Aquarius brightness temperature variations at Dome C and snow metamorphism at the surface

Ludovic Brucker1,2, Emmanuel Dinnat1,3, Ghislain Picard4, and Nicolas Champollion4

1 NASA GSFC Cryospheric Sciences Lab., code 615, Greenbelt, MD, USA
2 Universities Space Research Association – GESTAR
3 Chapman University, Orange, CA, USA
4 Uni. Grenoble Alpes/CNRS, LGGE, Grenoble, France
Motivations

The Antarctic ice sheet is both an **actor** in the climate system and an **indicator** of its evolution.

Ice sheet area $\sim 14 \times 10^6$ km2

Antarctica contains $\sim 90\%$ of total ice on Earth

Number of Automatic Weather Station ~ 100
Motivations

The Antarctic ice sheet is both an **actor** in the climate system and an **indicator** of its evolution

Ice sheet area $\sim 14.10^6$ km2

Antarctica contains $\sim 90\%$ of total ice on Earth

Number of Automatic Weather Station ~ 100

How to monitor ice temperature?

\Rightarrow climate models (global, or regional)

\Rightarrow reanalysis (ERA-interim, MERRA...)

\Rightarrow remote sensing
Motivations

Motivated by **L-band** deep-penetration observations over Antarctica to:

- Analyze their spatial distribution
- Assess the observations’ stability
- Contribute to define cal/val and intercalibration experiments

Important initial tasks toward retrieving snow & ice properties
The current 1.4 GHz (L-band) space-borne radiometers

Aquarius SMOS
The current 1.4 GHz (L-band) space-borne radiometers

Aquarius

Designed for sea surface salinity retrievals
Operates 3 non-scanning radiometers

<table>
<thead>
<tr>
<th>Radiometer</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence angle (°)</td>
<td>29.2</td>
<td>38.4</td>
<td>46.3</td>
</tr>
<tr>
<td>Footprint size (km x km)</td>
<td>76 x 94</td>
<td>84 x 120</td>
<td>97 x 156</td>
</tr>
<tr>
<td>Northernmost latitude (°)</td>
<td>84.99</td>
<td>86.07</td>
<td>87.40</td>
</tr>
<tr>
<td>Southernmost latitude (°)</td>
<td>79.01</td>
<td>77.90</td>
<td>76.54</td>
</tr>
</tbody>
</table>

Large footprint sizes, but Excellent sensitivity of 0.2 K
The current 1.4 GHz (L-band) space-borne radiometers

Aquarius

- Designed for sea surface salinity retrievals
- Operates 3 non-scanning radiometers

<table>
<thead>
<tr>
<th>Radiometer</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence angle (°)</td>
<td>29.2</td>
<td>38.4</td>
<td>46.3</td>
</tr>
<tr>
<td>Footprint size (km × km)</td>
<td>76 × 94</td>
<td>84 × 120</td>
<td>97 × 156</td>
</tr>
<tr>
<td>Northernmost latitude (°)</td>
<td>84.99</td>
<td>86.07</td>
<td>87.40</td>
</tr>
<tr>
<td>Southernmost latitude (°)</td>
<td>79.01</td>
<td>77.90</td>
<td>76.54</td>
</tr>
</tbody>
</table>

Large footprint sizes, but Excellent sensitivity of 0.2 K

SMOS

- Designed for moisture & salinity
- Radiometer with aperture synthesis

- Multiple incidence angles (0–65°)
- Finer spatial resolution (30–90 km)
- Coarser sensitivity (2–2.5 K)
Outline

1. Spatial distribution of Aquarius TB in Antarctica
2. Temporal Aquarius TB variations at Dome C
3. Impact of snow surface state
 3.1 Comparison with AMSU-B grain index
 3.2 Comparison with surface-based IR surface pictures
4. Conclusion
Antarctica

Weekly mean brightness temperature (vertical polarization, radiometer 3 $\theta_{\text{inc}} \sim 46.3^\circ$)

Coastal open water/sea ice modifies Aquarius TB

(Brucker et al., 2014 TC)
East Antarctica

Annual mean and standard deviation TB (radiometer 1, $\theta_{inc} \sim 29.2^\circ$)

Areas where melt events occurred since August 1, 2000 were masked.
There are grid cells (36 km) without observations.
Dome C, Antarctic Plateau (3240 m)

Snow temperature below 15 m: 218.42±0.07 K \cite{Brucker2011}

Snow accumulation: 8–10 cm of snow \cite{Urbini2008}

Ideal site to study the relationship: microwave observations – ice properties
Dome C – TB timeseries

<table>
<thead>
<tr>
<th>Beam</th>
<th>TB V (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>209.50 ± 0.26</td>
</tr>
<tr>
<td>2</td>
<td>206.79 ± 0.25</td>
</tr>
<tr>
<td>1</td>
<td>202.54 ± 0.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam</th>
<th>TB H (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>189.97 ± 0.44</td>
</tr>
<tr>
<td>2</td>
<td>186.22 ± 0.53</td>
</tr>
<tr>
<td>1</td>
<td>181.39 ± 0.72</td>
</tr>
</tbody>
</table>

Sensitivity $\sim 0.2 \text{ K}$
Dome C – TB angular diagram

Beam	TB V (K)
3 | 209.50±0.26 |
2 | 206.79±0.25 |
1 | 202.54±0.28 |

Beam	TB H (K)
1 | 189.97±0.44 |
2 | 186.22±0.53 |
3 | 181.39±0.72 |

Sensitivity ~ 0.2 K
Dome C – TB timeseries

Fast variations \(\rightsquigarrow\) surface changes?
Dome C – TB H/V timeseries

Focus on \(\frac{TB_H}{TB_V} \). removes the dependency on the physical temperature
. highlights emissivity variations
Dome C – TB H/V timeseries

Focus on $\frac{TB_H}{TB_V}$. removes the dependency on the physical temperature. highlights emissivity variations.

Variation > 0.001 is above the radiometric noise.
The largest variations are observed by radiometer 3.
Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012), with shallow penetration (few cm) channels

\[GI = 1 - \frac{TB_{150}}{TB_{89}} \]
Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012), with shallow penetration (few cm) channels.

\[GI = 1 - \frac{TB_{150}}{TB_{89}} \]

Typical penetration depths in ice:
- 89 GHz \(\sim \) <0.2 m
- 37 GHz \(\sim \) <1 m
- 19 GHz \(\sim \) 3-5 m
- 10 GHz \(\sim \) 10-15 m
- 6.9 GHz \(\sim \) >20 m

L-band observations have a large penetration in ice

(Surdyk, 2002)
Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012), with shallow penetration (few cm) channels.

$$GI = 1 - \frac{TB_{150}}{TB_{89}}$$

Good synchronization of the variations in summer.
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \, \text{m}^2$

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

(Champollion et al., 2013)

Near IR camera
2 m high
imaged area $\sim 4 \, \text{m}^2$

No hoar
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Aquarius and hoar crystal on the surface

No hoar

Hoar

L-band TB variations at Dome C and snow metamorphism

Aquarius and hoar crystal on the surface
Aquarius and hoar crystal on the surface

L-band observations are sensitive to surface snow properties
A simple calculation with Fresnel’s reflection coefficients at the air/snow interface

Radiometer 1 ($\theta_{\text{inc}} \sim 29.2^\circ$)

Radiometer 2 ($\theta_{\text{inc}} \sim 38.4^\circ$)

Radiometer 3 ($\theta_{\text{inc}} \sim 46.3^\circ$)

A density variation of 75 kg m$^{-3}$ could explain the largest change in TB H/V (in Dec. 2011)
Aquarius radiometers have an excellent sensitivity (0.2 K). They are thus appealing to study the ice sheets.

TB variability at H polarization is larger than at V polarization. It increases as θ_{inc} increases and is larger than the sensors' sensitivity.

L-band radiation has a deep penetration but is sensitive to surface snow properties.

Hoar crystals on the surface may influence cal/val experiments.

Dome C

Wind direction

Hoar crystals present

Hoar crystals disappear

See also: Gallet et al. (2014), The growth of sublimation crystals and surface hoar on the Antarctic plateau, The Cryosphere.

(Champollion et al., 2013)