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ABSTRACT 
 
Climate science is a big data domain that is experiencing 
unprecedented growth. In our efforts to address the big data 
challenges of climate science, we are moving toward a 
notion of Climate Analytics-as-a-Service (CAaaS). CAaaS 
combines high-performance computing and data-proximal 
analytics with scalable data management, cloud computing 
virtualization, the notion of adaptive analytics, and a 
domain-harmonized API to improve the accessibility and 
usability of large collections of climate data.  MERRA 
Analytic Services (MERRA/AS) provides an example of 
CAaaS. MERRA/AS enables MapReduce analytics over 
NASA’s Modern-Era Retrospective Analysis for Research 
and Applications (MERRA) data collection. The MERRA 
reanalysis integrates observational data with numerical 
models to produce a global temporally and spatially 
consistent synthesis of key climate variables. The 
effectiveness of MERRA/AS has been demonstrated in 
several applications. In our experience, CAaaS is providing 
the agility required to meet our customers’ increasing and 
changing data management and data analysis needs. 
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1. INTRODUCTION 

 
The term ‘‘big data’’ is used to describe data sets that are 
too large or complex to be worked with using commonly-
available tools [1]. Climate science represents a big data 
domain that is experiencing unprecedented growth [2]. 
Some of the major big data challenges facing climate 
science are easy to understand: large repositories mean that 
the data sets themselves cannot be moved: instead, 
analytical operations need to migrate to where the data 
reside; complex analyses over large repositories requires 

high-performance computing; large amounts of information 
increases the importance of metadata, provenance 
management, and discovery; migrating codes and analytic 
products within a growing network of storage and 
computational resources creates a need for fast networks, 
intermediation, and resource balancing; and, importantly, 
the ability to respond quickly to customer demands for new 
and often unanticipated uses for climate data requires 
greater agility in building and deploying applications [3]. It 
is useful to situate our big data challenges in this larger 
context, because doing so helps us understand where 
innovation can yield improvements. 
 

2. BACKGROUND 
 
Our understanding of the Earth’s processes is based on a 
combination of observational data records and mathematical 
models. The size of NASA’s space-based observational data 
sets is growing dramatically as new missions come online. 
However a potentially bigger data challenge is posed by the 
work of climate scientists, whose models are regularly 
producing data sets of hundreds of terabytes or more [2, 4].  

The NASA Center for Climate Simulation (NCCS) 
provides state-of-the-art supercomputing and data services 
specifically designed for weather and climate research. The 
NCCS maintains advanced data capabilities and facilities 
that allow researchers within and beyond NASA to create 
and access the enormous volume of data generated by 
weather and climate models. Tackling the problems of data 
intensive science is an inherent part of the NCCS mission. 

There are two major challenges posed by the data 
intensive nature of climate science. There is the need to 
provide complete lifecycle management of large-scale 
scientific repositories. This capability is the foundation upon 
which a variety of data services can be provided, from 
supporting active research to large-scale data federation, 
data publication and distribution, and archival storage.  
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The other data intensive challenge has to do with how 
these large datasets are used: data analytics — the capacity 
to perform useful scientific analyses over large quantities of 
data in reasonable amounts of time. In many respects this is 
the biggest challenge: without effective means for 
transforming large scientific data collections into 
meaningful scientific knowledge, our mission fails. It is 
against this backdrop that the NCCS began looking at 
CAaaS as a potential element in our technological and 
organizational response to changing demands. 

 
3.  CLIMATE ANALYTICS AS A SERVICE 

 
We believe there are five essential technology elements that 
contribute to building Climate Analytics-as-a-Service: high-
performance, data-proximal analytics; scalable data 
management; cloud computing virtualization; adaptive 
analytics; and domain-harmonized APIs. In this section, we 
describe three of the more important of these elements; 
additional information can be found in [3]. 

 
3.1.  High-performance, data-proximal analytics 

 
Clearly, at its core, CAaaS must bring together data storage 
and high-performance computing in order to perform 
analyses over data where the data reside. MapReduce is of 
particular interest to us, because it provides an approach to 
high-performance analytics that is proving to be useful to 
many data intensive problems [5, 6]. MapReduce enables 
distributed computing on large data sets using high-end 
computers. It is an analysis paradigm that combines 
distributed storage and retrieval with distributed, parallel 
computation, allocating to the data repository analytical 
operations that yield reduced outputs to applications and 
interfaces that may reside elsewhere. Since MapReduce 
implements repositories as storage clusters, data set size and 
system scalability are limited only by the number of nodes 
in the clusters. While MapReduce has proven effective for 
large repositories of textual data, its use in data intensive 
science applications has been limited, because many 
scientific data sets are inherently complex, have high 
dimensionality, and use binary formats. 

MapReduce distributes computations across large data 
sets using a large number of computers (nodes). In a “map” 
operation a head node takes the input, partitions it into 
smaller sub-problems, and distributes them to data nodes. A 
data node may do this again in turn, leading to a multi-level 
tree structure. The data node processes the smaller problem, 
and passes the answer back to a reducer node to perform the 
reduction operation. In a “reduce” step, the reducer node 
then collects the answers to all the sub-problems and 
combines them in some way to form the output — an 
answer to the problem it was originally trying to solve.  
 

3.2.  Adaptive analytics 
 

Data intensive analysis workflows bridge between a largely 
unstructured mass of archived scientific data and the highly 
structured, tailored, reduced, and refined analytic products 
that are used by individual scientists and form the basis of 
intellectual work in the domain. In general, the initial steps 
of an analysis, those operations that first interact with a data 
repository, tend to be the most general, while data 
manipulations closer to the client tend to be the most 
specialized to the individual, to the domain, or to the science 
question under study. The amount of data being operated on 
also tends to be larger on the repository-side of the 
workflow, smaller toward the client-side end products. 

This stratification can be exploited in order to optimize 
efficiencies along the workflow chain. MapReduce, for 
example, seeks to improve efficiencies of the near-archive 
operations that initiate workflows. In our work so far, we 
have focused on building a small set of canonical near-
archive, early-stage analytical operations that represent a 
common starting point in many analysis workflows in many 
domains. For example, average, variance, max, min, sum, 
count, and difference operations of the general form:  

result    avg(var, (t0,t1), ((x0,y0,z0),(x1,y1,z1))), 

that return, in this example, the average value of a variable 
when given its name, a temporal extent, and a spatial extent. 
Because of their widespread use, we refer to these simple 
operations as "canonical ops" with which more complex 
analytic expressions can be built. They provide a template 
for users as they begin their exploration of MapReduce 
analytics and are useful in their own right as steps in larger 
analyses. We tend to think of them as a type of assembly 
language instruction for climate data analysis. 

The goal is to deploy the canonical ops within a 
framework that is able to capture their patterns of use and 
enable more complex analyses to be assembled and 
incorporated back into the system. The notion of engaging 
the broader community to deal with big data challenges has 
been used successfully in other settings, perhaps most 
notably with GalazyZoo, where a large user community is 
helping search the Sloan Digital Sky Survey for patterns and 
observations of potential scientific value [7]. We believe 
that this type of social networking can play an important 
role in the future of climate analytics. The approach we are 
taking sets the stage for the community construction of new 
capabilities that are adapted to the socially expressed 
requirements of those who use the system.  

 
3.3.  Domain-harmonized APIs 

 
In order to knit these capabilities together and deliver them 
into practical use, we are building the Climate Data Services 
(CDS) application programming interface (API). APIs 



specify how software components interact with each other; 
they can take many forms, but the goal for all APIs is to 
make it easier to implement the abstract capabilities of a 
system. In building the CDS API, we are trying to provide 
for climate science a uniform semantic treatment of the 
combined functionalities of large-scale data management 
and data-proximal analytics. In doing so, we are combining 
concepts from the Open Archive Information Systems 
(OAIS) reference model, highly dynamic object-oriented 
programming APIs, and Web 2.0 resource-oriented APIs. 

The OAIS reference model, defined by the Consultative 
Committee on Space Data Systems, addresses a full range of 
archival information preservation functions including ingest, 
archival storage, data management, access, and 
dissemination — full information lifecycle management. 
OAIS provides examples and some "best practice" 
recommendations and defines a minimal set of 
responsibilities for an archive to be called an OAIS [8]. 
These high-level services provide a vocabulary that we have 
adopted for the CDS Reference Model and associated 
Library and API.  

The CDS Reference Model is a logical specification 
that presents a single abstract data and analytic services 
model to calling applications. The Reference Model can be 
implemented using various technologies; in all cases, 
however, actions are based on the following six primitives: 

Ingest – Submit data to a service. 
Query – Retrieve data from a service (synchronous). 
Order – Request data from a service (asynchronous). 
Download – Retrieve data from a service. 
Status – Track progress of service activity. 
Execute – Initiate a service-definable extension.   

Within this OAIS-inspired framework, we are creating 
a Python-based CDS Library that contains methods that 
support the basic primitives (ingest, query, order, etc.) as 
well as extended utilities that combine the primitives into 
automated multi-step canonical ops (avg, max, min, etc.).  

The Library sits atop a RESTful web services client that 
encapsulates inbound and outbound interactions with 
various climate data services. These provide the foundation 
upon which we have built a CDS command line interpreter 
(CLI) that supports interactive sessions. In addition, Python 
scripts and full Python applications also can use methods 
imported from the API. The resulting client stack can be 
distributed as a software package or used to build a cloud-
based service (SaaS) or distributable cloud image (PaaS).  

Unlike other APIs, our approach focuses on the specific 
analytic requirements of climate science and unites the 
language and abstractions of collections management with 
those of high-performance analytics. Doing so reflects at the 
application level the confluence of storage and computation 
that is driving big data architectures of the future.  

4.  MERRA ANALYTIC SERVICES 
 

MERRA Analytic Services (MERRA/AS) pull these 
elements together in an end-to-end demonstration of CAaaS 
capabilities. MERRA/AS enables MapReduce analytics over 
NASA's Modern-Era Retrospective Analysis for Research 
and Applications (MERRA) data. The MERRA reanalysis 
integrates observational data with numerical models to 
produce a global temporally and spatially consistent 
synthesis of 26 key climate variables [9]. Spatial resolution 
is 1/2 ̊ latitude × 2/3 ̊ longitude × 72 vertical levels 
extending through the stratosphere. Temporal resolution is 
6-hours for three-dimensional, full spatial resolution, 
extending from 1979-present, nearly the entire satellite era. 
MERRA data are typically made available to the general 
public through NASA Earth Observing System Distributed 
Information System (EOS DIS). A subset of the data is 
made available to the climate research community through 
the Earth System Grid Federation (ESGF), the research 
community's data publication infrastructure.  

We are focusing on the MERRA collection because 
there is an increasing demand for reanalysis data products 
by an expanding community of consumers, including local 
governments, federal agencies, and private-sector 
customers. Reanalysis data are used in models and decision 
support systems relating to disasters, ecological forecasting, 
health and air quality, water resources, agriculture, climate 
energy, oceans, and weather.  

In simple terms, our vision for MERRA/AS is that it 
allows MERRA data to be stored in a Hadoop Distributed 
File System (HDFS) on a MERRA/AS cluster. Functionality 
is exposed through the CDS API. The API exposures enable 
a basic set of operations that can be used to build arbitrarily 
complex workflows and assembled into more complex 
operations (which can be folded back into the API and 
MERRA/AS service as further extensions). The 
complexities of the underlying (Java) mapper and reducer 
codes for the basic operations are encapsulated and 
abstracted away from the user, making these common 
operations easier to use. 

 
4.1.  The MERRA/AS analytics platform 
 
The Apache Hadoop software library is the classic 
framework for MapReduce distributed analytics. We are 
using Cloudera, the 100% open source, enterprise-ready 
distribution of Apache Hadoop. Cloudera is integrated with 
configuration and administration tools and related open 
source packages. The total size of the MERRA/AS HDFS 
repository is approximately 480 TB. MERRA/AS is running 
on a 36-node Dell cluster that has 576 Intel 2.6 GHz 
SandyBridge cores, 1300 TB of raw storage, 1250 GB of 
RAM, and a 11.7 TF theoretical peak compute capacity. 
Nodes communicate through a Fourteen Data Rate (FDR) 



Infiniband network having peak TCP/IP speeds in excess of 
20 Gbps. 

The canonical operations that implement MERRA/AS’s 
average, variance, max, min, sum, count, and difference 
calculations are Java MapReduce programs that are 
ultimately exposed as simple references to CDS Library 
methods or as web services endpoints. There is a substantial 
code ecosystem behind these apparently simple operations, 
nearly 6000 lines of Java code being offloaded from the user 
to the MERRA/AS service. 

 
4.2.  MERRA/AS in use 

 
Our initial exposure for client applications that wish to 
consume MERRA/AS results is the MERRA/AS Web 
Service. We are using a Representational State Transfer 
(REST)-style architecture, which is the predominant web 
API design model. REST provides scalability of component 
interactions, accommodates intermediaries like firewalls and 
proxies without the need to change interfaces, and allows 
independent deployment of components where 
implementations can change without the need to change 
interfaces.  

In one application, MERRA/AS's web service is 
providing data to the RECOVER wildfire decision support 
system, which is being used for post-fire rehabilitation 
planning by Burned Area Emergency Response (BAER) 
teams within the US Department of Interior and the US 
Forest Service. This capability has lead to the development 
of new data products based on climate reanalysis data that 
until now were not available to the wildfire management 
community. 

In our largest deployment exercise to date, the CDS 
Client Distribution Package and the CDS API have been 
used by the iPlant Collaborative to integrate MERRA data 
and MERRA/AS functionality into the iPlant Discovery 
Environment. iPlant is a virtual organization created by a 
cooperative agreement funded by the US National Science 
Foundation (NSF) to create cyberinfrastructure for the plant 
sciences. The project develops computing systems and 
software that combine computing resources, like those of 
TeraGrid, and bioinformatics and computational biology 
software. Its goal is easier collaboration among researchers 
with improved data access and processing efficiency. 
Primarily centered in the US, it collaborates internationally 
and includes a wide range of governmental and private-
sector partners. 

MERRA/AS is currently in beta testing with about two 
dozen partners across a wide range of organizations and 
topic areas. Initial results have shown that analytic engine 
optimizations can yield near real-time performance of 
MERRA/AS's canonical operations and that the total time 
required to assemble relevant data for many applications can 
be significantly reduced. 

CONCLUSIONS 
 

Climate data are generally moved to client applications for 
analysis and use. As climate model outputs increase in size 
and complexity, and as customer demands for this important 
class of information increase, existing data practices in this 
domain must change. Rather than deliver data as a service, it 
will become necessary to deliver data analytics as a service. 
Our work suggests that such an approach offers great 
promise in efforts to address the big data challenges of the 
climate sciences.  
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