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Interval Management (IM) is a future airborne spacing concept that aims to provide more 
precise inter-aircraft spacing to yield throughput improvements and greater use of fuel-
efficient trajectories for arrival and approach operations. To participate in an IM operation, 
an aircraft must be equipped with avionics that provide speeds to achieve and maintain an 
assigned spacing interval relative to another aircraft. It is not expected that all aircraft will be 
equipped with the necessary avionics, but rather that IM fits into a larger arrival management 
concept developed to support the broader mixed-equipage environment. Arrival management 
concepts are comprised of three parts: a ground-based sequencing and scheduling function to 
develop an overall arrival strategy, ground-based tools to support the management of aircraft 
to that schedule, and the IM tools necessary for the IM operation (i.e., ground-based set-up, 
initiation, and monitoring, and the flight-deck tools to conduct the IM operation). The Federal 
Aviation Administration is deploying a near-term ground-automation system to support 
metering operations in the National Airspace System, which falls within the first two 
components of the arrival management concept. This paper develops a methodology for 
determining the required delivery precision at controlled meter points for aircraft that are 
being managed to a schedule and aircraft being managed to a relative spacing interval in order 
to achieve desired flow rates and adequate separation at the meter points. 

I. Nomenclature 
ADS-B Automatic Dependent Surveillance - Broadcast 

ASI Actual Spacing Interval 

ATA Actual Time of Arrival 

CMP Controlled Meter Point 

d delay 

ETA Estimated time of Arrival 

FAF Final Approach Fix 

IM Interval Management 
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p.d.f. probability distribution function 

r required trajectory time 

s nominal trajectory time 

STA Scheduled time of Arrival 

TSS Terminal Sequencing and Spacing 

Δ spacing goal 

ε Schedule error 

η Spacing error 

σ delivery precision 

 

II. Introduction 
Improvements in communication, navigation, and surveillance systems in the National Airspace System have led 

to the development of multiple concepts to improve efficiency and enhance safety. For example, the deployment of 
Automatic Dependent Surveillance-Broadcast (ADS–B) will provide controllers access to more accurate aircraft state 
information and more frequent update rates than currently available via radar systems. Aircraft equipped with ADS–
B transmitters (ADS–B Out) transmit highly accurate Global Navigation Satellite System-based position and velocity 
information. Aircraft that are additionally equipped with ADS–B receivers (ADS–B In) are able to receive surveillance 
information about other aircraft in the surrounding airspace.  

Interval Management (IM) is an ADS–B-enabled suite of applications that use ground and flight deck capabilities 
as well as procedures designed to support the relative spacing of aircraft [Barmore04, Murdoch09, Barmore09, 
Weitz12]. Relative spacing refers to managing the position or time of one aircraft to a time or distance relative to 
another aircraft, as opposed to a static reference point such as a point over the ground or clock time. This results in 
improved inter-aircraft spacing precision and is expected to allow aircraft to be spaced closer to the applicable 
separation standard than current operations. Consequently, if the reduced spacing is used in scheduling, IM can reduce 
the time interval between the first and last aircraft in an overall arrival flow. Because IM relies on speed changes to 
achieve precise spacing, it can reduce costly, low-altitude, off-path maneuvering, which increases both efficiency and 
throughput in capacity-constrained airspace without negatively impacting controller workload and task complexity. 
This is expected to increase overall system efficiency. 

IM is one of three components in the overall arrival flow management system. The first component manages the 
strategic plan for aircraft arrivals to an airport. This includes runway assignments, a schedule** to the runway, and the 
associated schedule to the upstream Controlled Meter Points (CMPs). Concepts such as Extended Metering and 
Coupled Scheduling [Stein11] all contribute to the determination of this plan for the management of aircraft during 
arrival and approach.  

Given this plan, the second component involves the controller managing the traffic to the schedule. Controller 
experience may be augmented with ground automation tools such as Ground Interval Management – Spacing (GIM–
S) [FAA12], Terminal Sequencing and Scheduling (TSS) [Thipphavong10], and Relative Position Indicator 
[Shepley08] to accurately deliver aircraft to frozen Scheduled Times of Arrival (STAs) defined at the CMPs.  

Future ground-system deployments will include functionality to help the controller to identify candidate aircraft 
pairs for an IM operation, information to the controller to initiate the IM operation (e.g., the assigned spacing interval), 
tools to help the controller monitor the relative spacing, and status information on whether an aircraft is actively 
conducting an IM operation. 

Performance of arrival management systems has been analyzed in various contexts. Ren and Clarke [Ren07] 
analyzed trajectory uncertainties to determine the minimum targeted spacing at the terminal meter fix on the en-
route/terminal boundary that allows aircraft to continue their area navigation (RNAV) arrivals to the runway without 
controller intervention. In that work, the aircraft were metered to the terminal meter fix by conventional means, and 
errors in the inter-arrival time were modeled. That methodology was used to establish inter-arrival spacing for flight 
tests conducted at Louisville International Airport (SDF), and the performance predicted by the model was shown to 
agree well with measured performance [Ren08]. The delivery precision to STAs for saturated metering operations at 
Hartsfield-Jackson Atlanta International (ATL) operations was analyzed by Shresta and Mayer [Shresta09].  With a 
similar motivation to the research in reference [Ren07], Shresta and Mayer determined the delivery precision at the 

                                                           
** A schedule is an ordered list (sequence) of aircraft at a point and the times the aircraft should cross that point. 
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meter fix required to achieve certain efficient operations (i.e., no vectoring or extended final) in the terminal area. 
Finally, a tool has been developed and applied by Thipphavong and Mulfinger [Thipphavong10], which combined the 
effects of metering to the terminal meter fix and the runway, scheduled delay, and controller intervention rates to 
optimize the performance of a scheduler for the terminal area.  

We have previously developed a model to derive performance requirements for determining and meeting STAs 
for arrival operations [Levitt13]. This paper extends those results into terminal airspace and adds IM operations.  

The main contribution of this paper is the development of key mathematical relationships describing the 
interactions between aircraft being managed to meets STAs at meter points (referred to as the schedule-managed 
aircraft) and aircraft that are relative spacing (referred to as the spacing-managed aircraft). In particular, two 
constraints, defining separation and operational feasibility, are developed. From these constraints, the precision with 
which aircraft need to meet their STAs and the precision with which spacing-managed aircraft need to achieve their 
relative spacing goals may be determined. The paper is organized as follows: an operational overview is provided in 
Section II; the constraint relationships are developed in Section III; some preliminary simulation results are presented 
in Section IV, and lastly, conclusions and future work are described in Section V. 

III. Operational Overview 
For the modeling in this paper, we assume the arrival operation begins with arriving aircraft being sequenced and 

scheduled to land at the airport of interest. For simplicity, the runways are treated as having independent flows of 
traffic. There are a set of common arrival routes, such as Standard Terminal Arrival Routes, feeding the runway of 
interest. There are multiple CMPs along each route including the points where the different routes merge together.  

For IM operations, the spacing-managed aircraft is trying to achieve the spacing at one CMP and then maintain 
that spacing until the operation is terminated. For mature-state IM, this point, called the Achieve-by Point, is expected 
to be the final approach fix (FAF). Prior to the Achieve-by Point the aircraft will be working towards the spacing goal 
but is not required to be at the assigned spacing yet.  

Figure 1 shows a generic arrival airspace with routes leading to a single runway. 

 
Similar to the scheduling in the Time-Based Flow Management (TBFM) system [FAA09], aircraft are continually 

sequenced and scheduled as they approach the arrival airspace. Along each route there is a freeze horizon which is 
located prior to where aircraft begin their descent. As an aircraft crosses the freeze horizon the sequence and schedule 
for that aircraft are fixed. The scheduling tool builds the arrival sequence based on a first-come, first-served policy 
using the estimated times of arrival (ETAs) to the runway. Based on the aircraft’s wake category and the expected 

 
Figure 1 Generic arrival airspace. Yellow stars represent Controlled Meter Points (CMPs). 
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operations they will be performing, a spacing goal is defined for each pair that will ensure separation between 
consecutive aircraft at the CMPs. This defines the schedule which is communicated to the air traffic controller as a set 
of STAs. During periods of high demand, aircraft will need to be delayed to ensure separation is maintained at 
downstream CMPs. That is, an aircraft’s STA will always match or be later than its ETA (Fig. 2). 

 
There are two methods available to manage an aircraft to the runway. The first is to manage the aircraft to achieve 

the STAs at each of the CMPs. This is what the proposed controller tool TSS does. The other option is to manage the 
aircraft to achieve the spacing goal relative to the preceding aircraft in the sequence. This is what IM operations would 
provide. In the case where speed changes alone are insufficient to achieve the goal, it is assumed that any vectoring 
of the aircraft occurs soon after the freeze horizon and the following analysis applies once the aircraft is headed back 
onto the common route structure and under speed control only. The analysis assumes that both types of operations, 
schedule-managed and spacing-managed, can occur simultaneously in the same airspace, and operations are not 
segregated. This is referred to as mixed operations. Obviously, any individual aircraft can only be controlled by one 
of these methods.  

 

IV. Model Development 
In this section, we develop analytic models of delivery error distributions for the two different control methods. 

The models include the constraints for ensuring separation between aircraft at each CMP, as well as the feasibility of 
the aircraft meeting the required times.  

The CMPs are labeled A, B, C, ... starting at the runway threshold, A, and moving backwards to the freeze horizon 
(see Fig. 1). At each CMP, there is a sequence of aircraft labeled 1, 2, 3, ... When used to label a variable, the CMP 
label appears as a superscript and the aircraft label as a subscript. For example, the schedule error of the 5th aircraft at 
CMP B is ߳ହ஻. For quantities that extend between CMPs, the two points are separated by a comma in the label. For 
example, the nominal trajectory time of the 3rd aircraft between points D and C would be ݏଷ஼,஽. Indices may be omitted 
when there is no possibility of confusion. 

Once the schedule for a CMP is frozen, the scheduled delay for aircraft ݅ is defined to be the difference between 
the aircraft’s ETA and the STA at that meter point.  

 ݀௜஼ெ௉ = ௜஼ெ௉ܣܶܵ −  ௜஼ெ௉ܣܶܧ
 
It should be noted that ܣܶܧ஼ெ௉ is fixed when the schedule is frozen and ݀௜஼ெ௉ is the cumulative delay from the 

freeze horizon to the CMP.  
The delay between any two meter points, A and B, sharing a freeze horizon will be written ݀௜஻,஺. Note that for a 

sequence of CMPs C, B, and A, the delays are related by  
 ݀஻,஺ = ݀஺ − ݀஻ 
 
and 
 ݀஼,஺ = ݀஼,஻ + ݀஻,஺ 
 
The nominal trajectory time from the freeze horizon to the CMP is denoted ݏ௜஼ெ௉ and is equal to the difference 

between the arrival time at the freeze horizon and ܣܶܧ௜஼ெ௉. The nominal trajectory time between meter points B and 
A is ݏ௜஻,஺ = ௜஺ܣܶܧ −  ௜஻ܣܶܧ

 

 
Figure 2 Schematic showing how a sequence of aircraft is converted into a schedule. 
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The spacing goal for aircraft ݅  at a CMP is denoted by ∆௜஼ெ௉ and is defined to be the difference between consecutive 
aircrafts’ STAs. The ݅௧௛ spacing goal is  ∆௜஼ெ௉= ௜஼ெ௉ܣܶܵ −  ௜ିଵ஼ெ௉ܣܶܵ

 
 
Claim:  For every aircraft,  ܵܶܣ஺ − ஻ܣܶܵ = ஻,஺ݏ + ݀஻,஺          (1) 
 
Proof: ܵܶܣ஺ − ஻ܣܶܵ = ஺ܣܶܧ) + ݀஺) − ஻ܣܶܧ) + ݀஻) = ஺ܣܶܧ) − (஻ܣܶܧ + (݀஺ − ݀஻) = ஻,஺ݏ + ݀஻,஺ 
 
 
The difference between spacing goals for aircraft ݅ > 0 at consecutive CMPs B and A is the difference between 

the lead and trail’s nominal trajectory times plus the difference in their delays. 
 
Claim:   ∆௜஻ − ∆௜஺= ൫ݏ௜஻,஺ − ௜ିଵ஻,஺൯ݏ + ൫݀௜஻,஺ − ݀௜ିଵ஻,஺൯         

 (2) 
 
Proof:  ∆௜஻ − ∆௜஺= ௜஻ܣܶܵ) − ௜ିଵ஻ܣܶܵ ) − ௜஺ܣܶܵ) − ௜ିଵ஺ܣܶܵ ) = ௜஻ܣܶܵ) − (௜஺ܣܶܵ − ௜ିଵ஻ܣܶܵ) − ௜ିଵ஺ܣܶܵ ) = ൫ݏ௜஻,஺ + ݀௜஻,஺൯ − ൫ݏ௜ିଵ஻,஺ + ݀௜ିଵ஻,஺ ൯ = ൫ݏ௜஻,஺ − ௜ିଵ஻,஺൯ݏ + ൫݀௜஻,஺ − ݀௜ିଵ஻,஺ ൯ 
 
Define the maximum and minimum trajectory time control to be the maximum and minimum time by which an 

aircraft can adjust its actual arrival time (ATA) to a CMP as ߜ௠௔௫஼ெ௉ and ߜ௠௜௡஼ெ௉, respectively. Let ℱ௜஼ெ௉ be the set of all 
feasible arrival times for aircraft i to the CMP. Note that ܣܶܧ௜஼ெ௉ ∈ ℱ௜஼ெ௉. By definition, 

௠௔௫஼ெ௉ߜ  = max ℱ௜஼ெ௉ − ௜஼ெ௉ܣܶܧ > 0 
 
and 
௠௜௡஼ெ௉ߜ  = min ℱ௜஼ெ௉ − ௜஼ெ௉ܣܶܧ < 0 
 
The values of ߜ௠௔௫஼ெ௉ and ߜ௠௜௡஼ெ௉ depend on the distance-to-go to the CMP, the planned airspeeds and vertical profile, 

and the wind speeds between CMPs. It is assumed that ߜ௠௜௡஼ெ௉ < ݀௜஼ெ௉ <  ௠௔௫஼ெ௉ for every ݅, where the margin betweenߜ
scheduled delay and available trajectory time control is balanced with other constraints on the system. If this inequality 
does not hold then path changes would be needed to implement the delay, ݀௜஼ெ௉. 

 
The schedule delivery error for aircraft ݅ at a CMP is denoted by ߝ௜஼ெ௉. It is defined to be the difference between 

the ATA and the STA. 
௜஼ெ௉ߝ  = ௜஼ெ௉ܣܶܣ −  ௜஼ெ௉ܣܶܵ
 
The actual spacing interval (ASI) that is delivered between consecutive aircraft at a meter point is defined to be 

the difference between their actual arrival times 
௜஼ெ௉ܫܵܣ  = ௜஼ெ௉ܣܶܣ −  ௜ିଵ஼ெ௉ܣܶܣ
 
The relative spacing error for aircraft ݅ at a CMP is denoted by ߟ௜஼ெ௉. It is defined to be the difference between 

the actual spacing interval and the spacing goal, and can be related to the schedule delivery error. 
௜஼ெ௉ߟ  = ௜஼ெ௉ܫܵܣ − Δ௜஼ெ௉ 
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Claim:  ߟ௜஼ெ௉ = ௜஼ெ௉ߝ −  ௜ିଵ஼ெ௉           (3)ߝ
 
Proof: ߟ௜஼ெ௉ = ௜஼ெ௉ܫܵܣ − Δ௜஼ெ௉ = ௜஼ெ௉ܣܶܣ) − (௜ିଵ஼ெ௉ܣܶܣ − ௜஼ெ௉ܣܶܵ) − = (௜ିଵ஼ெ௉ܣܶܵ ௜஼ெ௉ܣܶܣ) − (௜஼ெ௉ܣܶܵ − ௜ିଵ஼ெ௉ܣܶܣ) − = (௜ିଵ஼ெ௉ܣܶܵ ௜஼ெ௉ߝ +  ௜ିଵ஼ெ௉ߝ
 
 
Figure 3 graphically depicts the schedule error, spacing goal, and spacing error. 
 
 

 
Consider a string of ݇ + 1 aircraft, where aircraft 0 is being managed to the schedule, and aircraft 1 through k is 

being managed to the spacing goal. The schedule delivery error of the ݇௧௛ aircraft, ߝ௞ is a function of ߝ଴, the schedule 
delivery error for aircraft 0, and ߟ௜, the relative spacing error for aircraft ݅ for ݅ = 1,2,3 … ݇.  

 
Claim: For every CMP,  ߝ௞ = ଴ߝ + ∑ ௜௞௜ୀଵߟ         

 (4) 
 
Proof:   
One may repeatedly apply Eq. (3) to obtain ߝ௞ = ௞ିଵߝ + ௞ߟ = ௞ିଶߝ + ௞ିଵߟ + ௞ߟ = ⋯ = ଴ߝ + ଵߟ + ଶߟ + ⋯ +  ௞ߟ
 
Intuitively, ܵܶܣ௞ = ଴ܣܶܵ + ∑ ∆௜௞௜ୀଵ  and ܣܶܣ௞ = ଴ܣܶܣ + ∑ (∆௜ + ௜)௞௜ୀଵߟ , so 
௞ߝ  = ௞ܣܶܣ − ௞ܣܶܵ = ଴ܣܶܣ  − ଴ܣܶܵ + ෍ ௜௞ߟ

௜ୀଵ  

= ଴ߝ + ෍ ௜௞ߟ
௜ୀଵ  

 
 
Equation (4) is illustrated in Figure 4.  
 

 
Figure 3: Definition of schedule error, ε, and spacing error, η. 
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Given the STAs and the delivery errors that have been realized, aircraft ݅ will have a required trajectory time to 

fly from CMP B to CMP A, denoted ݎ௜஻,஺. In the case of a schedule-managed aircraft, it is a function of the nominal 
trajectory time, the delay allocated, and the upstream delivery error at CMP B.  

 
Claim:  For a schedule-managed aircraft i, ݎ௜஻,஺ = ௜஻,஺ݏ + ݀௜஻,஺ −         ௜஻ߝ

 (5) 
Proof:   ݎ௜஻,஺ = ௜஺ܣܶܵ − ௜஻ܣܶܣ = ௜஺ܣܶܵ − ௜஻ܣܶܵ) + (௜஻ߝ = ௜஻,஺ݏ + ݀௜஻,஺ −  ௜஻ߝ
 
In the case of a spacing-managed aircraft at position k in a string, the required trajectory time from CMP B to CMP 

A is related to the delivery errors of the preceding k-1 spacing-managed aircraft in the string and the lead schedule-
managed aircraft. 

 
Claim: For a spacing-managed aircraft that is in position k in the string,  ݎ௞஺,஻ = ௞஺,஻ݏ + ݀௞஺,஻ + ൫ߝ଴஻ + ∑ ௜஻௞௜ୀଵߟ ൯ − ൫ߝ଴஺ + ∑ ௜஺௞ିଵ௜ୀଵߟ ൯        (6) 
 
Proof:   ݎ௞஺,஻ = ௞ିଵ஺ܣܶܣ) + ∆௞஺) − ௞஻ܣܶܣ = ቀ(ܵܶܣ௞ିଵ஺ + ௞ିଵ஺ߝ ) + ௞஺ܣܶܵ) − ௞ିଵ஺ܣܶܵ )ቁ − ௞஻ܣܶܵ) + = (௞஻ߝ ௞஺ܣܶܵ) − (௞஻ܣܶܵ + ௞ିଵ஺ߝ −  ௞஻ߝ
Applying Eqs. (3) and (4), = ௞஻,஺ݏ + ݀௞஻,஺ + ൭ߝ଴஺ + ෍ ௜஺௞ିଵߟ

௜ୀଵ ൱ − ൭ߝ଴஻ + ෍ ௜஻௞ߟ
௜ୀଵ ൱ 

 
Figure 5 shows the relationship between the flight times, allocated delays and the trajectory control times. 

 
Figure 4 Relationship between schedule error of the kth aircraft and the spacing errors of all preceding aircraft. 
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The performance of delivering a schedule-managed aircraft to a meter fix is measured by the amount of schedule 

error at the meter fix. The delivery precision for schedule-managed operations, ߪ௦௖௛, is defined to be the standard 
deviation of the schedule error for the schedule-managed aircraft in the assumed operating environment.  

The performance of delivering a spacing-managed aircraft to a meter fix is measured by the amount of relative 
spacing error at the meter fix. The delivery precision for spacing-managed operations, ߪ௦௣௔, is defined to be the 
standard deviation of the relative spacing error for the spacing-managed aircraft in the assumed operating environment. 
For this analysis, the delivery precision is still considered for spacing-managed aircraft at CMPs which are not the 
achieve-by point. While IM would not be actively controlling to the assigned spacing goal upstream of the Achieve-
by Point, the relative spacing should still be considered there and bounded. 

A. Mathematical Modeling of Constraints at a CMP 
Extending the results in Ref. [Levitt13], there are two types of constraints modeled for mixed equipage operations.  
• Separation Constraint: the delivery precision for schedule-managed and spacing-managed operations must 

not lead to interruptions to the operation too often,  because of a pending separation violation. This 
constraint must be satisfied while also supporting sufficiently high throughput. 

• Feasibility Constraint: the delivery precision at the upstream CMP must be such that there is sufficient 
control authority for the aircraft to correct the absolute or relative spacing error to within the precision 
requirements of the downstream CMP. 

B. Separation constraints 
Let ܯ =  be the applicable minimum separation requirement between aircraft in-trail or merging at a (ݒ)஼ெ௉ܯ

CMP, which is a function of the groundspeed, ܯ .ݒ is in units of time, converted from a distance-based separation 
requirement using the expected groundspeed of the trail aircraft at the CMP.  

It is assumed that the scheduler assigns STAs that are de-conflicted at all CMPs. This is modeled as there being a 
minimum spacing goal, which is equal to ܯ + ܾ, where  ܾ is a fixed spacing buffer added to the minimum separation. 
For simplicity, we assume that all STAs are set to provide minimum spacing, therefore providing maximum 
throughput. 

The size of the buffer is a function of the underlying distributions for schedule-managed and spacing-managed 
delivery errors. Define ܾ௦௖௛  and ܾ௦௣௔ to be the buffers associated with each control method. First, we express the 
value of ܾ௦௣௔, the buffer size for the spacing-managed aircraft. Let ܺ be the random variable taking the value of the 

 
Figure 5: Schematic of how nominal flight time and delay combine to reach the next STA. The minimum 
and maximum trajectory time controls are also shown. 
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relative spacing error ߟ஺ at a CMP A for a spacing-managed aircraft. Let ߛ be the allowable interruption rate for the 
mixed operations. The buffer is determined such that the probability of the spacing-managed aircraft delivering a 
relative spacing error smaller than −ܾ௦௣௔ is less than ߛ.  

Let ௑݂ be the probability distribution function (p.d.f.) for the random variable ܺ. Let ܨ௑ be the cumulative 
distribution function, so that the buffer size is constrained by ܾ௦௣௔ < ௑ିܨ| ଵ(ߛ)|. For example, in the case that ܺ is a 
Gaussian random variable, ܾ௦௣௔ < ߛ ௦௣௔ forߪ2 = 0.025. Figure 6 illustrates ܨ௑ and the approach for selecting −ܾ௦௣௔. 

 
The buffer size for the schedule-managed aircraft, ܾ௦௖௛, depends on the length of the string of spacing-managed 

aircraft coming before it. Let the schedule-managed aircraft under study be number ݇ + 1.Let the aircraft string 
preceding the schedule-managed aircraft be numbered 0, 1, 2, … , ݇, where a string of length 0 indicates a schedule-
managed aircraft. By Eq. (3), the relative spacing error for the (݇ + 1)௧௛ aircraft is the difference between its own 
absolute spacing error and the absolute spacing error of the lead aircraft in the sequence,  

௞ାଵߟ  = ௞ାଵߝ −  .௞          (7)ߝ
 
Let ܻ(௞) be the random variable taking the value of the schedule delivery error, ߝ௞, for a spacing-managed aircraft 

that is number ݇ in the string. From (4), ܻ(௞) = ܻ + ଵܺ + ܺଶ + ⋯ + ܺ௞, where ܻ = ܻ(଴) is the random variable taking 
the value of the schedule delivery error for a schedule-managed aircraft and ௜ܺ is the relative delivery error for the ݅௧௛ 
aircraft.  From (9), let ܼ(௞) = ܻ − ܻ(௞) be the random variable taking the value of the relative spacing error for the 

schedule-managed aircraft under study. Let ݃௒(௞) be the p.d.f. for ܻ(௞), and ݃௒ = ݃௒(଴) be the p.d.f. for ܻ.  Then ௓݂(௞) =݃௒ ∗ ൫−݃௒(௞)൯ is the p.d.f. for Z. Let ܨ௓(௞) be the corresponding cumulative distribution function.  
A conservative approach would be to constrain the probability of interruption to be less than ߛ for every value of ݇ less than some limit, ݇௠௔௫. In that case, ܾ௦௖௛ would be set so that ܾ௦௖௛ < ቚൣܨ௓(௞)൧ିଵ(ߛ)ቚ (see Fig. 6) for every ݇ ≤݇௠௔௫. Under the assumption that the standard deviation of the schedule delivery error does not decrease with ݇, it is 

enough to apply the constraint for ݇ = ݇௠௔௫. 
In the case where ܺ and ܻ are independent Gaussian distributions with zero mean and standard deviations ߪ௦௣௔ 

and ߪ௦௣௔, respectively, ܼ(௞) is also Gaussian with zero mean and standard deviation ට2ߪ௦௖௛ଶ + ௦௣௔ଶߪ݇ . Hence, we have ܾ௦௖௛ < 2ට2ߪ௦௖௛ଶ + ௦௣௔ଶߪ݇  for ߛ = 0.025. 

 
Figure 6 Determining the spacing buffer based on the culmative distribution function for spacing errors. 
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However, short strings of spacing-managed aircraft are more likely than long strings and should be taken into 
account. Let ݌௜ be the probability that the preceding string of spacing-managed aircraft is of length ݅, where ݌଴ is the 
probability that an aircraft is being managed to the schedule. Then for a given buffer size, the probability of an 
interruption is 

 ܲ(ܾ௦௖௛) = ∑ ௓(௜)(−ܾ௦௖௛)௞೘ೌೣ௜ୀ଴ܨ௜݌      (8) 
 
Since ܲ is the sum of monotonic increasing functions of ܾ௦௖௛, then ܲ is itself a monotonic increasing function and 

therefore invertible. Since ܲିଵ exists, the constraint is 
 ܾ௦௖௛ < |ܲିଵ(ߛ)|. 

C. Feasibility Constraint 
Consider the ݇ ௧௛ aircraft of a spacing-managed string. The deviation from the nominal trajectory time that is flown 

by the ݇௧௛ spacing-managed aircraft is limited by what is feasible. This deviation is a function of the delay allocated, 
and the delivery errors of all of the ݇ aircraft in the string. 

 
The trajectory time flown by the ݇௧௛ aircraft of a spacing-managed string is given by ݐ = ௞஺,஻ݎ +  ௞஺. Applyingߟ

equation (6), the deviation from nominal trajectory time is 
ݐ    − ௞஺,஻ݏ = ݀௞஺,஻ + ൫ߝ଴஻ + ∑ ௜஻௞௜ୀଵߟ ൯ − ൫ߝ଴஺ + ∑ ௜஺௞௜ୀଵߟ ൯    (9).  
 
Note that for ݇ = 0, Eq. (9) reduces to the equation for a single schedule-managed aircraft as follows from (5) and 

as was derived in [Levitt13]. 

Define the random variable ܹ(௞) = ܦ + ஺ܻ(௞) − ஻ܻ(௞), where D is the delay from CMP B to CMP A;  ஻ܻ(௞) is the 

random variable for the relative spacing error of the ݇௧௛ aircraft at CMP B, and,  ஺ܻ(௞) is the random variable for the 

relative spacing error of the ݇௧௛ aircraft at CMP A. Let ௐ݂(௞)(ݔ) be the joint p.d.f. which gives the probability that the 
required trajectory time of the ݇ ௧௛ aircraft in an IM string deviates from nominal by ݔ seconds. If the range of trajectory 
times available to the aircraft are ൣݏ௞஻,஺ − ௠௜௡஻,஺ߜ , ௞஻,஺ݏ + ௠௔௫஻,஺ߜ ൧, then the following inequality defines the feasibility 
constraint.  

௠௔௫஻,஺ߜௐ(௞)൫ܨ  ൯ − ௠௜௡஻,஺ߜௐ(௞)൫ܨ ൯ > 1 −  (10)      ߛ
 
Equation (10) defines the probability that the trajectory time of the ݇௧௛ spacing-managed aircraft is within the 

bounds on the trajectory time control. Equation (10) is sufficiently satisfied if ൣܨௐ(௞)൧ିଵ ቀఊଶቁ > ௠௜௡஻,஺ߜ  and ൣܨௐ(௞)൧ିଵ ቀ1 − ఊଶቁ < ௠௔௫஻,஺ߜ . 

D. Correlations 
Relative spacing errors for the ݇௧௛ spacing-managed aircraft are correlated to the relative spacing errors of the 

preceding aircraft 0 through ݇ − 1. Therefore, the distributions governing the behavior ܨ௓(௜)are not straightforward. 
To see that there is correlation, consider Eq. (6). The trajectory time ݎ௞஺,஻ that is required of a spacing-managed aircraft 
at position k in the string:   

௞஺,஻ݎ  = ௞஺,஻ݏ + ݀௞஺,஻ + ൭ߝ଴஻ + ෍ ௜஻௞ߟ
௜ୀଵ ൱ − ൭ߝ଴஺ + ෍ ௜஺௞ିଵߟ

௜ୀଵ ൱ 

 
Note here that ݎ௞஺,஻ has a dependence on the delivery errors at CMP B and the delivery errors at CMP A. It is clear 

that  ݎ௞஺,஻ increases with upstream delivery errors and decreases with downstream delivery errors. The performance of 
the relative spacing error ߟ௞஺ is clearly conditional on the value of ݎ௞஺,஻, since the flight time, ݐ = ௞஺,஻ݎ +  ௞஺, is limitedߟ
by the requirement that ݐ ∈ ሾߜ௠௜௡஼ெ௉, ௞஺,஻ݎ ௠௔௫஼ெ௉ሿ. Furthermore, it is believed that whenߜ >  ௞஺,஻, it is increasingly likelyݏ
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that ݐ <  ௞஺,஻ due to the tendency to move to the nominal trajectory time. Given these observations, it is hypothesizedݎ
that schedule drift at CMP A for a string of spacing-managed Aircraft is limited due to the nature of the negative 
correlation to the preceding delivery errors at A. If the lead aircraft has a positive delivery error, and is therefore likely 
ahead of schedule, then the trail is more likely to have a negative delivery error, and therefore more likely to correct 
back to schedule.  

Therefore, we expect less dependence on the string length, k, in Eqs. (8) and (10) than if there was no correlation. 
A detailed analysis of this correlation will be the subject of future work. 

V. Simulation Results 

A. Separation Constraint 
The separation constraint from equation (7) is used to set a buffer size for the schedule-managed aircraft that is 

following another schedule-managed aircraft or a spacing-managed string of length k. As described in section III.D, 
the analytical result derived assuming independent, Gaussian distributions, is conservative as the correlation between 
relative spacing errors will limit unbounded schedule drift. The probability of a separation violation is explored via 
simulation for different values of σ௦௣௔, σ௦௖௛, the probability of an aircraft being managed to spacing, and a spacing 
buffer factor. The spacing buffer factor is used to determine the buffer size as a multiple, ܿ ௕௨௙ of the standard deviation 
of the relative spacing error. For a schedule-managed aircraft, the STA difference is determined using the following, 
where the √2 term is to convert σ௦௖௛ to relative spacing assuming Gaussian independence of schedule-managed 
delivery errors: 

௜ܣܶܵ  − ௜ିଵܣܶܵ = ܯ + ܿ௕௨௙ ⋅ √2 ⋅ σ௦௖௛ 
 
The STA difference for a spacing-managed aircraft has a similar form, but does not include the √2 term because 

the spacing-managed aircraft manages its spacing relative to its target aircraft rather than the schedule. 
௜ܣܶܵ  − ௜ିଵܣܶܵ = ܯ + ܿ௕௨௙ ⋅ σ௦௣௔ 
 
Simulation results are presented here to reveal some of the tradeoffs between throughput and interventions for 

different spacing buffer factors given different equipage rates and different absolute and relative spacing performance. 
In the simulation results, relative spacing errors are modeled as correlated, where the mean error of  η௜ is a linear 
function of η௜ିଵ. More specifically, η௜ is assumed to be Gaussian distributed with standard deviation σ௦௣௔ and mean −0.2η௜ିଵ. As described in Section III.D, the correlation of relative spacing errors is a topic of future work and 
simulation results will continue to be refined as an understanding of the correlated distributions matures. 

 
Figure 7 shows the frequency of interventions for a spacing-managed rate of 50% and the spacing buffer factor of 

two as a function of σ௦௣௔; each line represents a different value of σ௦௖௛. For a given absolute spacing performance, 
the frequency of interventions increases as the precision in the spacing performance decreases. However, the frequency 
of interventions decreases as σ௦௖௛ increases. Larger values of σ௦௖௛ lead to larger buffers due to the spacing buffer 
factor for the schedule-managed aircraft, which help to prevent interventions when a schedule-managed aircraft 
follows a long string of spacing-managed aircraft. Allowing a larger value of σ௦௖௛ to achieve fewer interventions does 
come at a cost to the throughput because of the larger buffers. Figure 8 shows the average throughput for the same 
parameters. Increasing σ௦௖௛ from 5 to 12 seconds results in a throughput reduction of about 8 ac/hr (based on a 
minimum time-based separation standard of 60 seconds). 



 
American Institute of Aeronautics and Astronautics 

 

12

 
Figure 7. Probability of interventions for spacing-managed equipage rate of 50% and spacing buffer factor = 2. 

 
Figure 8. Average throughput for spacing-managed equipage rate of 50% and spacing buffer factor = 2. 

 Figure 9 shows the interventions when the spacing buffer factor is increased to three. While increasing the 
spacing buffer factor to three results in fewer interventions (e.g., for σ௦௖௛=σ௦௣௔= 5 seconds, ܿ௕௨௙ = 2 results in 32 
interventions per 1,000 operations and ܿ௕௨௙ = 3 results in 4 interventions per 1,000 operations), the throughput is 
reduced by about 5 ac/hr. This tradeoff space can be optimized to best meet operational objectives for a given airport 
and may ultimately help in the derivation of requirements on ground automation and avionics in order to meet 
throughput and efficiency objectives. 
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Figure 9. Probability of interventions for spacing-managed equipage rate of 50% and spacing buffer factor = 3. 

B. Feasibility Constraint 
The feasibility constraint in Eq. (9) describes the trajectory time from CMP B to CMP A for a schedule-managed 

aircraft when k = 0. The probability of the required trajectory time being within the maximum and minimum trajectory 
control times is explored through simulation. Given a desired precision at the downstream CMP, bounds on the 
trajectory times, and an allocation of the maximum trajectory time control to the maximum delay, the simulation 
determines the delivery precision required at the upstream CMP. 

The upstream delivery precision is assumed to be zero-mean, Gaussian distributed with standard deviation σ௦௖௛஻ . 
Again, as discussed in Section III.B, the downstream delivery errors are correlated to the upstream errors. A simple 
model of correlation is simulated to present results, and a deeper exploration of the correlation effects will be the 
subject of future research.  

Using equation (5), the downstream delivery precision is modeled to be conditioned on the required trajectory 
time, ݎ = ଴஻,஺ݏ + ݀଴஻,஺ − ε଴஻. If δ୫୧୬஻,஺ < ݀଴஻,஺ − ε଴஻ < δ୫ୟ୶஻,஺ , then it is assumed that the aircraft has sufficient trajectory 
time control to achieve the STA at CMP A and ε଴஺ is assumed to be zero-mean, Gaussian distributed with standard 
deviation  σ௦௖௛஺ . If ݀଴஻,஺ − ε଴஻ exceeds one of the trajectory time control bounds, the mean of ε଴஺ is assumed to be the 
earliest or latest that the aircraft can arrive at CMP A given the values of ݀଴஻,஺ and ε଴஻, and the distribution is again 
assumed to be Gaussian with standard deviation σ௦௖௛஺ .  

The probability that the trajectory time will be feasible is explored for σ௦௣௖஺ = 5 seconds and two sets of trajectory 
control times. Trajectory control times were determined from a simulation of a Boeing 737-700 flying the EAGUL5 
arrival route at Phoenix Sky International Airport (KPHX). The trajectory control times shown in Table 1 represent 
the smallest and largest values of δ୫ୟ୶஻,஺  over the last 10 nmi of the procedure to the FAF and for a set of 60 randomly-
chosen wind conditions; the slow and fast speeds used to generate δ୫ୟ୶஻,஺  and δ୫୧୬஻,஺ , respectively, were assumed to be 
10% slower and 10% faster than the procedural speed constraints. 

 
Table 1. Trajectory Time Control Values. 

Case Slow Trajectory:δ୫ୟ୶஻,஺  (sec) Fast Trajectory:δ୫୧୬஻,஺  (sec) 
1 14.9 -44.5 
2 13.9 -33.3 

 
Figure 10 shows the probability that the trajectory time will be feasible for Case 1 with a downstream delivery 

precision goal of σ௦௖௛஺ = 5 seconds and for three different allocations of the maximum trajectory time control to the 
delay. Given the small window on the trajectory time control in Case 1, the upstream delivery precision needs to be 
as precise as the downstream delivery precision with no allocation to delay over the last 10-nmi prior to the FAF in 
order to achieve a feasibility frequency of 0.95. 
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Figure 10. Probability of feasible trajectory time for schedule-managed aircraft (ો࡭ࢎࢉ࢙ = 5 seconds and trajectory control time 

values from Case 1). 

The results for Case 2 in Figure 11 show that the upstream delivery precision can be much less accurate when 
there is a larger trajectory time control window. Furthermore, some delay can be allocated to the last 10 nmi prior to 
the FAF. 

 
Figure 11. Probability of feasible trajectory time for schedule-managed aircraft (ો࡭ࢎࢉ࢙ = 5 seconds and trajectory control time 

values from Case 2). The red and green curves overlay. 

Figure 12 shows the results with Case 2 when the downstream delivery precision is 10 seconds (compared to 5 
seconds) in Figure 5. Less precise delivery means that more trajectory time control is needed to ensure that the desired 
performance is met. Therefore, the delay allocation to the last 10-nmi segment prior to the FAF must be less in this 
case. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.4

0.5

0.6

0.7

0.8

0.9

1

σsch
B  (sec)

P
ro

b
a

b
ili

ty
 o

f F
e

a
si

b
le

 T
ra

je
ct

o
ry

 T
im

e

 

 

d
0
B,A = δmax

B,A /2

d
0
B,A = δmax

B,A /4

d
0
B,A = 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

σsch
B  (sec)

P
ro

b
a

b
ili

ty
 o

f F
e

a
si

b
le

 T
ra

je
ct

o
ry

 T
im

e

 

 

d
0
B,A = δmax

B,A /2

d
0
B,A = δmax

B,A /4

d
0
B,A = 0



 
American Institute of Aeronautics and Astronautics 

 

15

.  
Figure 12. Probability of feasible trajectory time for schedule-managed aircraft (ો࡭ࢎࢉ࢙  = 10 seconds and trajectory control time 

values from Case 2). 

As described in equation (6), the feasibility of the ݇௧௛ spacing-managed aircraft in a string providing the desired 
delivery precision depends on the absolute error of aircraft 0 (a schedule-managed aircraft) at the upstream and 
downstream CMPs, the relative errors of the ݇ − 1 preceding spacing-managed aircraft at the CMP A and B, and the 
relative error of the ݇௧௛ spacing-managed aircraft at CMP A. The absolute errors for aircraft 0 at CMPs A and B are 
distributed as described in the previous simulation example. As discussed in Section III.B, the value of η௞஺ is correlated 
both to delivery errors of aircraft k to the upstream CMP B, and the delivery errors of aircraft 1 through k at CMP A. 
The simulation results below are generated assuming that the mean relative error of aircraft j is correlated with the 
relative error of aircraft j-1 as in section D above.  

To model the behavior of η௞஺ based on η௞஻, the marginal distributions of the relative errors are assumed to be 
Gaussian with a standard deviation of σ௦௣௔஻  at the upstream meter point and σ௦௣௔஺  at the downstream meter point. When 
the required trajectory time is within the trajectory time control window, i.e. when  ൣ−δ୫୧୬஻,஺ < ݀଴஻,஺ + ൫ε଴஺ + ∑ η௜஺௞ିଵ௜ୀଵ ൯ − ൫ε଴஻ + ∑ η௜஻௞௜ୀଵ ൯ < δ୫ୟ୶஻,஺ ൧, 

then it is assumed that the aircraft has sufficient trajectory time control to achieve the spacing goal at CMP B and 
there is no further correlation modeled forη௞஺. That is, η௞஺ is assumed to be Gaussian with standard deviation σ௦௣௔஺  and 
mean  −0.2η௞ିଵ஺ . If the required trajectory time exceeds a bound on the trajectory time control, then relative error η௞஺ 
is assumed to be Gaussian with standard deviation σ௦௣௔஺  and mean determined to be the earliest or the latest that the 

aircraft can arrive at CMP B given the values of ݀଴஻,஺, ε଴஻, ε଴஺,∑ η௜஻௞௜ୀଵ , and ∑ η௜஺௞ିଵ௜ୀଵ . 
 
Figure 13 shows the feasibility probability for k = 5 and given different values of σ௦௣௔஻  and σ௦௖௛஻ . The desired 

delivery accuracies for schedule and spacing management are assumed to be σ௦௖௛஺ = 10 and σ௦௣௔஺ = 5 seconds, 

respectively. The results in Figure 13 are for the trajectory time control values in Case 1 with ݀଴஻,஺= 0 seconds. In this 
case, the limited trajectory time control leads to lower feasibility probabilities, which will result in worse than desirable 
performance at CMP A. Furthermore, Figure 13 indicates that the relative errors at the upstream meter point need to 
be as good or better than the downstream delivery to maximize feasibility. 
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Figure 13. Probability of feasible trajectory time for kth spacing-managed aircraft (trajectory time control values for Case 1). 

 
In comparison, Figure 14 shows the feasibility probability for the Case 2 trajectory time control values with k = 5, σ௦௖௛஺ = 10 and σ௦௣௔஺ = 5 seconds, and ݀ ଴஻,஺ = δ୫ୟ୶஻,஺ /4 seconds. The larger trajectory time control increases the probability 

of a feasible trajectory time, but also enables some portion of the trajectory time control to be allocated to delay 
between CMPs B and A. However, Figure 13 also shows that the upstream delivery precision should be close to the 
desired delivery precision at the downstream point. 

 

 
Figure 14. Probability of feasible trajectory time for kth spacing-managed aircraft (trajectory time control values for Case 2). 

 

VI. Conclusion 
We extended the results of Ref. [Levitt13] to include mixed equipage operations and to apply generally to a set of 

Controlled Meter Points with corresponding aircraft in sequence. The relationships derived between the fundamental 
quantities—such as delay, trajectory times, and delivery errors—reveal important aspects of the performance of 
integrated operations. This work furthers the understanding of such operations and future development will help guide 
how they are constructed, adapted, and managed. 

In next steps, we will explore the hypotheses on correlation between delivery errors and delay. From this, the 
distributions of the random variables will be modeled and  fast-time simulation may be used to define and validate the 
curves. We will then apply the analysis to a network of CMPs at an airport, starting at the runway and working 
backwards to the En-Route Meter Point to determine delivery precision and delay requirements for the airspace. This 
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analysis will also reveal other aspects of adaptation that should be considered, such as the dependency of delay 
allocation to the current wind conditions. 
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