2014 EOS Aura Science Team Meeting

Aerosol Remote Sensing from OMI Observations: An Overview

Omar Torres
NASA GSFC

Changwoo Ahn
SSAI

Hiren Jethva
GESTAR-USRA

15-18 September 2014, College Park, MD
OMI Near-UV Aerosol Algorithm (OMAERUV)

Purpose: Retrieval of Aerosol Single Scattering Albedo and Absorption Optical Depth

Measurements: Radiances at 354 and 388 nm.

Physical Basis: Radiative interaction between particle absorption and molecular scattering in the UV.

In spite the sensor’s coarse resolution for aerosol retrieval, valuable information on particle absorption can be derived from OMI near UV observations.

Retrieval Products:
- AOD and SSA (388 nm)
- Absorbing Aerosol Index

Inversion Scheme:
For a given aerosol type and ALH, satellite measured radiances at 354 and 388 nm are associated with a set of AOD and SSA values.

Combined use of OMI, CALIOP and AIRS observations in OMAERUV Aerosol Retrieval

OMAERUV uses a CALIOP-based Aerosol Layer Height Climatology and real-time AIRS carbon monoxide data for aerosol type identification [Torres et al., 2013]

The combined use of Al and CO allows the identification of smoke layers over arid areas.

AIRS CO allows the identification of heavy aerosol loads over China, and other regions, otherwise undistinguishable from cloud contamination.

Torres, O., C. Ahn, and Z. Chen, Improvements to the OMI Near UV aerosol algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6, 3257-3270, 2013
OMAERUV SSA assessment: Comparison at selected AERONET sites

51% (75%) of matched pairs agree within 0.03 (0.05)

• OMI and AERONET are within their expected uncertainties (±0.03) for AOD>0.4 and UV-Al>1.0
• Closer agreement for larger aerosol loading
2007 AAOD Global Seasonal Average Maps

WINTER

SPRING

SUMMER

AUTUMN
Validated long-term record of OMAERUV Aerosol Optical Depth and Single Scattering Albedo

OMI-AERONET comparison of monthly mean values of AOD and SSA over nine years

DAKAR, SENEGAL (14.4N, 17W)

Graphs showing the comparison of OMAERUV and AERONET data for aerosol optical depth and single scattering albedo over nine years. The graphs illustrate the monthly mean values for each parameter, with a focus on the performance of the comparison over time.
Nine-year Global record of OMI Aerosol Absorption Optical Depth
AAOD time series over SH biomass burning regions

An AAOD increase (~0.01/year) is apparent in Southern Africa.

AAOD = AOD(1-SSA)

Is AOD increasing or SSA decreasing?
AOD and SSA time series over SH biomass burning regions

A decrease in the water-content of fuel can produce more absorbing particles

Time series of monthly accumulated rain (TRMM)

May-Oct. Precipitation Anomaly (%)
The observed high latitude NH increase in AAOD is likely associated with increased boreal fire activity in Canada.
Simultaneous Retrieval of Cloud (COD) and Aerosol (AOD) Optical Depth

Inversion Scheme

Summary

Significant progress on the quantification of aerosol absorption has been achieved during the first decade of OMI operation.

- A ten year data set of 388 nm AOD and SSA has been derived from OMI observations.
- The capability of retrieving aerosols above clouds using UV/VIS observations has been developed.

The decadal OMI AOD and SSA records have been evaluated by direct comparison to independent ground-based AERONET observations.

The OMI SSA and AAOD data sets are the first ever quantitative multi-year records on aerosol absorption from satellite-based observations.

Continuation of the OMI record on aerosol absorption is required for conclusive analyses of global/regional trends.