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Motivation
— Thermal and environmental barrier coating (TBC) system development goals

- High Temperature capability and high heat-flux cyclic durability 
- Excellent resistance to oxidation and combustion environment attacks
- High toughness: resistance to impact and erosion being emphasized
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NASA Environmental Barrier Coating System 
Development – For Turbine Engines

• Emphasize temperature capability, performance and durability for next generation 
for next generation vehicle airframe or engine systems 

• Increase Technology Readiness Levels for component system demonstrations
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Challenges

─ Current TEBCs limited in their temperature capability
• >3000°F

─ Preferably Oxide and Silicate Top Coat for oxidation and environment 
resistance
• Stability (sintering resistance) and thermal expansion match with substrates

─ Advanced TEBCs also required higher strength and toughness
• In particular, resistance to combined higher heat flux, mechanical loading, 

harsh environment and the complex interactions

─ TEBCs need to eb designed with high toughness, with improved impact 
and erosion resistance

─ EBC systems processing Issues
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Outline
─ Advanced approaches for next generation environmental barrier 

and thermal protection system development

─ Processing techniques for advanced EBCs
• Air plasma spray
• Plasma Spray – Physical Vapor Deposition (PS-PVD) and Plasma Spray 

– Physical Vapor Deposition processing 
• Electron Beam – Directed Vapor Deposition (EB-DVD) and/or Electron 

Beam - Physical Vapor Deposition (EB-PVD) 

─ Advanced thermal and environmental barrier coating systems
• NASA EBC systems
• Example systems for potential thermal protection system 

applications

─ Summary and future directions
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Advanced Environmental Barrier Coating Systems for Si-
Based Ceramic Matrix Composites

RE doped mullite-HfO2, and/or rare earth silicate EBCs
Ceramic composite bond coats

Interlayer: compositional layer graded system

SiC/SiC CMC

Low expansion alloyed-HfO2, and HfO2 aluminosilicate

HfO2 and HfO2 composites

Doped mullite
with ACLC 
(Hf rich bands) 
Doped mullite, HfO2/Si (SiC/Si3N4) composite bond coat
(High temperature capable with self-healing) 

Increased 
Si/SiO2 activity

Increased dopant RE/Transition 
metal concentrations & increased 
Al/Si ratio

HfO2-Y2O3-Yb2O3-Gd2O3-(SiO2)
HfO2-Y2O3-Yb2O3-Gd2O3-Ta2O2-TiO2-(SiO2)

e.g.,

• Focus on high stability HfO2 layer with graded interlayer, environmental barrier 
and advanced bond coat developments
• Alternating Composition Layered Coatings (ACLCs) and composite coatings
• HfO2-Aluminate and rare earth (RE) silicate EBCs
• Processing approaches being developed for vapor deposition, plasma spray 

addressing high stability nano-composite systems
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Advanced Candidate Coating Material Systems 

Material Systems Temperature 
capability

Thermal
expansion

Resistance to 
oxidation and 
combustion 
environment

HfO2-RE2O3 ~3000°C 8-10x10-6 m/m-K Excellent

HfO2-Rare earth 
silicates

~1900-2900°C 8-10x10-6 m/m-K Excellent

Rare earth silicate ~1800-1900°C 5-8.5x10-6 m/m-K Good

Rare earth –
aluminates and 
Alumino silicate

~1600-1900°C 5-8.5x10-6 m/m-K Good

HfO2-Si and RE-Si
bond coat

Up to 2100°C 5-7x10-6m/m-K Good
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Plasma Sprayed Processing of Environmental Barrier 
Coatings

Cooling air 
jets

— Focused on advanced composition and  processing developments using and 
coupled with more state-of-the-art techniques

— Improved processing envelopes using high power and higher velocity, graded 
systems processing for advanced TEBCs and thermal protection systems

Sulzer Triplex Pro system having high 
efficiency and high velocity processing

Graded EBCs

HfO2-Si bond coat

Example of NASA EBC processed 
by Triplax pro 
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─ An advanced Electron Beam Vapor (EB-DVD) approach developed by Directed Vapor 
Technologies, Inc (DVTI)

─ Flexible in multi-component coating processing and composition controls 
─ Progress made in advanced bond coat, EBC and some top coat developments of 

environmental barrier coating systems
─ Significant processing advancement in co-deposition and multi-component coating 

developments with current NASA EBC compositions for high Technology Readiness Levels 
(TRLs) EBC component processing 

─ Collaborative work also in the EBC top coat development with Penn State University

Electron Beam - Directed Vapor Deposition (EB-DVD) and 
Electron Beam - Physical Vapor Deposition (EB-PVD)

NASA HfO2-Si bond 
coat on SiC/SiC

NASA Hybrid 
EBC on SiC/SiC
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(a) Without powder

(b) With initial powder feeding 

(b) Full powder feeding

─ NASA PS-PVD and PS-TF coating processing using Sulzer technology
─ EBC is being developed for next-generation SiC/SiC CMC turbine airfoil coating processing
• High flexibility coating processing – PVD and/or splat coating processing at lower pressure (at 

~1 torr)
• High velocity vapor, near non line-of-sight coating processing for complex-shape components

NASA hybrid PS-PVD coater system High enthalpy plasma vapor stream for efficient and 
complex thin film coating processing

Nozzle section view Mid section view End section (sample side) view

Plasma Sprayed-Physical Vapor Deposition (PS-PVD) and 
Plasma Sprayed- Thin Film (PS-TF) Processing of Thermal 

and Environmental Barrier Coatings

Coated EBC 
specimen
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Thermal Conductivity of Near Dense HfO2-Y2O3
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— Lighter weight can be achieved by increasing yttria content
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Thermal Conductivity of Near Dense HfO2-Y2O3:- Plus Rare 
Earths: Multicomponents

─ Multi-component oxide defect clustering approach

─ HfO2 based multi-rare earth doped coatings showed low thermal conductivity and 
excellent high temperature stability

HfO2-Y2O3- Nd2O3(Gd2O3,Sm2O3)-Yb2O3(Sc2O3) – TT(TiO2+Ta2O5) systems
Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes
Toughening dopants
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Radiative Diffusion Models Developed for Understanding 
the Coating Radiative Conductivity at High Temperature
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Evaluation of Radiation Flux Resistance of Oxide Coating 
Systems

— HfO2 based multi-rare earth doped coatings showed low thermal conductivity
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Advanced Multi-Component TEBC Developed For 
Integrated to SiC/SiC and C/SiC Systems

— The emphasis placed on graded systems and thermomechanical stability
— Strong interest in highly stable oxide-silicate and composites
— Aiming at better understanding the phase stability and solid-state reaction 

kinetics of multi-phase systems

Oxide-silicate nano-composites (bright areas are Hf-
and/or RE-rich phases; dark areas are silica-rich phases)

Reaction kinetics of HfO2-
Si bond coat systems
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Fundamental Understanding Needed in Stability of Multi-
Component EBC Compositions

NASA early EBC top coat compositions 
(Hf-RE-silicate systems) after 1500°C 

60 hr cyclic testing

10 m

EB-PVD

EB-DVD

NASA t’ phase Zr-RE four- or six-
component compositions

EB-DVD

In 
comparison

— Mechanical strength and toughness of multi-component EBCs may still need to be 
improved as compared to intrinsically tougher nano-structured turbine TBCs
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Air Plasma Spray Processing Focued on Advanced Multi-
Component EBC composition Optimization and 
Supporting Hybrid APS-PVD EBC Development

— Mechanical strength and toughness of multi-component EBCs may still need to be 
improved as compared to intrinsically tougher nano-structured turbine TBCs

Four/Five component HfO2

Composite EBC coating

Advanced HfO2-Si bond coat

100 m

NASA advanced APS EBC (Hf-RE-
Alumino-Silicate system) Optimization 

and Controlled Grain boundary 
phases

NASA Hybrid APS and EB-
DVD/PVD EBC Optimization

50 m
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EBC Processing using Plasma Spray-Physical Vapor 
Deposition (PS-PVD)

─ Demonstrated vapor-like coating deposition for thermal barrier and environmental 
barrier coating applications using Sulzer processed powders

• Advanced powders developed/being developed under NASA programs using NASA  
specifications

─ Initial properties being evaluated
• Potentially high stability (thermodynamically) processing as EB-DVD/PVD
• Potential issue with relatively less-stable systems such as silicates due to phase 

separations

Vapor ZrO2-Y2O3 coating Splat/partial vapor Yb2Si2O7/
Yb2SiO5
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Initial PS-PVD Processing of Advanced TEBCs
— The emphasis is placed on initial turbine environmental barrier coating 

compositions, processing feasibility in realizing advanced EBC design 
architectures

— Low conductivity micro-pore silicates obtained

50 m

PS-PVD: Columnar

100 m

Alternating layers

Co-deposition of t’ 
phase low k-Yb silicate: 

as processed20 m
PS-TF: Splat structure

Co-deposition of t’ 
phase low k-Yb

silicate: annealed
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Thermal Conductivity of Early PS-PVD Yb2Si2O7 Coating 
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Laser Rig Heat Flux Thermal Gradient Tests For Thermal 
Conductivity Measurements of PS-PVD Systems

─ PS-PVD three-layer systems, with the low conductivity ZrO2/ZrO2+Ytterbium 
silicate composite/Ytterbium silicate TEBCs processed on SiC/SiC, improving the 
temperature capability

─ Laser rig tests also showed relatively low thermal conductivity
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Laser Rig Heat Flux Thermal Gradient Tests Validating the 
Coating and Materials Systems up to Temperature

─ Directed Vapor processed EBCs tested for 50, 1 hr cycles at the coating surface 
temperature of near 1700 C without failure 
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Summary and Future Directions
• Advanced high temperature thermal and environmental barrier coating systems 

being developed using advanced EBC compositions and processing, 
potentially good candidates for thermal protection system applications

• Demonstrated feasibility to process complex and advanced graded EBC 
systems using APS, EB-DVD and PS-PVD approaches

• Demonstrated uniqueness of each processing methods and processing scale-
up capability

• Achieved higher temperature capability, lower thermal conductivity, better 
environmental stability and incorporating toughening phases of the 
multicomponent coating systems

• Develop robust processing for APS, EB-DVD, PS-PVD, and process scaleups

• Further develop advanced testing approaches to ensure prime-reliant EBC 
systems
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