Aquarius brightness temperature variations at Dome C and snow metamorphism at the surface

Ludovic Brucker1,2, Emmanuel Dinnat1,3, Ghislain Picard4, and Nicolas Champollion4

1 NASA GSFC Cryospheric Sciences Lab., code 615, Greenbelt, MD, USA
2 Universities Space Research Association – GESTAR
3 Chapman University, Orange, CA, USA
4 Uni. Grenoble Alpes/CNRS, LGGE, Grenoble, France
Motivations

The Antarctic ice sheet is both an **actor** in the climate system and an **indicator** of its evolution.

Ice sheet area $\sim 14 \times 10^6 \text{ km}^2$

Antarctica contains $\sim 90\%$ of total ice on Earth

Number of Automatic Weather Station ~ 100
Motivations

The Antarctic ice sheet is both an **actor** in the climate system and an **indicator** of its evolution.

- Ice sheet area $\sim 14.10^6 \text{ km}^2$
- Antarctica contains $\sim 90\%$ of total ice on Earth

How to monitor ice temperature?

\implies climate models (global, or regional)

\implies reanalysis (ERA-interim, MERRA...)

\implies remote sensing
Motivations

Motivated by L-band deep-penetration observations over Antarctica to:

- Analyze their spatial distribution
- Assess the observations’ stability
- Contribute to define cal/val and intercalibration experiments

Important initial tasks toward retrieving snow & ice properties
The current 1.4 GHz (L-band) space-borne radiometers

Aquarius

SMOS
The current 1.4 GHz (L-band) space-borne radiometers

Aquarius

Designed for sea surface salinity retrievals
Operates 3 non-scanning radiometers

<table>
<thead>
<tr>
<th>Radiometer</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence angle (°)</td>
<td>29.2</td>
<td>38.4</td>
<td>46.3</td>
</tr>
<tr>
<td>Footprint size (km × km)</td>
<td>76×94</td>
<td>84×120</td>
<td>97×156</td>
</tr>
<tr>
<td>Northernmost latitude (°)</td>
<td>84.99</td>
<td>86.07</td>
<td>87.40</td>
</tr>
<tr>
<td>Southernmost latitude (°)</td>
<td>79.01</td>
<td>77.90</td>
<td>76.54</td>
</tr>
</tbody>
</table>

Large footprint sizes, but Excellent sensitivity of 0.2 K
The current 1.4 GHz (L-band) space-borne radiometers

Aquarius

- Designed for sea surface salinity retrievals
- Operates 3 non-scanning radiometers

<table>
<thead>
<tr>
<th>Radiometer</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence angle (°)</td>
<td>29.2</td>
<td>38.4</td>
<td>46.3</td>
</tr>
<tr>
<td>Footprint size (km x km)</td>
<td>76 x 94</td>
<td>84 x 120</td>
<td>97 x 156</td>
</tr>
<tr>
<td>Northernmost latitude (°)</td>
<td>84.99</td>
<td>86.07</td>
<td>87.40</td>
</tr>
<tr>
<td>Southernmost latitude (°)</td>
<td>79.01</td>
<td>77.90</td>
<td>76.54</td>
</tr>
</tbody>
</table>

- Large footprint sizes, but
- Excellent sensitivity of \(0.2\) K

SMOS

- Designed for moisture & salinity
- Radiometer with aperture synthesis

- Multiple incidence angles (0–65°)
- Finer spatial resolution (30–90 km)
- Coarser sensitivity (2–2.5 K)
Outline

1. Spatial distribution of Aquarius TB in Antarctica

2. Temporal Aquarius TB variations at Dome C

3. Impact of snow surface state
 3.1 Comparison with AMSU-B grain index
 3.2 Comparison with surface-based IR surface pictures

4. Conclusion
Antarctica
Weekly mean brightness temperature (vertical polarization, radiometer 3 $\theta_{\text{inc}} \sim 46.3^\circ$)

Winter
Cycle 098

Summer
Cycle 080

Coastal open water/sea ice modifies Aquarius TB

(Brucker et al., 2014 TC)
East Antarctica

Annual mean and standard deviation TB (radiometer 1, $\theta_{\text{inc}} \sim 29.2^\circ$)

Areas where melt events occurred since August 1, 2000 were masked.

There are grid cells (36 km) without observations.
Dome C, Antarctic Plateau (3240 m)

Snow temperature below 15 m: 218.42±0.07 K (Brucker et al., 2011)

Snow accumulation: 8–10 cm of snow (Urbini et al., 2008)

Ideal site to study the relationship: microwave observations – ice properties
Dome C – TB timeseries

<table>
<thead>
<tr>
<th>Beam</th>
<th>TB V (K)</th>
<th>TB H (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>202.54±0.28</td>
<td>189.97±0.44</td>
</tr>
<tr>
<td>2</td>
<td>206.79±0.25</td>
<td>186.22±0.53</td>
</tr>
<tr>
<td>3</td>
<td>209.50±0.26</td>
<td>181.39±0.72</td>
</tr>
</tbody>
</table>

Sensitivity ~ 0.2 K
Dome C – TB angular diagram

Beam V (K)
3 209.50 ± 0.26
2 206.79 ± 0.25
1 202.54 ± 0.28

Beam H (K)
1 189.97 ± 0.44
2 186.22 ± 0.53
3 181.39 ± 0.72

Sensitivity ~ 0.2 K
Dome C – TB timeseries

Fast variations \leadsto surface changes?
Dome C – TB H/V timeseries

Focus on $\frac{TB_H}{TB_V}$.

- Removes the dependency on the physical temperature
- Highlights emissivity variations
Dome C – TB H/V timeseries

Focus on $\frac{TB_H}{TB_V}$, which removes the dependency on the physical temperature and highlights emissivity variations.

Variation > 0.001 is above the radiometric noise.

The largest variations are observed by radiometer 3.

Radiometer 1 ($\theta_{inc} \sim 29.2^\circ$)
Radiometer 2 ($\theta_{inc} \sim 38.4^\circ$)
Radiometer 3 ($\theta_{inc} \sim 46.3^\circ$)
Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012), with shallow penetration (few cm) channels
Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (*Picard et al., 2012*), with shallow penetration (few cm) channels

\[\text{GI} = 1 - \frac{\text{TB}_{150}}{\text{TB}_{89}} \]

Typical penetration depths in ice

- 89 GHz $\approx <0.2$ m
- 37 GHz $\approx <1$ m
- 19 GHz $\approx 3-5$ m
- 10 GHz $\approx 10-15$ m
- 6.9 GHz $\approx >20$ m

L-band observations have a large penetration in ice
Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012), with shallow penetration (few cm) channels

\[GI = 1 - \frac{TB_{150}}{TB_{89}} \]

Good synchronization of the variations in summer
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area \(\sim 4 \text{ m}^2 \)

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Surface-based monitoring of the snow surface at Dome C

Near IR camera
2 m high
imaged area $\sim 4 \text{ m}^2$

(Champollion et al., 2013)
Aquarius and hoar crystal on the surface

No hoar

Hoar

L-band TB variations at Dome C and snow metamorphism
Aquarius and hoar crystal on the surface

L-band observations are sensitive to surface snow properties
A simple calculation with Fresnel’s reflection coefficients at the air/snow interface

![Graph showing density variation of 75 kg m\(^{-3}\) could explain the largest change in TB H/V (in Dec. 2011)]
Aquarius radiometers have an excellent sensitivity (0.2 K), are thus appealing to study the ice sheets.

TB variability at H polarization is larger than at V polarization, increases as θ_{inc} increases, is larger than the sensors’ sensitivity.

L-band radiation has a deep penetration, but is sensitive to surface snow properties.

Hoar crystals on the surface may influence cal/val experiments.

Dome C
Wind direction

Hoar crystals present

Hoar crystals disappear

(Champollion et al., 2013)

See also: Gallet et al. (2014), The growth of sublimation crystals and surface hoar on the Antarctic plateau, The Cryosphere.