Water Flow Simulation Using Smoothed Particle Hydrodynamics (SPH)

Bruce Vu
Jared Berg
Michael Harris

Presented at the Applied Modeling and Simulation (AMS) seminar
NASA Ames Research Center, 18 April, 2014
Motivation

• Is rainbird water throw going to wet the vehicle?
• Answer it by smoothed particle hydrodynamics (SPH) modeling
• 2 simulations using a 2-D structured mesh of rainbird nozzle mounted 12’ above the deck based on OpenFOAM multiphase flow solver.
• Simulation 1 - “corner rainbird” case: Water injection at 112,500 gpm.
• Simulation 2 - “center rainbird” case: Water injection at 55,250 gpm.
• Both simulations were run up to 5 seconds.
55,250 GPM
112,500 GPM
112,500 GPM
Recommendation

- 3-D VOF
- Smoothed Particle Hydrodynamics
SPH Formulation

- SPH is a meshfree method with nodal collocation, spatial discretization, and kernel approximation.

- Starting with the conservation equation of mass and momentum:

\[
\frac{D\rho}{Dt} = -\rho \nabla \cdot \vec{v} \\
\frac{D\vec{v}}{Dt} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \vec{v} + \vec{g}
\]

written in compact matrix form:
\[
A(f(r)) = \nabla \sigma + \vec{F}, \quad \forall r \in \Omega \\
B(f(r)) = \vec{f}, \quad \forall r \in \Gamma
\]

- Let \(f^h(r) \) is an approximation of \(f(r) \):

\[
f(r) \approx f^h(r) = \sum_{i=1}^{n} N_i(r) f_i
\]

where \(f_i = f(r_i) \) is nodal value of \(f(r) \) at specified particle \(r_i \).

\(N_i(r) \) is the shape function used to interpolate field \(f(r) \) from \(f_i \).
SPH Formulation

• For any test function \(v \) in the domain \(\Omega \) and boundary \(\Gamma \),

\[
\int_\Omega v^T A(f(r)) d\Omega + \int_\Gamma v^T B(f(r)) d\Gamma = 0
\]

• Test function \(v \) can be constructed by some basis function \(\Phi_i \)

\[
v = \sum_{i=1}^{r} b_i \Phi_i \quad \text{and} \quad \bar{v} = \sum_{i=1}^{r} b_i \bar{\Phi}_i
\]

leading to the final weighted residual function

\[
\int_\Omega \Phi^T A(f^h(r)) d\Omega + \int_\Gamma \bar{\Phi}^T B(f^h(r)) d\Gamma = 0
\]
SPH Formulation

• Point collocation discretized the weighted residual function based on Dirac delta function
 \[\delta(r) = \begin{cases} 0, & r \neq 0 \\ 1, & r = 0 \end{cases} \]

• Dirac delta function has some useful properties:
 \[\int_{\Omega} \delta(r) dr = 1 \quad \int_{-\infty}^{\infty} \delta(r - r') f(r') dr' = f(r) \]

• For a boundary value problem,
 \[
 A(f(r)) = 0, \quad \forall r \in \Omega \\
 B(f(r)) = 0, \quad \forall r \in \Gamma
 \]

• Use the delta function \(\delta(r_i - r) \) as test function, we can derive a set of collocation eqs:
 \[
 A(f^h(r_i)) = 0, \quad i = 1, 2, ..., r_1 \\
 B(f^h(r_j)) = 0, \quad j = 1, 2, ..., r_2
 \]

where \(r_1 \) and \(r_2 \) are particles in \(\Omega \) and \(\Gamma \), respectively
SPH Formulation

• In a Kernel approximation, the δ function can be replaced by a smoothing function $w(r-r', h)$, which is an even function and satisfies the following conditions:

$$ \int_{\Omega} w(r-r', h)dr' = 1 \quad \lim_{h \to 0} w(r-r', h) = \delta(r-r') \quad w(r-r', h) = 0 \text{ when } |r-r'| > kh $$

where k defines the compact support of the smoothing function, and $f(r)$ can be approximated as

$$ f^h(r) = \int_{\Omega} f(r')w(r-r', h)dr' $$

• The integral form can be discretized by particle approximation:

$$ f^h(x) = \sum_{i=1}^{n} w_i(r)\Delta V_i f_i = \sum_{i=1}^{n} N_i(r) f_i $$

where $w_i(r) = w(r-r_i)$, and ΔV_i is the volume of particle r_i.
In SPH, finite volume of particle is related to mass of particle through density
\[m_i = \rho_i \Delta V_i \]

The approximate function can be written as
\[f^h(r) = \sum_{i=1}^{n} w_i(r) \Delta V_i f_i = \sum_{i=1}^{n} w_i(r) \frac{m_i}{\rho_i} f_i \]

The approximate solution of particle \(i \) is
\[f^h(r_i) = \sum_{j=1}^{n} w_{ij} \frac{m_j}{\rho_j} f(r_j) \]

where \(w_{ij} = w(r_i - r_j, h) \), thus the density of particle \(i \) becomes:
\[\rho_i = \sum_{j=1}^{n} w_{ij} m_j \]

The above equation shows particle density is based on smoothing the surrounding particle masses, therefore the name “smoothed particle”.
Floating

Press

1.82e+004

1e+4

-5.87e+003

0
Pump
Multi-GPU
SPH

GPUs: 64 x M2090 (BSC)
MPI: Dynamic balancing
Algorithm: Verlet & Wendland
Particles: 1,015 Millions
Steps: 237,342
Runtime: 91.9 hours
Physical time: 12 seconds
Computational Resource

• Current Beast:
 • Dual Quadro 6000, 6 GB, 448 CUDA GPU
 • 256 GB RAM
 • Dual Intel Xeon E5-2690
 • 512 GB SSD, 3 TB SATA (Win7)
 • 256 GB SSD, 2 TB SATA (Debian Linux)

• Upgrade Beast:
 • Tesla K40 (12 GB GDDR5, 2880 CUDA cores) for computations (4.29 Tflops)
 • Quadro K6000 (12 GB GDDR5, 2880 CUDA cores) for graphic rendering (2560x1600)
 • 1 TB SSD Drives
Approach

• Import full ML CAD Model
• Run multiple rainbirds with variable flowrates and timing sequence
• Activate vehicle motion with velocity/acceleration profile extracted from MSFC trajectory analysis
Water Tank & Rainbird
SPH Rainbird
SPH Rainbird

Time: 0.000000 sec
SPH Rainbird

Time: 5.000000 sec

Vel (m/s)
Test case 1

Time: 0.000000
\[a = 15 \text{m/s}^2 \]
Test case 2

Time: 0.000000
Vpiston=4m/s
Test case 3

Time: 0.000000
Vpiston=1 m/s

Velocity (m/s)
SPH Rainbird
SPH Rainbird
Verification

- Traj Plots CSE with bypass (from Nick Moss’ Rainbird Water Throws)
 - North Corner Rainbirds: 28,381 GPM
 - South Rainbirds: 56,762 GPM
Verification

- Traj Plots CSE with bypass (from Nick Moss’ Rainbird Water Throws)
 - North Corner Rainbirds: 6.01m – 7.433m
 - South Rainbirds: 7.0m – 8.7m
Verification

North Corner (28,381 GPM)
Time: 2.5 sec

South Rainbird (56,762 GPM)
Time: 2.5 sec
Verification

North Corner (28,381 GPM)
Time: 0 sec
Verification

South Rainbird (56,762 GPM)
Time: 0 sec
Verification

North Corner (28,381 GPM)
Time: 2.5 sec

South Rainbird (56,762 GPM)
Time: 2.5 sec
Verification

North Corner (28,381 GPM)
Time: 0 sec

\[V \text{ (m/s)} \]
Verification

South Rainbird (56,762 GPM)
Time: 0 sec
Verification

- Flow time = 3.5s
- Total time = 6.5s
Verification

- Flow time = 3.5s
- Total time = 6.5s

Time: 0.000000 sec

- 69,982 GPM
- 44,084 GPM
- 51,786 GPM

V (m/s)

2.5 5 7.5 10 13
Water volume flow was based on a maximum nominal rainbird flow during T-10 to T+20sec.
Full Simulations

Time: 1.200000 sec

Velocity (m/s)
Full Simulations

Time: 0.000000 sec

Velocity (m/s)
Next Iteration

• Correct rainbird flow timing and volume flow rates; make it variable based on Nominal or Abort operation to reduce conservatism.
• Correct vehicle motion; add correct velocity or acceleration profile
• Add geometry complexity to include TSM, ML deck roughness, and exhaust hole features
Nominal RB Flows and SLS Motion

<table>
<thead>
<tr>
<th>Time</th>
<th>Nominal Lau North East</th>
<th>North Center</th>
<th>North West</th>
<th>South East</th>
<th>South West</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11</td>
<td>150.40</td>
<td>23.69</td>
<td>27.82</td>
<td>23.69</td>
<td>37.60</td>
</tr>
<tr>
<td>-10.9919</td>
<td>150.40</td>
<td>23.69</td>
<td>27.82</td>
<td>23.69</td>
<td>37.60</td>
</tr>
<tr>
<td>-10.9838</td>
<td>150.40</td>
<td>23.69</td>
<td>27.82</td>
<td>23.69</td>
<td>37.60</td>
</tr>
<tr>
<td>-10.9757</td>
<td>150.40</td>
<td>23.69</td>
<td>27.82</td>
<td>23.69</td>
<td>37.60</td>
</tr>
<tr>
<td>-10.9676</td>
<td>150.40</td>
<td>23.69</td>
<td>27.82</td>
<td>23.69</td>
<td>37.60</td>
</tr>
<tr>
<td>-10.9596</td>
<td>150.40</td>
<td>23.69</td>
<td>27.82</td>
<td>23.69</td>
<td>37.60</td>
</tr>
</tbody>
</table>

Ascent Elevation

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Elev (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.09833</td>
</tr>
<tr>
<td>2.965</td>
<td>9.23374</td>
</tr>
<tr>
<td>5.0</td>
<td>13.4936</td>
</tr>
<tr>
<td>2.965</td>
<td>12.93973</td>
</tr>
<tr>
<td>5.0</td>
<td>14.52207</td>
</tr>
</tbody>
</table>

TPS (time, elev, elev)

<table>
<thead>
<tr>
<th>TPS</th>
<th>time</th>
<th>elev</th>
<th>elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.1165</td>
<td>22.2144</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.39</td>
<td>24.4783</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.8053</td>
<td>26.8784</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21.3166</td>
<td>29.4193</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22.8250</td>
<td>32.0877</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24.3333</td>
<td>34.8667</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25.8416</td>
<td>37.8407</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27.3499</td>
<td>40.9133</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28.8582</td>
<td>44.0839</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30.3665</td>
<td>47.3545</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31.8747</td>
<td>50.6251</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33.3829</td>
<td>53.8957</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>34.8911</td>
<td>57.1663</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>36.4003</td>
<td>60.4369</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>37.9095</td>
<td>63.7075</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>39.4187</td>
<td>66.9781</td>
<td></td>
</tr>
</tbody>
</table>

Ascent Elevation

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Elev (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.09833</td>
</tr>
<tr>
<td>2.965</td>
<td>9.23374</td>
</tr>
<tr>
<td>5.0</td>
<td>13.4936</td>
</tr>
<tr>
<td>2.965</td>
<td>12.93973</td>
</tr>
<tr>
<td>5.0</td>
<td>14.52207</td>
</tr>
</tbody>
</table>

TPS (time, elev, elev)

<table>
<thead>
<tr>
<th>TPS</th>
<th>time</th>
<th>elev</th>
<th>elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.1165</td>
<td>22.2144</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.39</td>
<td>24.4783</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.8053</td>
<td>26.8784</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21.3166</td>
<td>29.4193</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22.8250</td>
<td>32.0877</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24.3333</td>
<td>34.8667</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25.8416</td>
<td>37.8407</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27.3499</td>
<td>40.9133</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28.8582</td>
<td>44.0839</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30.3665</td>
<td>47.3545</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31.8747</td>
<td>50.6251</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33.3829</td>
<td>53.8957</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>34.8911</td>
<td>57.1663</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>36.4003</td>
<td>60.4369</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>37.9095</td>
<td>63.7075</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>39.4187</td>
<td>66.9781</td>
<td></td>
</tr>
</tbody>
</table>

Ascent Elevation

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Elev (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.09833</td>
</tr>
<tr>
<td>2.965</td>
<td>9.23374</td>
</tr>
<tr>
<td>5.0</td>
<td>13.4936</td>
</tr>
<tr>
<td>2.965</td>
<td>12.93973</td>
</tr>
<tr>
<td>5.0</td>
<td>14.52207</td>
</tr>
</tbody>
</table>

TPS (time, elev, elev)

<table>
<thead>
<tr>
<th>TPS</th>
<th>time</th>
<th>elev</th>
<th>elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.1165</td>
<td>22.2144</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.39</td>
<td>24.4783</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.8053</td>
<td>26.8784</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21.3166</td>
<td>29.4193</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22.8250</td>
<td>32.0877</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24.3333</td>
<td>34.8667</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25.8416</td>
<td>37.8407</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27.3499</td>
<td>40.9133</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28.8582</td>
<td>44.0839</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30.3665</td>
<td>47.3545</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31.8747</td>
<td>50.6251</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33.3829</td>
<td>53.8957</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>34.8911</td>
<td>57.1663</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>36.4003</td>
<td>60.4369</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>37.9095</td>
<td>63.7075</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>39.4187</td>
<td>66.9781</td>
<td></td>
</tr>
</tbody>
</table>
Nominal RB Flows and SLS Motion

Time (sec) vel (m/s)

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>NE</th>
<th>NC</th>
<th>NW</th>
<th>SE/SW</th>
<th>NE/NW</th>
<th>NC</th>
<th>SE/SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.18E-04</td>
<td>0.2368</td>
<td>0.2781</td>
<td>0.2368</td>
<td>0.3759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.27E-03</td>
<td>0.2367</td>
<td>0.2781</td>
<td>0.2367</td>
<td>0.3758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.62E-02</td>
<td>0.2377</td>
<td>0.2793</td>
<td>0.2377</td>
<td>0.3774</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0432E2</td>
<td>0.2791</td>
<td>0.2376</td>
<td>0.3772</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2013E2</td>
<td>0.2871</td>
<td>0.2400</td>
<td>0.2874</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3065E1</td>
<td>0.2662</td>
<td>0.3127</td>
<td>0.2662</td>
<td>0.4226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4035E3</td>
<td>0.2710</td>
<td>0.3183</td>
<td>0.2710</td>
<td>0.4301</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5006E2</td>
<td>0.2724</td>
<td>0.3199</td>
<td>0.2724</td>
<td>0.4323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6057E2</td>
<td>0.2757</td>
<td>0.3239</td>
<td>0.2757</td>
<td>0.4377</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7028E1</td>
<td>0.2966</td>
<td>0.3484</td>
<td>0.2966</td>
<td>0.4708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8079E1</td>
<td>0.3024</td>
<td>0.3552</td>
<td>0.3024</td>
<td>0.4800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9049E0</td>
<td>0.3047</td>
<td>0.3579</td>
<td>0.3047</td>
<td>0.4837</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0020E0</td>
<td>0.3071</td>
<td>0.3608</td>
<td>0.3071</td>
<td>0.4875</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1071E0</td>
<td>0.3207</td>
<td>0.3768</td>
<td>0.3207</td>
<td>0.5091</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2042E0</td>
<td>0.3302</td>
<td>0.3879</td>
<td>0.3302</td>
<td>0.5241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3013E0</td>
<td>0.3327</td>
<td>0.3908</td>
<td>0.3327</td>
<td>0.5281</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4064E0</td>
<td>0.3360</td>
<td>0.3947</td>
<td>0.3360</td>
<td>0.5334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5043E0</td>
<td>0.3433</td>
<td>0.4032</td>
<td>0.3433</td>
<td>0.5449</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6005E0</td>
<td>0.3533</td>
<td>0.4150</td>
<td>0.3533</td>
<td>0.5608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7057E0</td>
<td>0.3596</td>
<td>0.4224</td>
<td>0.3596</td>
<td>0.5708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8027E0</td>
<td>0.3594</td>
<td>0.4222</td>
<td>0.3594</td>
<td>0.5705</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9078E0</td>
<td>0.3654</td>
<td>0.4292</td>
<td>0.3654</td>
<td>0.5800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0049E0</td>
<td>0.3737</td>
<td>0.4389</td>
<td>0.3737</td>
<td>0.5931</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1019E0</td>
<td>0.3796</td>
<td>0.4459</td>
<td>0.3796</td>
<td>0.6026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2071E0</td>
<td>0.3803</td>
<td>0.4467</td>
<td>0.3803</td>
<td>0.6036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3041E0</td>
<td>0.3848</td>
<td>0.4520</td>
<td>0.3848</td>
<td>0.6108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4012E0</td>
<td>0.3910</td>
<td>0.4593</td>
<td>0.3910</td>
<td>0.6207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5063E0</td>
<td>0.3966</td>
<td>0.4659</td>
<td>0.3966</td>
<td>0.6296</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RB Flows Based on 3.5-m Water Tank
Full Simulations

Time: 1.25 sec

V (m/s)

2.5 5 7.5
Full Simulations

Time: 1.25 sec
Full Simulations

Time: 1.25 sec
ML Geometry
Correct Flow Ramp-up

Peak Flow = 56,762 GPM

South Rainbird
Time: -5 sec
Correct Flow Ramp-up

South Rainbird
Time: -5 sec

Peak Flow = 56,762GPM
Double Jet

Spray Patterns

Type 1, 50,000 GPM
Nozzle span angle = 100°, Jet fan angle = 80°

(Not Shown)
Type 2, 40,000 GPM
Nozzle span angle = 190°, Jet fan angle = 150°

- 1:2.8 scale ratio
- Dissimilar pipe transition

Nozzle span angle = 190°
Jet fan angle ≈ 120°
66,543 GPM

Nozzle span angle = 180°
Jet fan angle ≈ 80°
56,652 GPM
Jet Spray Patterns
No SLS (-5s to 6.6s)

Time: -5 sec

Vel (m/s)
With SLS (-5s to 9s)

Time: -5 sec
Abort Simulation

Simulation window

Individual Rainbird Flows (ABORT)
Abort Simulation

Simulation window

TOTAL POST LIFTOFF FLOW (ABORT)
Region of Interest
Abort Simulation

Time: -5
Abort Simulation

Time: -5
Geometry Issues

GAP
Water Depth

Time: 3
Water Depth

Time: 5
Water Depth

Time: 5
Water Depth

Time: 5
Water Depth

Time: 5
Summary

• New GPU cards were installed and performing as expected
• Cameras will get minimal impact
• Water puddle is as deep as 0.3m = 12”
• TSM gap could result in shallow water depth
Updates

• Quadro K600 outperformed Tesla K40c
• Fix TSM gap
• Incorporate design of water barrier for HBOI
• Install camera locations
Abort Simulation (fixed TSM)

Time: -5
Abort Simulation (fixed TSM)

Time: -5
• Water puddle as deep as 0.4m = 16” near the TSM and on the South side
Fixed TSM

Time: 5
Fixed TSM

Time: 5
Fixed TSM

Time: 5
Fixed TSM
Fixed TSM

Time: 5
Forward Plan

- Build a multi-GPU cluster and equip the Beast with the best resources
- Recruit doctoral student and post doc through Graduate STEM Fellowship to conduct research in meshfree method
- Collaborate with UCF (A. Kassab), University of Cincinnati (G.R. Liu) and University of Manchester Research Group (A. Crespo)
References

• B.D. Rogers, “Developing smoothed particle hydrodynamics (SPH) on CUDA – work by the SPHysics group,” School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, UK.

Websites

- Free open-source SPHysics code:
 http://wiki.manchester.ac.uk/sphysic

- GPU-SPHysics: a GPU-based SPH model for free-surface flows
 http://www.ce.jhu.edu/dalrymple/GPU

- SPHERIC = SPH European Research Interest Community:
 http://wiki.manchester.ac.uk/spheric