional MLI

Cross-sectional view of Test Series 2 insulation
Key Components and Heat Paths

- penetration heat leak
 \[Q_{pen} = Q_{vent} + Q_{fill} + Q_{struts} + Q_{nipple} \]

- instrumentation heat leak
 \[Q_{instr} = Q_{rake} + Q_{wires} + Q_{probe} \]

- total heat load on tank (tank thermal balance)
 \[Q_{tank} = Q_{MLI} + Q_{pen} + Q_{instr} + Q_{heater} - Q_{bac} \]

- total heat load on cryocooler (cryocooler thermal balance)
 \[Q_{cc} = Q_{bac} + Q_{strap} + Q_{par} \]

- parasitic heat load on cooling loop
 \[Q_{par} = Q_{inlet} + Q_{man,inlet} + Q_{man,outlet} + Q_{outlet} \]

Not shown:
- MLI \(Q_{MLI} \)
- diode rake \(Q_{rake} \)
- capacitance probe \(Q_{probe} \)
- instrumentation wiring \(Q_{wires} \)
- cryocooler \(Q_{cc} \)
Test Data

<table>
<thead>
<tr>
<th></th>
<th>CBRS I Cooler Off</th>
<th>CBRS I Cooler On</th>
<th>CBRS II Cooler Off</th>
<th>CBRS II Cooler On</th>
<th>ZBO Cooler Off</th>
<th>ZBO Cooler On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat or Boil-Off (%) Reduction</td>
<td>48%</td>
<td>61%</td>
<td>45%</td>
<td>55%</td>
<td>43%</td>
<td>0</td>
</tr>
<tr>
<td>BO*</td>
<td>3.87</td>
<td>2.03</td>
<td>3.32</td>
<td>1.83</td>
<td>4.3</td>
<td>0</td>
</tr>
<tr>
<td>MLI</td>
<td>2.04</td>
<td>0.79</td>
<td>1.46</td>
<td>0.65</td>
<td>2.62</td>
<td>2.62</td>
</tr>
<tr>
<td>Vent</td>
<td>0.09</td>
<td>0.11</td>
<td>0.046</td>
<td>0.11</td>
<td>0.14</td>
<td>1.43</td>
</tr>
<tr>
<td>Fill</td>
<td>0.38</td>
<td>0.19</td>
<td>0.5</td>
<td>0.18</td>
<td>0.49</td>
<td>0.51</td>
</tr>
<tr>
<td>Struts</td>
<td>0.604</td>
<td>0.23</td>
<td>0.63</td>
<td>0.2</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>Capacitance Probe</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.22</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>Penetration Integration</td>
<td>0.34</td>
<td>0.34</td>
<td>0%</td>
<td>0%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Standoffs</td>
<td>0.12</td>
<td>0.05</td>
<td>0.17</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Instrumentaion</td>
<td>0.1</td>
<td>0.1</td>
<td>0.17</td>
<td>0.17</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Instr. port</td>
<td>0.13</td>
<td>0.13</td>
<td>0.17</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>non-cooled heat</td>
<td>0.65</td>
<td>0.65</td>
<td>0.596</td>
<td>0.67</td>
<td>0.65</td>
<td>0.67</td>
</tr>
<tr>
<td>Cooled items</td>
<td>3.114</td>
<td>1.32</td>
<td>2.59</td>
<td>1.03</td>
<td>3.186</td>
<td>1.7</td>
</tr>
</tbody>
</table>

*Thermal acoustic oscillation heat removed

<table>
<thead>
<tr>
<th>Item</th>
<th>CO2</th>
<th>CBRS I</th>
<th>CBRS II</th>
<th>ZBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q lift</td>
<td>13.2</td>
<td>10.7</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Q BAC</td>
<td>5.84</td>
<td>5.23</td>
<td>4.52</td>
<td></td>
</tr>
<tr>
<td>Q struts</td>
<td>1.21</td>
<td>2.09</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Q parasitic</td>
<td>6.17</td>
<td>3.34</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Q compressor</td>
<td>245</td>
<td>223</td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Results

- First of its kind demonstration of flight heritage reverse turbo-Brayton cycle cryocooler integrated with broad area cooled shield to reduce boil-off of a LH2 storage tank
- Cooling loop flow and BAC shield thermal losses were lower than expected
- Boil-off % reduction was less than expected (48% measured vs. 60% predicted for test 1)
 - Where cooling was used, tank heat leak was reduced by 60%
 - Model configuration differed slightly from as-built test
- Inner MLI heat leak was reduced with SS-MLI, but still higher than expected
 - Low warm (90K) temp boundary conditions of both inner MLI concepts had higher than expected heat
 - Models do not work over this temperature range
 - Very little MLI data exists at these temps
 - Improved models require additional data
- Experienced Thermo-Acoustic Oscillations in hydrogen tank

Heat Leak for CBRS Test Series
Test Series 2- SS-MLI Performance

• SS-MLI reduced tank heat
 – Passive MLI heat was 1.46 W, reduced by 28% from Test I
 – Active MLI heat was 0.65 W
 • Improvement of 18% from RBO I
 • Both values were improvements over traditional MLI

• SS-MLI adequately supported the BAC shield
 – No movement or shifting of BAC noticed
 – Velcro supports were held intact on shield and tank foam
Test Series 3--Robust ZBO Demonstrated

- ZBO was easily achieved
- Robust tank pressure control using cryocooler system also demonstrated
- Testing established the pressurization rates vs net heat load into or out of the tank
 - With Cryocooler power increased 33% over that for ZBO, tank pressure dropped 1.4 psi over 22 hr period
- Model correlations show active system pressurization rates compare well with that of an isothermal system
- Tube-on-Tank system effectively prevented thermal stratifications within the tank while:
 - Being external to tank
 - Introducing minimal parasitic heat loads to tank with cooler off

![Graph showing correlation between pressure rise rate and net tank heat load](image)
Use of test data to help size propellant storage cryocoolers

- **Goal:** Find system Coefficient of Performance (COP) for tank applied broad area cooling systems
 - With improved insulation on cryocooler to BAC supply lines and on the manifold, Q parasitic (Q par) = 1.5 W
 - This represents an 18% parasitic loss for active cooling of propellant tanks
 - 1.5 W/8.5W lift is 18% of cryocooler lift
 - Assume parasitic loss of 18% for integration of cryocoolers into propellant tanks
 - The system coefficient of performance is defined as:
 - \[\text{COP}_{\text{sys}} = \frac{Q_{\text{useful}}}{P_{\text{comp}}} \]
 - Find \(\text{COP}_{\text{sys}} \) for variety of LOX ZBO tank heat leaks by combining test data, CAT analysis, and that from Contract NNG12LN29P
Updates based on cryocooler system data generated from LO₂ ZBO and LH₂ RBO testing have been integrated into NASA’s Cryogenic Analysis Tool.

- Revisions from RBO testing were incorporated in tool and scaling study results last year.
 - Updates were done on the radiator-cryocooler interface plate, cooling strap, cryocooler parasitics, and MLI below 90K.
 - Impact: a slight increase in active cooling system mass is noted and shown in the figure, which moves the mission duration break even point for including LO₂ ZBO less than a day.*

*Note, this is a simplified analysis and a more detailed analysis would be required to assist in the decision to include a LO₂ ZBO system in a future mission.
Conclusions

- Cryocooler and cryocooler integration hardware have been tested in first large surface area thermal test in simulated low-Earth orbit environment
 - Reverse turbo-Brayton cycle cryocooler performance was outstanding
 - Integrated circulation system had minimal losses
 - End-to-end system test was successful
 - Component performances were as expected except inner MLI
 - Reasons are not clear, however--
 » Little development work has been done for low-temperature (20-90K) MLI
 » MLI designs are straightforward and solutions are possible

- SS-MLI offers promise for space flight applications
- First successful test of distributed cooling system used to achieve ZBO
 - Controlled tank pressure using active cooling system.
 - Decreased tank pressure at controlled rate with cryocooler system operating at 33% excess capacity.
 - Testing indicates that internal tank mixer operation and its associated heat and risk may not be needed while operating ZBO systems

- ZBO Scaling Study effort was updated
 - Simplified approach for ZBO cryocooler sizing has been presented
 - Projected mass savings of RBO/ZBO has been confirmed
Questions?