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�   ~29 sources to date: 23 confirmed, 5 candidates, 1 RPP; 11 in 2008-2014  

�  All but two (LMC, SMC) are MW sources 

�   Discovered in X/γγ-rays/radio; radio, optical and IR observations - Short, 
soft repeated bursts 

�   P = [2-11] s, P ~[10-11- 10-13]s/s 

�   τspindown(P/2 P)= 2-220 kyrs 

�   B~[1-10]x1014 G (mean surface dipole field: 3.2x1019√PP) -  BUT: SGRs  
J185246.6+003317, B< 4.1x1013 G; 0418+5729, B=6.2 x 1012 G; 1822.3-1606, 
B~2.0 x 1013 G 

�   Luminosities range from L~1032–36 erg/s 

�   No evidence for binarity 
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The neutron star is powered by its super strong B-field = 
1014-15 G. To create such fields requires the collapse of a 
fast rotating star (1-3 ms) with very high convection rates 
(magnetic Reynolds number ~1017). Ideal efficiency can 
generate ~ 1016G (Duncan and Thompson 1992, 1993).  
However: The magnetic energy has to be less than the 
gravitational binding energy of the neutron star (Lai 2001) 
providing an upper limit of: 

The magnetar conjecture 



Soft Gamma Repeaters (SGRs) 

Anomalous X-ray Pulsars (AXPs) 

Dim Isolated Neutron Stars (DINs) 

Compact Central X-ray Objects (CCOs) 

Rotation Powered Pulsars (PSRs J1846−0258 & 
J1622-4950) 

IDEALLY we should call them all MGC XXXX±YYYY as in 
MaGnetar Candidate followed by coordinates in RA, Dec  



Swift 

Fermi 
IPN 

IPN: WIND,  2001 Mars Odyssey, 
INTEGRAL,  RHESSI, Swift, 
MESSENGER, Suzaku, AGILE, and 
Fermi 



Magnetar detection rates 

Olausen & Kaspi, ApJ 2014 
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Kouveliotou et al. 2011  
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Magnetar States 

• Quiescent 

• Active  
•     Several 100s of bursts (storms) – 4 sources 
•   Giant Flares (3 sources one each) 
•   Few 10s of bursts (3 sources) 
•   <10 bursts (10 sources) 
•   No bursts (4 sources) 



Quiescent Emission 
Properties 



Magnetar Timing Properties 

From the quiescent pulsed X-ray emission we can calculate: 

The minimum surface dipole field in vacuum : 
                         . 
B = 3.2 x 1019 (PP )1/2  G (minimum magnetic field strength in 
vacuum); 

The spindown luminosity: 
 .                   . 
E =  4π2I P/P3  (I = 1045  g cm2);  

The characteristic age: 
              . 
τc = P/ 2P  



p-pdot Diagram 

Olausen & Kaspi, ApJ 2014 



Woods et al 2002 

SGR 1806-20 

Kaspi et al. 2014 

SGR J1745−2900 

Burst effects – or not…  
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SGR 1900+14 

Woods et al. 2002 

Outburst effect in the persistent flux 



1996 May 98 Sep-Oct 98 1999 2000 Aug 98 

Gogus et al. 2002 

Outburst effect in the pulse profile 



Spectral Properties 

Olausen & Kaspi, ApJ 2014 

Most spectra are best fit with an absorbed  PL + BB   



Active Emission 
Properties: BURSTS 



Magnetar  Active Period Triggers Comments 
SGR J0501+4516  Aug/Sep 2008 26 New source at Perseus arm 
SGR J1550-5418 Oct 2008 

Jan/Feb 2009 
Mar/Apr 2009 
June 2013 

7 
117/331+  
14 
1 

Known source – first burst active 
episodes 

SGR J0418+5729 June 2009 2 New source at Perseus arm 
SGR 1806-20 Mar 2010 1 Old source - reactivation 
AXP 1841-045 Feb 2011 

June/July 2011 
3 
4 

Known source – first burst active 
episodes 

SGR 1822-1606 July 2011 1 New source in galactic center 
region 

AXP 4U0142+61 July 2011 1 Old source - reactivation 
1E 2259+586 April 2012 1 Old source - reactivation 
Unconfirmed 
Origin 

2008-2013 21 Multiple error boxes include new 
source 3XMM J185246.6+003317 



Unknown source locations 

Collazzi et al. 2014 



   P = 2.069s 

   P = 2.318 x 10-11 s/s and B = 2.2 x 1014 G  

   Near IR detection, Ks = 18.5±0.3 

  GBM triggered on 132 events from the source in three episodes; 2008  
October, 2009 January & March. Once more on 2013 June. 

 Only three other sources have exhibited in the past such “burst  
storms”: SGR 1806-20, SGR 1900+14, SGR 1627-41 

  T90 burst duration = 155 (10) ms for 353 (unsaturated) bursts 

SGR J1550-5418  
(AXP 1E1547.0-5408) 

. 



SGR J1550 – 5418: Temporal  



(ms)(ms)

Gogus et 
al. 2001 
Gavriil et 
al. 2004 
Lin et al. 
2011 
van der 
Horst et 
al. 2012
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SGR J1550 – 5418: Spectral  

4.55(5) keV 

15.0(2) keV 

39.6(6) keV 

-0.93(2) 



SGR J1550 – 5418: Spectral  



All triggers: temporal properties 

Unknown event avg T90 = 61 ms (known avg ~100 ms)  



All triggers: comparative properties 



1550-5418 
Fluence: 7x10-9–1x10-5 erg/cm2 

E=(2x1037-3x1040) d5 erg 
Flux: 8x10-7-2x10-4 erg/cm2s 
L: 5x1038 -1x1041 erg/s 
Total Energy Release: 6.6x1041d5 erg (8-200 keV) 

1806-20: 3.0x1036-4.9x1039erg 

1900+14: 7x1035-2x1039erg 

1627-41: 1038-1041 erg 
0501+4516: 2x1037-1x1040erg 
1E2259+586: 5x1034-7x1036erg 

2 
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BURST ENERGETICS  



Time resolved spectroscopy 
of the 50 brightest bursts  
from SGR J1550-5418  

Younes et al. 2014 



Selection Criteria for the initial sample of 63 bursts: 

Fluence (8-200 keV) >10-6 erg/cm2  
Average flux (8-200 keV) > 10-5 erg/cm2 s 



•  Two thermally emitting regions during bursts 

•  Highly coupled with energy equipartition between 

the two 

•  kT_high: Could be thought of as the footprints of 

the plasma fireball. 

•  kT_low: more complicated to interpret! — 

Representing the outer surface layer of the 

plasma? 

•                  relation places the plasma close to the 

surface of the NS. 



•  COMPT: 
•  Epeak – flux correlation: break at 10-5 erg cm-2 s-1 
•  index – flux correlation break at same flux 

•  2BB: 
•  high-kT: R2 increases & kT decreases with flux  
    adiabatic cooling of fireball 
•  low-kT: 

•  < 10-5.5 erg cm-2 s-1: R2 increases & kT constant with 
flux 
•  > 10-5.5 erg cm-2 s-1: R2 saturates & kT increases with 
flux 
•  saturation R = 30 km  maximum fireball R  internal 
magnetic field > 4.5x1015 G 

•  flux dependence of R2 – kT correlation 

New trends - conclusions  



1.  Since the Fermi launch, GBM has detected bursts from 8 sources: 
one third of the total population in five years! 

2.  The GBM magnetar burst spectra provide the first evidence for an 
unusual hardness Epeak – flux relationship. 

3.  Evidence for higher energetic content in SGR bursts than in AXP 
bursts. 

4.  Power of high-time resolution spectral studies of magnetar bursts: 
•  Track the evolution of the emitting regions 
•  Put to test the emission from a photon-pair plasma fireball 
•  Prediction of intrinsic parameters of the system 



The next five years of Magnetar observations: 
•  Population studies of magnetars   
•  Understand the links between PSRs – Magnetars – DINS 
•  Systematic searches for seismic vibrations in magnetar bursts-

independent B-field measurement  
•  Giant flare detection becomes a strong possibility (for a rate of 1/

source/10yrs, we expect one in the next three years – last was in 2004) 
•  Confirm pulsed emission breaks >100 keV will constrain Emax of particles 

and localization of emission 
Overarching theoretical issues:   
•  Localize the burst energy injection possibly on or near the NS surface to 

determine the injection mechanism 
•  Detection of gravitational waves from magnetar Giant Flares 
•  Determination of the magnetic Eddington limit  
Synergy with new observatories: 
NuSTAR, LIGO, LOFAR, AstroSAT, SVOM, GEMS  
Serendipitous Discoveries: 
Always welcome!  
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