The Efficacy of Air Pollution Control Efforts: Evidence from AURA

Presented at the Aura Science Team Meeting
by
Russell R. Dickerson

T. Canty, B. Duncan, H. He, N. Krotkov, R. Salawitch, J. Stehr, K. Vinnikov
Univ. Maryland and NASA/GSFC

13:45 Sept. 15, 2014

UMD/URF Cessna
Photo by J. Stehr
Canty et al. showed that OMI NO$_2$ data help evaluate and improve CMAQ.

Posters on Air Quality in the Eastern US

- Carpenter et al., OMI H$_2$CO and isoprene emissions.
- Hembeck et al., CMAQ/CB05 BEIS vs MEGAN and ROx.
- Montgomery et al. Ship emissions
Overview

- The main air quality issues in the US are O_3, fine particulate matter (PM2.5), and haze.
- The main precursors are NO$_x$, SO$_2$, and VOC’s. NO$_2$ has plummeted (press release) and O_3 with it. (CSAPR)
- The regulatory models (CMAQ and CAMx) show O_3 as a \textit{local} problem; observations show it as a \textit{regional} problem.
- Emissions for SO$_2$ are monitored and well known; the lifetime (conversion to sulfate) is not.
- Using OMI obs in combination with in situ measurements and models has led to advances in our ability to understand and improve air quality.
OMI nitrogen dioxide data indicate a 30-40% decrease in the pollutant’s levels from 2005 to 2011.

NO$_2$ levels have dropped through the implementation of emission control devices on coal-burning power plants and more fuel-efficient cars.

NASA AQAST members are working with state air quality agencies to demonstrate the effectiveness of their efforts to improve air quality and to find novel uses of satellite data for air quality applications.
The vast majority of Americans believe their air quality is worsening and their tax dollars going to improving air quality are for naught.

Air quality managers often complain of this erroneous perception by the general public.

On June 27th, NASA AQAST members did over 20 live interviews (e.g., Fox News, The Weather Channel), several taped interviews (e.g., CNN), and numerous phone and email interviews.

The story was reported in numerous news outlets (e.g., Smithsonian, Science World Report).
• Air quality managers want to understand the correspondence between satellite column data, such as OMI NO₂, and ground-level values. (This is the focus of the NASA DISCOVER-AQ field campaign.) The graph below shows a comparison of monthly-averaged EPA Air Quality System (AQS) surface data and OMI data for sites in the Houston metropolitan area from 2005 to 2013.

• With a few exceptions, the normalized monthly anomalies (from the mean) of the satellite data mimic the anomalies in the surface data. Work is ongoing to identify the causes of any discrepancies.

• The annual trends (relative to 2005) agree well, indicating an approximately 30% decrease in NO₂ pollution in Houston. The agreement between OMI and AQS data is similarly good for most major US metropolitan areas.
Observations show: NO\textsubscript{x} reductions worked, but response is nonlinear; we had to get over the hump.

Aside: H\textsubscript{2}CO shows no such correlation with this ozone trend.
An experiment of opportunity: SO_2

In 2010, Maryland implemented the “Healthy Air Act”
Power Plant Emissions in Maryland and surrounding states.

The Healthy Air Act
Ambient SO_2 (ppb) at Beltsville, MD

- Daily cycle \sim factor of two.
- Seasonal cycle \sim factor of two.
- Dramatic decreases after Healthy Air Act.
- Maxima in mid day when PBL entrains plumes from aloft.
- Surface SO_2 reflects emissions reductions.
Difference in SO_2 (DU)
Applying Satellite Data to Air Quality Management

Research conducted by the NASA Air Quality Applied Sciences Team (AQAST) shows that Earth science data are a great potential resource for air quality managers.
September issue of EM dedicated to DISCOVER-AQ.
Six articles

DISCOVER-AQ
Advancing Strategies for Air Quality Observations in the Next Decade

As part of this mission, scientists collect pollutant measurements using aircraft, sondes, satellites, and ground-based instruments.
Interim conclusions
In situ and remote obs in agreement

The good news: Local emissions reductions have an immediate and profound impact on local concentrations of SO$_2$.

The lifetime of SO$_2$ can be estimated from the column content and known emissions flux. Lee, Hains, et al., *JRG* 2011; Loughner et al, 2014.

CMAQ (EPA regulatory model) underestimates the lifetime of NOx, but overestimates the emissions. Anderson et al., *Atmos. Environ.* 2014; Canty et al., 2014.
The bad news: PM2.5 only fell modestly.

Why? Sulfate was dominant and has a longer lifetime than SO$_2$.

SOA becoming dominant; it also has a lifetime of \sim10 d.
Life as a Downwind State

The EPA turned pollution regulation over to our state and we're turning it over to yours.

It's better to give than to receive.
Justice Ginsburg, “The wind bloweth where it listeth, and thou hearest the sound thereof, but canst not tell whence it cometh, and whither it goeth.” The Holy Bible, John 3:8 (King James Version).

Justice Breyer, “the EPA faces this kind of regional problem, and it's a regional, not just a statewide problem....”

April 29, 2014 year, the Supreme Court upheld on the Cross-State Air Pollution Rule, CSAPR. NASA data went into an Amicus Brief.
Ongoing projects

• Helping CMAQ more accurately predict ozone.
• Maryland owes EPA a SIP. Local vs. regional measures?
• Impact of increasing oil natural gas and production (fracking).
Conclusions

- Air Quality managers are using satellite data including OMI!
- The Healthy Air Act produced 80% reductions in SO$_2$ emissions in Maryland starting in 2010.
- OMI and ambient measurements of short lived (24 ± 10hr) SO$_2$ showed dramatically and immediately AQ improvement.
- Longer lived (~10 d) PM2.5 improved much less so.
- Both O$_3$ and H$_2$CO correlate with T, but in long term trends only O$_3$ and NO$_2$ correlate.
- This tells policy makers to focus on NOx controls; both local and regional.
End
Aircraft profiles show great variability, but a significant SO$_2$ decrease.

\[\tau = \frac{1}{F} \int_0^\infty [SO_2](z) \, dz \]
Time series of July OMI HCHO column vs. Surface Temperature
Time series of July OMI HCHO column vs. Precipitation

→ No correlation and 2013 July is dry!
OMI HCHO column vs. Surface Temperature

OMI HCHO column vs. Surface Temperature \(\rightarrow \) Strong correlation

\[Y = 0.14X - 2.45, \quad r = 0.84 \]
OMI HCHO column vs. Surface Temperature without data from dry year of 2013 → HCHO depends on Temperature!

\[Y = 0.15X - 2.61, \, r = 0.94 \]
Time series of July OMI NO$_2$ column vs. Surface Temperature

→ Before the local HAA (2010), NO$_2$ & T are correlated.
CMAQ modeled NO$_2$ high in cities low in countryside.
Inspired by Castellanos et al., 2011.
Ready results

If CB05 is modified to shorten the lifetime of alkyl nitrates and reduce mobile source NOx emissions then CMAQ and OMI agree better.
2004-2009 minus 2010-2012

Change in SO$_2$ column from OMI
Using Fioletov’s sub-pixel resolution product.

Orange
~ 0.35 DU decrease
~ 3.5 ppb in 1000 m