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Abstract

Recent work has provided a set of necessary and sufficient conditions for
identifiability of additive step faults (e.g., lock-in-place actuator faults,
constant bias in the sensors) using state augmentation. This paper ex-
tends these results to an important class of faults which may affect linear,
time-invariant systems. In particular, the faults under consideration are
those which vary with time and affect the system dynamics additively.
Such faults may manifest themselves in aircraft as, for example, control
surface oscillations, control surface runaway, and sensor drift. The set of
necessary and sufficient conditions presented in this paper are general,
and apply when a class of time-varying faults affects arbitrary combina-
tions of actuators and sensors.

The results in the main theorems are illustrated by two case stud-
ies, which provide some insight into how the conditions may be used
to check the theoretical identifiability of fault configurations of interest
for a given system. It is shown that while state augmentation can be
used to identify certain fault configurations, other fault configurations
are theoretically impossible to identify using state augmentation, giving
practitioners valuable insight into such situations. That is, the limita-
tions of state augmentation for a given system and configuration of faults
are made explicit. Another limitation of model-based methods is that
there can be large numbers of fault configurations, thus making identifi-
cation of all possible configurations impractical. However, the theoretical
identifiability of known, credible fault configurations can be tested using
the theorems presented in this paper, which can then assist the efforts
of fault identification practitioners.
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1 Introduction

1.1 Background

In this paper, the term fault denotes a state in a dynamical system,
which may result in a malfunction or failure of the system [1]. A failure
is either an intermittent or permanent interruption of a system’s ability
to fulfill a desired function [2]. In dynamical systems with actuators and
sensors, faults in these components may lead to failures characterized by,
for example, instability and loss of control.

In domains such as civil aviation and space operations, such actuator
and sensor faults can have particularly serious implications for safety and
reliability. For example, actuator faults such as rudder runaway have
been implicated in multiple aviation incidents (for example, see [3] and
[4]). Other actuator faults such as undesired control surface oscillations
(e.g., the oscillatory failure case) can increase the structural loads on
an aircraft and compromise its structural integrity in flight [5, 6]. As
a further example, sensor-bias faults have contributed to the failure of
missions such as NASA’s Demonstration of Autonomous Rendezvous
Technology (DART) [7]. Many more examples of aviation incidents and
accidents where actuator or sensor faults were implicated as contributing
factors can be found in [8].

In the aerospace industry, safety and reliability concerns associated
with actuators and sensors are primarily addressed through techniques
based on hardware redundancy [9, 10]. The counterpart to hardware
redundancy is generally referred to as analytical redundancy, a broad
class of techniques which make use of mathematical models of a system
to detect and identify actuator and sensor faults. Such model-based
fault detection and identification (FDI) methods have received significant
attention in the literature over the last several decades. For surveys on
a variety of model-based FDI techniques see [11–14].

The model-based technique investigated in this paper uses multiple
models, where each model corresponds to the nominal system state aug-
mented by a set of fault configurations of interest. Typically, a bank of
detection filters is used to estimate the present state of the aircraft, and
multiple-hypothesis testing determines if a fault has occurred [15–17].
Several authors have proposed using state augmentation, e.g., [16–21].
However, a key requirement for state augmentation to be effective is that
each model, or fault configuration of interest, be identifiable [22].

Identification of constant bias-type faults was initially treated in [23].
The preliminary conditions for identifiability of these faults in arbitrary
combinations of actuators and sensors were presented in [17], and a sub-
sequent, detailed analysis was given in [24]. A complete characterization
of a set of necessary and sufficient conditions, including numerical ex-
amples, can be found in [22]. This paper extends these results to the
broader class of additive, time-varying faults, which includes faults such
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as the sinusoidal and ramp faults, while still remaining applicable to the
step fault.

This paper treats time-varying faults as outputs of exogenous, lin-
ear, time-invariant (LTI) systems which then additively affect a given
LTI system of interest. In particular, a set of necessary and sufficient
conditions for identifiability of additive, time-varying faults affecting ar-
bitrary combinations of (1) actuators only, (2) sensors only, and (3)
combinations of actuators and sensors are presented. These conditions
fully characterize the identifiability of such faults using state augmenta-
tion, which provides designers a deeper understanding of the theoretical
reasons for non-identifiability and have practical implications on the lim-
itations of using state augmentation alone, especially when the theory
shows a fault configuration of interest is not identifiable by state aug-
mentation. The approach in this paper is the investigation of the causes
of non-identifiability beyond the level of (numerical or analytical) rank
tests, i.e., it seeks to provide exactly the reason(s) why such rank tests
will fail for a particular system and set of faults.

The remaining sections of this paper are organized as follows: Section
2 gives a short review of observability, detectability, and the Rosenbrock
System Matrix; Section 3 develops a state-space representation for time-
varying actuator and sensor faults using state augmentation; Section 4
presents a set of necessary and sufficient conditions for identifiability
of additive, time-varying faults affecting arbitrary combinations of ac-
tuators, sensors, or both, where examples using a practical system are
included; Section 5 presents the conclusions of the research and sugges-
tions for future directions.

2 A Short Review of Key Concepts

This section provides a short review of the concepts of observability,
detectability, and the Rosenbrock System Matrix (RSM).

2.1 A Review of Observability and Detectability

First, consider a system having state-space representation given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1)

y(t) = Cx(t) +Du(t), (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, and D ∈ Rl×m. Furthermore,
x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rl are the state, input, and output
vectors, respectively. In many practical systems, certain states may not
be directly measurable, so state estimators (i.e., observers) are used to
infer the unknown state(s) by making use of the output vector y(t) and
the input vector u(t). For an observer to be effective, a system must
generally be observable, or at the very least detectable.
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A system is said to be observable if there exists a time t1 > 0 such
that any initial state x0 can be uniquely determined from y(t), t ∈ [0, t1]
[25]. Two equivalent tests for observability given in [26] are the Popov-
Belevitch-Hautus (PBH) rank test and the PBH eigenvector test.

Test 1. PBH Rank Test. The system given by Equations (1) and (2) is
observable if and only if for every eigenvalue λi of A, that is for every
λi ∈ Λ(A), where Λ(A) denotes the set of eigenvalues of A,

rank

[
λiI −A
C

]
= n

for i = 1, 2, . . . , n.

Test 2. PBH Eigenvector Test. The system given by Equations (1)
and (2) is observable if and only if there does not exist a nonzero γ ∈ Cn
such that [

λiI −A
C

]
γ = 0

for i = 1, 2, . . . , n. That is, the pair (C,A) is observable if and only if
Cγ 6= 0 for every eigenvector γ of A.

If either Test 1 or 2 fails for any value λi, i = 1, . . . , n, then λi is an
eigenvalue corresponding to an unobservable mode of A. An eigenvalue
λ is an open left-half plane (OLHP) eigenvalue if and only if Re(λ) < 0.

Let Λu(A) denote the set of eigenvalues that lie on the closed right
half plane. The system given by Equations (1) and (2) is said to be de-
tectable if and only if all of the eigenvalues associated with unobservable
modes of A lie in the OLHP [25]. Thus, a system is detectable if and only
if either Test 1 or 2 is satisfied for {λj : Re(λj) ≥ 0}, j = 1, 2, . . . , k,
where k ≤ n [25].

Since observability requires that Test 1 be satisfied for all eigenvalues
of A, observability implies detectability. However, because detectabil-
ity requires only those eigenvalues with non-negative real parts corre-
spond to observable modes of A, an unobservable system may still be
detectable. Finally, a system may be detectable, but if it has eigenvalues
with negative real parts associated with unobservable modes of A, the
system is still not observable. Thus, observability implies detectability,
but detectability does not imply observability.

2.2 Deriving the Rosenbrock System Matrix

The Rosenbrock System Matrix (RSM) and some of its important prop-
erties are used in the proofs of conditions for time-varying actuator and
sensor fault identifiability. The derivation of the RSM follows.

Consider the system given by Equations (1) and (2). This system
can be represented in the frequency domain by its one-sided Laplace
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transformation as

sx̂(s)− x0 = Ax̂(s) +Bû(s), (3)

ŷ(s) = Cx̂(s) +Dû(s), (4)

where x̂(s), û(s), and ŷ(s) are the Laplace transforms of the state, input,
and output vectors, respectively. Furthermore, x0 is the initial condition
at time t = 0, that is, x(0). Here, the one-sided Laplace transform, Υ̂(s),
of a function Υ(t) is defined as

Υ̂(s) =

∫ ∞
0−

Υ(t)e−st dt. (5)

Now, the representation given by Equations (3) and (4) can be expressed
as [

sI −A −B
C D

] [
x̂(s)
û(s)

]
=

[
x0

ŷ(s)

]
. (6)

The coefficient matrix in (6) is referred to as the Rosenbrock System
Matrix of the system having realization {A,B,C,D}.

3 Time-Varying Fault Modeling

This following development gives a representation for time-varying faults
by treating them as outputs of an exogenous LTI system driven only by
initial conditions. It is assumed throughout that the fault of interest has
a one-sided Laplace transform as defined by Equation (5).

3.1 A Representation for Time-Varying Faults

Let f(t) be a vector of faults. Such faults may be modeled as the output
of an LTI system having state-space representation given by

ẋf (t) = Afxf (t), xf (0) = xf0 , (7)

f(t) = Cfxf (t), (8)

where Af ∈ Rnf×nf , Cf ∈ Rµ×nf , xf (t) ∈ Rnf , and f(t) ∈ Rµ. It is
assumed that Cf has full row rank, that is, rank(Cf ) = µ. Taking the
Laplace transform of Equations (7) and (8), and solving for x̂f (s) in
Equation (7) gives

x̂f (s) = (sI −Af )−1xf0 , (9)

f̂(s) = Cf x̂f (s). (10)

Now, substituting Equation (9) into Equation (10) gives

f̂(s) = Cf (sI −Af )−1xf0 .

Thus, the frequency domain representation of the fault vector is the
zero-input response of the system given by Cf (sI −Af )−1xf0 .
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3.2 Actuator Fault Modeling

Consider a system given by Equations (1) and (2). If mk of the m actu-
ators are affected by additive, time-varying faults, the system dynamics
can be represented as

ẋ(t) = Ax(t) +
∑
j∈Fak

bjuj(t) +
∑
j /∈Fak

bjuj(t) + ωp(t), (11)

= Ax(t) +B
k
uk(t) +Bkuk(t) + ωp(t), (12)

y(t) = Cx(t) + ωs(t), (13)

where B
k ∈ Rn×mk , Bk ∈ Rn×(m−mk), uk (t) ∈ Rmk , uk(t) ∈ Rm−mk ,

ωp(t) ∈ Rn, and ωs(t) ∈ Rl. Furthermore, Fak in Equation (11) denotes
the set of indices corresponding to the failed actuators, uj(t) ∈ R denotes
a faulty input associated with a faulty actuator at time t, uj(t) ∈ R de-
notes a non-faulty input associated with a non-faulty actuator at time
t, and bj ∈ Rn denotes the particular column of B (see Equation (1))
affected by the corresponding faulty or non-faulty actuator. Thus, Equa-
tion (12) represents the system subject to a particular actuator fault
configuration.

Now consider the state-space representation for time-varying faults
given by Equations (7) and (8). Observe that such a representation may
model time-varying faults in the actuators, resulting in a system with
fault state vector, xa(t), and output uk(t), i.e.,

ẋa(t) = Aaxa(t) + ωpa(t), xa(0) = xa0 , (14)

uk(t) = Caxa(t) + ωsa(t), (15)

where Aa ∈ Rna×na , Ca ∈ Rmk×na , and xa(t) ∈ Rna . Additionally,
terms for the exogenous actuator fault process and measurement noise,
i.e., ωpa(t) ∈ Rna and ωsa(t) ∈ Rmk , respectively, have been added.
These terms allow for the modeling of faults which might not manifest
themselves as entirely deterministic representations in practice. Now,
Equations (12)-(15) can be combined to represent the interconnected
system. Thus, the state-augmented system can be represented as[

ẋ(t)
ẋa(t)

]
=

[
A B

k
Ca

0 Aa

]
︸ ︷︷ ︸

Akξ

[
x(t)
xa(t)

]
︸ ︷︷ ︸

ξk(t)

+

[
Bk

0

]
︸ ︷︷ ︸

Bkξ

uk(t)

+

[
B
k
ωsa(t) + ωp(t)
ωpa(t)

]
︸ ︷︷ ︸

ωkξp (t)

, (16)

y(t) =
[
C 0

]︸ ︷︷ ︸
Ckξ

[
x(t)
xa(t)

]
+ ωs(t), (17)
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where, after making the appropriate substitutions indicated by the
braces, the system above can be expressed more compactly as

ξ̇k(t) = Akξξ
k(t) +Bk

ξ u
k(t) + ωkξp(t), (18)

y(t) = Ckξ ξ
k(t) + ωs(t). (19)

Equations (18) and (19) model the general case of arbitrary, additive,
time-varying actuator faults treated in this paper. In the case of step
faults, Aa = 0mk×mk , and Ca = Imk . Thus, Equation (16) reduces to[

ẋ(t)
ẋa(t)

]
=

[
A B

k

0 Imk

] [
x(t)
xa(t)

]
+

[
Bk

0

]
uk(t)

+

[
B
k
ωsa(t) + ωp(t)
ωpa(t)

]
, (20)

which is identical to Equation (4) in [22], where the case of actuator step
faults was considered.

3.3 Sensor Fault Modeling

Consider again a system given by Equations (1) and (2). If q of the l
sensors for the given system are affected by additive, time-varying faults,
the system dynamics can be represented as

ẋ(t) = Ax(t) +Bu(t) + ωp(t), (21)

y(t) =

[
y1(t)
y2(t)

]
, (22)

= Cx(t) +

[
0

ys(t)

]
+ ωs(t), (23)

where A,B,C, x(t), u(t), y(t), ωp(t), and ωs(t) are as previously defined,
and y1(t) ∈ Rl−q and y2(t) ∈ Rq represent the vectors containing the
fault-free sensor measurements and the faulty sensor measurements, re-
spectively. Finally, ys(t) ∈ Rq is the vector containing the additive time-
varying sensor faults affecting the q faulty sensors.

Furthermore, consider the fault dynamics represented by Equa-
tions (7) and (8). Such a representation can be modified to address
the specific case of sensor faults as

ẋs(t) = Asxs(t) + ωps(t), xs(0) = xs0 , (24)

ys(t) = Csxs(t) + ωss(t), (25)

where As ∈ Rns×ns , Cs ∈ Rq×ns , xs(t) ∈ Rns , ys(t) ∈ Rq, and ωps(t) ∈
Rns and ωss(t) ∈ Rq are exogenous sensor fault process and measurement
noise, respectively. Observe that Equations (24) and (25) model the
sensor faults present in Equation (23). Thus, Equations (21) and (23)
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can be viewed as an LTI system with q of its outputs affected by time-
varying sensor faults given by the output of the exogenous LTI system in
Equations (24) and (25). The interconnected system can be represented

in augmented state-space form by letting ωs(t) =
[
ωTs,1(t) ωTs,2(t)

]T
and by substituting Equation (25) into Equation (23) as follows

[
ẋ(t)
ẋs(t)

]
=

[
A 0n×ns

0ns×n As

]
︸ ︷︷ ︸

Aη

[
x(t)
xs(t)

]
︸ ︷︷ ︸

η(t)

+

[
B

0ns×m

]
︸ ︷︷ ︸

Bη

u(t) +

[
ωp(t)
ωps(t)

]
︸ ︷︷ ︸

ωηp (t)

,

(26)

y(t) =

[
C1 0(l−q)×n
C2 Cs

]
︸ ︷︷ ︸

Cη

[
x(t)
xs(t)

]
+

[
ωs1(t)

ωs2(t) + ωss(t)

]
︸ ︷︷ ︸

ωηs (t)

, (27)

where by making the appropriate substitutions indicated by the braces,
the system above can be expressed more compactly as

η̇(t) = Aηη(t) +Bηu(t) + ωηp(t), (28)

y(t) = Cηη(t) + ωηs(t). (29)

Equations (28) and (29) model the general case of additive, time-varying
sensor faults treated in this paper.

In the case of sensor step faults, As = 0q×q, and Cs = Iq. Thus, when
all of the sensor faults are step faults, Equations (26) and (27) reduce to

[
ẋ(t)
ẋs(t)

]
=

[
A 0
0 0

] [
x(t)
xs(t)

]
+

[
B
0

]
u(t) +

[
ωp(t)
ωps(t)

]
, (30)

y(t) =

[
C1 0
C2 Iq

] [
x(t)
xs(t)

]
+

[
ωs1(t)

ωs2(t) + ωss(t)

]
. (31)

Equations (30) and (31) are identical to Equations (17) and (18) in [22],
where the case of sensor step faults was considered.

3.4 Simultaneous Actuator and Sensor Fault Modeling

Consider the case of time-varying actuator faults represented by Equa-
tions (14) and (15) and the case of time-varying sensor faults represented
by Equations (24) and (25). Now, in order to represent simultaneous,
additive, actuator and sensor faults, it is sufficient to augment the states

in the form
[
x(t)T xa(t)

T xs(t)
T
]T

. Thus, when q of the l sensors
and mk of the m actuators are affected by time-varying faults, the aug-
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mented system can be expressed as ẋ(t)
ẋa(t)
ẋs(t)

 =

 A B
k
Ca 0n×ns

0na×n Aa 0na×ns
0ns×n 0ns×na As


︸ ︷︷ ︸

Aϕ

 x(t)
xa(t)
xs(t)


︸ ︷︷ ︸

ϕ(t)

+

 Bk

0
0


︸ ︷︷ ︸

Bϕ

uk(t)

+

 B
k
ωsa(t) + ωp(t)
ωpa(t)
ωps(t)


︸ ︷︷ ︸

ωϕp (t)

, (32)

[
y1(t)
y2(t)

]
=

[
C1 0(l−q)×na 0(l−q)×ns
C2 0q×na Cs

]
︸ ︷︷ ︸

Cϕ

 x(t)
xa(t)
xs(t)



+

[
ωs,1(t)

ωs,2(t) + ωss(t)

]
︸ ︷︷ ︸

ωϕs (t)

, (33)

where after making the appropriate substitutions indicated by the braces,
the system above can be expressed compactly as

ϕ̇(t) = Aϕϕ(t) +Bϕu
k(t) + ωϕp(t), (34)

y(t) = Cϕϕ(t) + ωϕs(t). (35)

Equations (34) and (35) model the general case of simultaneous, additive,
time-varying actuator and sensor faults treated in this paper.

For the case when all actuator and sensor faults are step faults, Aa =
0mk×mk , As = 0q×q, Ca = Imk , and Cs = Iq. Then, Equations (32)
and (33) reduce to ẋ(t)

ẋa(t)
ẋs(t)

 =

 A B
k

0n×q
0mk×n 0mk×mk 0mk×q
0q×n 0q×mk 0q×q

 x(t)
xa(t)
xs(t)

+

 Bk

0
0

uk(t)
+

 B
k
ωsa(t) + ωp(t)
ωpa(t)
ωps(t)

 , (36)

[
y1(t)
y2(t)

]
=

[
C1 0(l−q)×mk 0(l−q)×q
C2 0q×mk Iq

] x(t)
xa(t)
xs(t)


+

[
ωs,1(t)

ωs,2(t) + ωss(t)

]
. (37)

Equations (36) and (37) are identical to Equations (31) and (33) pre-
sented in [22], where the case of simultaneous actuator and sensor step
faults was considered.
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4 Conditions for Identifiability of Time-Varying
Actuator and Sensor Faults

The main results of this paper are developed in this section, that is, a set
of necessary and sufficient conditions for the identifiability of additive,
time-varying faults affecting combinations of

(1) actuators only,

(2) sensors only, and

(3) actuators and sensors, simultaneously.

The conditions are presented as three separate theorems accompanied
by a proof for each of the indicated fault configurations. It is further
shown through corollaries that, when all of the faults are step faults, a
set of necessary and sufficient conditions for items (1), (2), and (3) above
reduce to those presented in [22].

Mathematically, a fault is identifiable if the augmented system is
detectable. However, in some practical applications, observability is pre-
ferred [22]. This paper presents conditions for both detectability and
observability, where satisfying either property shall imply identifiability,
in the weak and the strong sense, respectively. Before the conditions
for identifiability and the associated proofs are given, several relevant
assumptions are addressed.

4.1 Assumptions

It is assumed in the proofs in this section that the following rank condi-
tions are satisfied:

(A1) rank(B
k
) = mk, where B

k
corresponds to the columns of B asso-

ciated with the mk faulty actuators,

(A2) rank(C) = l,

(A3) rank(Ca) = mk, where Ca represents the output matrix associ-
ated with an exogenous LTI system which generates the mk time-
varying actuator fault signals,

(A4) rank(Cs) = q, where Cs represents the output matrix associated
with an exogenous LTI system which generates the q time-varying
sensor fault signals,

(A5) rank(C1) = l−q, where C1 corresponds to the rows of C associated
with the l − q non-faulty sensors, and

(A6) rank(C2) = q, where C2 corresponds to the rows of C associated
with the q faulty sensors.
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Assumptions (A1) and (A2) are taken directly from [22], that is: (1) it
is assumed that inputs associated with linearly dependent columns of

B
k

have been aggregated and that B
k

is full column rank, and (2) it
is assumed that outputs associated with linearly dependent rows of C
have been aggregated and that C is full row rank. If (A1) or (A2) do not

hold, faults associated with linearly dependent columns of B
k
, or linearly

dependent rows of C will not be uniquely identifiable. Similarly, As-
sumptions (A3) and (A4) follow from the representation of time-varying
actuator and sensor faults shown in Sections 3.2 and 3.3, respectively.
Finally, Assumptions (A5) and (A6) follow from Assumption (A2).

4.2 Time-Varying Actuator Fault Identifiability

Before the main conditions are provided, a preliminary notation is de-
veloped, and two useful lemmas are provided. First, let Σ(s) denote the
RSM given by [

sI −A −Bk

C 0

]
,

and let Γξ(s) ⊂ Cn+mk denote the right nullspace of Σ(s), where s ∈
C. Furthermore, let Γξmk(s) ⊂ Cmk denote the subspace spanned by

the last mk components of a basis for Γξ(s). The elements of Γξmk(s)
are characterized next in terms of (extended) invariant zeros and input-
zero directions. For a recent treatments of these objects in the context
intended in this paper, see [27].

1. When s is an (extended) invariant zero but not an output-

decoupling zero of Σ(s), then Γξmk(s) = Gξmk(s)∪{0}, where Gξmk(s)
is the set of all input-zero directions of Σ(s),

2. When s is an (extended) invariant zero and an output-decoupling

zero of Σ(s), then Γξmk(s) = Gξmk(s) = {0} is the only input-zero
direction of Σ(s), and

3. When s is not an invariant zero of Σ(s), then Γξmk(s) = Gξmk(s) is
the subspace spanned by all of non-input-zero directions of Σ(s).

Lemma 1. The pair (Ca, Aa) is detectable (observable) if and only if the

pair (B
k
Ca, Aa) is detectable (observable).

Proof. Observe that the pair (B
k
Ca, Aa) is detectable (observable) if and

only if

rank

[
sI −Aa
B
k
Ca

]
= na for s ∈ Λu(Aa) (s ∈ Λ(Aa)),

rank

[
In 0

0 B
k

] [
sI −Aa
Ca

]
= na for s ∈ Λu(Aa) (s ∈ Λ(Aa)).
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By Sylvester’s inequality (see [28]) and Assumptions (A1) and (A3),

rank

[
sI −Aa
Ca

]
≤ rank

[
In 0

0 B
k
Ca

] [
sI −Aa
Ca

]
≤ rank

[
sI −Aa
Ca

]
.

Therefore, rank

[
sI −Aa
B
k
Ca

]
= rank

[
sI −Aa
Ca

]
for s ∈ Λu(Aa) (s ∈

Λ(Aa)), so that the pair (Ca, Aa) is detectable (observable) if and only

if the pair (B
k
Ca, Aa) is detectable (observable).

Lemma 2. The pair (Ckξ , A
k
ξ ) is detectable (observable) if and only if all

of the following conditions are satisfied:

(i) the pair (C,A) is detectable (observable),

(ii) (Ca, Aa) is detectable (observable), and

(iii) for (λa, v) an (eigenvalue, eigenvector) pair of Aa with λa ∈
Λu(Aa) (λa ∈ Λ(Aa)), Cav /∈ Γξmk(λa).

Proof. Applying the PBH eigenvector test, the pair (Cξ, Aξ) is detectable
(observable) if and only if sI −A −Bk

Ca
0na×n sI −Aa
C 0l×na

[ ζ
v

]
= 0

is satisfied only by the trivial solution (that is,
[
ζT vT

]T
= 0) for s ∈

Λu(A) ∪ Λu(Aa) (for s ∈ Λ(A) ∪ Λ(Aa)). The first n columns of the
PBH test matrix are independent for s ∈ Λu(A) (for s ∈ Λ(A)) if and
only if the pair (C,A) is detectable (observable). The last na columns
are independent for s ∈ Λu(Aa) (for s ∈ Λ(Aa)) if and only if the pair
(Ca, Aa) is detectable (observable) (see Lemma 1). For s /∈ Λ(Aa) the
last na columns are independent of the first n columns. For s = λa ∈
Λu(Aa) (s = λa ∈ Λ(Aa)) the last na columns are independent of the
first n columns if and only if[

λaI −A −Bk

C 0

]
︸ ︷︷ ︸

Σ(λa)

[
ζ
Cav

]
= 0 (38)

does not have a nontrivial solution for (λa, v) an (eigenvalue, eigenvector)

pair of Aa, that is, if and only if Cav /∈ Γξmk(λa).

The following theorem provides a necessary and sufficient condition for
the identifiability of additive, time-varying actuator-only faults.
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Theorem 1. The pair (Ckξ , A
k
ξ ) is detectable (observable) if and only if

all of the following conditions are satisfied:

(i) for (λa, v) an (eigenvalue, eigenvector) pair of Aa with λa ∈
Λu(Aa) (λa ∈ Λ(Aa)), when l < mk and when λa is not an in-

variant zero of Σ(λa), then Cav /∈ G
ξ
mk

(λa),

(ii) the pair (C,A) is detectable (observable),

(iii) the pair (Ca, Aa) is detectable (observable), and

(iv) for (λa, v) an (eigenvalue, eigenvector) pair of Aa with λa ∈
Λu(Aa) (λa ∈ Λ(Aa)), when λa is an invariant zero of Σ(λa), then

Cav /∈ Gξmk(λa).

Proof. The pair (Ckξ , A
k
ξ ) is detectable (observable) if and only if Con-

ditions (i)-(iii) of Lemma 2 are satisfied. Thus, Conditions (ii) and (iii)
of Theorem 1 are established. It remains only to be shown that Condi-
tions (i) and (iv) of Theorem 1 now hold if and only if Condition (ii) of
Lemma 2 holds. Now, suppose that Conditions (i) and (iv) of Theorem 1
hold and that Condition (iii) of Lemma 2 does not. Then Equation (38)
has a nontrivial solution. The following two possible cases will be con-
sidered and shown to result in a contradiction:

1. rank{Σ(λa)} < rank{Σ(s)}, and

2. rank{Σ(λa)} = rank{Σ(s)} with

(a) rank{Σ(s)} = n+ min{mk, l}, or

(b) rank{Σ(s)} < n+ min{mk, l}.

Case 1 leads to a nontrivial solution if and only if (λa, Cav) is an (invari-
ant zero, input-zero direction) pair of Σ(λa), a contradiction of Condition

(iv) of Theorem 1, that is, Cav ∈ Gξmk(λa). Case 2(a) leads to a nontriv-

ial solution if and only if l < mk and Cav ∈ G
ξ
mk

(λa), a contradiction of
Condition (i) of Theorem 1. Case 2(b) implies that Σ(s) is degenerate,
that is, every λa ∈ C is an invariant zero Σ(s). Thus, Case 2(b) leads

to a nontrivial solution if and only if Cav ∈ Gξmk(λa), a contradiction of
Condition (iv) of Theorem 1. Thus, Conditions (i)-(iv) of Theorem 1 are
necessary and sufficient for identifiability of the pair (Ckξ , A

k
ξ ).

The following corollary considers the case when the geometric multi-
plicity of λa is equal to na. One such instance is when Aa = 0na×na , (a
step fault in na = mk actuators).

Corollary 1. Let λa ∈ Λu(Aa) (λa ∈ Λ(Aa)) have geometric multiplicity
γa. If γa = na then Condition (iii) in Lemma 2 becomes

(i) l ≥ mk, and
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(ii) Σ(s) has no invariant zeros at s = λa.

Proof. Let g ∈ Γξmk(λa), and consider whether there exists v ∈ Rna
such that Cav = g, where v is an eigenvector of Aa in the associated
eigenspace W , with dim(W ) = γa. Next, observe that Ca : Rna → Rmk
is a surjective linear transformation since Ca has full row rank, that is,
rank(Ca) = mk (see Assumption A3). Therefore, for any g ∈ Rmk , there
always exists a vector τ ∈ Cna such that Caτ = g. Now, when γa = na,
W = Cna , and any nonzero vector in Cna is an eigenvector. Thus, for
any nonzero solution τ , let v = τ , and it follows that Cav = g. Therefore,
when λa has geometric multiplicity γa = na, Σ(λa) must have full column

rank so that Γξmk(λa) = {0}, implying that l ≥ mk and that λa is not an
invariant zero of Σ(s)

Corollary 2. For the special case when all of the faults are constant
biases, that is, a step fault in each of the mk faulty actuators, Conditions
(i)-(iv) of Theorem 1 reduce to:

(i) l ≥ mk,

(ii) the pair (C,A) is observable, and

(iii) Σ(s) has no invariant zeros at s = 0.

Proof. First, observe that for step faults, na = mk, Aa = 0na×na and
Ca = Ina×na . Thus, Aa has one distinct eigenvalue at zero with geometric
multiplicity na, that is, any nonzero vector v ∈ Rna is an eigenvector
of Aa, and by Corollary 1, Conditions (i) and (iii) of Corollary 2 are
established. Furthermore, since (Ca, Aa) is observable, Condition (iii) of
Theorem 1 is not needed. The detectability (observability) requirement
for the pair (C,A) is now strictly an observability requirement, since
s = 0 does not lie in the open, left-half plane, thus establishing Condition
(ii) of Corollary 2.

Remark 1. The conditions in Corollary 2 are identical to the conditions
for constant, bias-type actuator fault identifiability presented in Theorem
1 in [22].

Example 1. Consider the fourth-order, linearized longitudinal dynam-
ics model used in [17] and fully examined for additive, bias-type fault
identifiability in [22]. The model represents a large, transport aircraft in
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wings-level, cruise condition and is given by

A =


−0.6803 0.0115 −1.0490 0
−0.0026 −0.0062 −0.0815 −0.1709
1.0050 −0.0344 −0.5717 0

1 0 0 0

 ;

B =


−44.5192 0
−11.4027 0
0.88254 1.3287
−0.0401 0

 . (39)

The state vector consists of the pitch rate, forward speed, angle of attack,

and pitch angle, that is, x(t) =
[
q(t) v(t) α(t) θ(t)

]T
. The control

vector consists of the elevator deflection and engine thrust, that is, u(t) =[
ue(t) uT (t)

]T
.

Suppose that one must identify sinusoidal faults having frequency
ω = 1 radian per second in the elevator actuator and bias-type faults
having any amplitude in the thrust actuator (i.e., a “stuck actuator”
fault). Observe that there are 45 possible fault configurations for the
particular faults of interest, where either or both actuators are faulty
(
∑4

kl=1

(
4
k

)
sensor configurations, where for each configuration there are

3 actuator fault configurations possible). Out of these, there are two
cases of non-identifiability, both due to violation of Condition (iv) of
Theorem 1. The discussion of these two cases follows.

Case 1: y(t) = q(t) and both actuators are affected by their respec-
tive fault type of interest, λa = 0 is both an eigenvalue of Aa and an

invariant zero of the triple (C,A,B
k
). Furthermore, it can be verified

that
{[

1 0
]T
,
[

0 1
]T}

is a basis for Gξmk , therefore for any nonzero

vector Cav in R2 it follows that Cav ∈ Gξmk .

Case 2: y(t) = q(t) and the thrust actuator becomes stuck. Again
λa = 0 is both an eigenvalue of Aa and an invariant zero of the triple

(C,A,B
k
), and in this case it can further be verified that for any Cav ∈

R, Cav ∈ Gξmk .

An interesting observation is that in three of the 45 possible fault
cases, both actuators are faulty and l < mk, yet the faults are still iden-
tifiable, that is, all of the conditions of Theorem 1 hold. This situation
is different from the case when all the faults are “stuck actuators” as
described in [22], where it is required that l ≥ mk.

4.3 Time-Varying Sensor Fault Identifiability

This section presents conditions for time-varying sensor fault identifiabil-
ity. Consider the augmented system given by Equations (26) and (27),
the model of an arbitrary LTI system subject to time-varying sensor
faults. The identifiability of such a fault requires that the pair (Cη, Aη)
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be detectable (observable). The following theorem gives a necessary and
sufficient condition for identifiability of time-varying sensor faults.

Theorem 2. The pair (Cη, Aη) is detectable (observable) if and only if
all of the following conditions are satisfied:

(i) the pair (C,A) is detectable (observable),

(ii) the pair (Cs, As) is detectable (observable), and

(iii) when (λs, ζ) and (λs, ψ) are eigenvalue, eigenvector pairs of A and
As, respectively, and λs is not a detectable (observable) eigenvalue
of the pair (C1, A), then C2ζ 6= αCsψ, where α ∈ C.

Proof. The pair (Cη, Aη) is detectable (observable) if and only if

rank



sI −A 0n×ns
0ns×n sI −As
C1 0(l−q)×ns
C2 Cs


 = n+ ns

for s ∈ Λu(A) ∪ Λu(As) (for s ∈ Λ(A) ∪ Λ(As)). The first n columns
of the PBH test matrix are linearly independent for all s ∈ Λu(A) (for
all s ∈ Λ(A)) if and only if (C,A) is detectable (observable). The last
ns columns are linearly independent for s ∈ Λu(As) (for s ∈ Λ(As)) if
and only if (Cs, As) is detectable (observable). Furthermore, whenever
s /∈ Λ(A)∪Λ(As) the last ns columns are linearly independent of the first
n columns. Now, let s = λs ∈ Λu(As)∪Λu(A) (s = λs ∈ Λ(As)∪Λ(A)).
The last ns columns are linearly independent from the first n columns if
and only if 

λsI −A 0n×ns
0ns×n λsI −As
C1 0(l−q)×ns
C2 Cs

[ ζ
ψ

]
= 0 (40)

only for
[
ζT ψT

]T
= 0. Now, suppose there exists

[
ζT ψT

]T 6= 0
such that (40) is satisfied. Then

(λsI −A)ζ = 0 (41)

(λsI −As)ψ = 0 (42)

C1ζ = 0 (43)

C2ζ + Csψ = 0, (44)

must hold. Since the pair (C,A) is detectable (observable) ψ 6= 0, and
since the pair (Cs, As) is detectable (observable) ζ 6= 0. Observe that
Equation (42) is satisfied since ψ is nonzero and, thus, an eigenvector of
As associated with λs. The remaining equations may be expressed as[

λsI −A
C1

]
ζ = 0, (45)

C2ζ + Csψ = 0. (46)
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If λs is not a detectable (observable) eigenvalue of (C1, A) then Equa-
tion (45) is satisfied. Now, Equation (46) is satisfied if and only if
C2ζ 6= αCsψ, where α ∈ C. Thus, Conditions (i)-(iii) of Theorem 2
are necessary and sufficient for identifiability of the pair (Cη, Aη).

The following corollary considers the special case when λs has geo-
metric multiplicity equal to ns.

Corollary 3. Let λs ∈ Λu(As) ∩ Λu(A) (s ∈ Λ(As) ∩ Λ(A)) have geo-
metric multiplicity equal to γs, and let ψ be an eigenvector of As from
the associated eigenspace V corresponding to the eigenvalue λs. Observe
that dim(V ) = γs. If γs = ns then Condition (iii) in Theorem 2 becomes

(i) the pair (C1, A) is detectable (observable) with respect to s = λs.

Proof. Observe that Cs : Rns → Rq is a surjective linear transformation
since rank(Cs) = q (see Assumption (A4)). Therefore, there always
exists a vector, p ∈ Cns , such that Csp = −C2ζ. Now, when γs = ns,
V = Cns , and any vector in Cns is an eigenvector. Then, for any solution
p let ψ = p, and it follows that Csψ = −C2ζ. That is, whenever γs = ns,
Equation (46) is satisfied. Thus, it is required that λs be a detectable
(observable) eigenvalue of the pair (C1, A).

Corollary 4. For the special case when all of the faults are constant
biases, that is, step faults, Conditions (i)-(iii) in Theorem 2 reduce as
follows:

(i) the pair (C,A) is observable, and

(ii) s = 0 corresponds to an observable mode of the pair (C1, A).

Proof. First, observe that Condition (i) of Theorem 2 is identical to Con-
dition (i) of Corollary 4. Now, As = 0 and Cs = I. Thus, Condition (ii)
of Theorem 2 is no longer necessary, since the pair (Cs, As) is observable.
Furthermore, note that the only eigenvalue of Aa is s = 0, having alge-
braic and geometric multiplicity q = ns, and by Corollary 3, Condition
(ii) of Corollary 4 is established, that is, if (C1, A) is not observable when
s = 0 then the pair is not detectable.

Note that Conditions (i) and (ii) of Corollary 4 are exactly those
presented in Theorem 2 of [22] for the sensor step fault case.

Example 2. Consider the 6th-order linearized longitudinal dynamics for
the Cranfield A3 Observer, a fixed-wing research UAV presented in [29].
The UAV is in cruise condition, and the airframe is in a gust-insensitive
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configuration. The dynamics are given by

A =



−0.146 −0.016 0.557 −9.809 0 0.001
−0.63 −4.487 34.57 0.161 0 0
0.001 0.039 −0.894 0 0 0

0 0 1 0 0 0
−0.016 −1 0 35.2 0 0
665.7 −6.89 0 0 0 −8.57

 ;

B =



0 −1.368
0 −19.96
0 −15.96
0 0
0 0

45910 0

 ,

and the output is specified as

C =


1 −0.014 0.019 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.984 0
0 0 0 0 0 1

 .

The state vector consists of the forward speed, vertical speed,
pitch rate, pitch angle, altitude, and engine rpm, that is, x(t) =[
v(t) w(t) q(t) θ(t) h(t) NE(t)

]T
. The control vector consists of

engine thrust and elevator deflection, that is, u(t) =
[
uT (t) ue(t)

]T
.

The output vector consists of the measured speed error, pitch rate,
pitch angle, perturbed altitude, and engine rpm, that is, y(t) =[
ve(t) q(t) θ(t) he(t) NE(t)

]T
. It can be verified that Λ(A) =

{0,−4.8345, 1.9641 · 10−1,−4.0534 · 10−1 ± i2.0428 · 10−1,−8.6482} and
that the system realization {A,B,C, 0} is minimal, that is, the system
is both controllable and observable.

Suppose that it is of interest to identify drift faults in the sensors,
which may be modeled as ramp faults. In the absence of actuator faults,
there are 31 possible sensor fault configurations, excluding the fault-
free case. Of these, there are 16 cases of non-identifiability, and all 16
cases of non-identifiability are associated with at least a drift fault in the
perturbed altitude measurement. Furthermore, any drift faults in any
combination of the other measurements are always identifiable, provided
that the altitude measurement is not faulty.

It can be verified that the pairs (C,A) and (Cs, As) are always observ-
able. Furthermore, it can be verified that zero is a common eigenvalue
of A and any form of As for the fault configurations of interest, and that
the eigenvalue at zero corresponds to an unobservable mode of the pair
(C1, A) whenever y4(t) is faulty. The test of whether or not αCsψ = C2ζ
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for α ∈ C is unnecessary, since the eigenspace of As associated with
λs = 0 is such that there always exists ψ which satisfies the equality.
Thus, for the 16 cases of non-identifiability, Condition (iii) of Theorem 2
fails.

4.4 Simultaneous Time-Varying Actuator and Sensor
Fault Identifiability

Before presenting the conditions for identifiability for simultaneous ac-
tuator and sensor faults, a preliminary notation is given. First, let Σ(s)
denote the RSM given by [

sI −A −Bk

C1 0

]
.

Thus, the RSM associated with Σ(s) is to be understood in the context
of the fault configuration of interest, i.e., whether it is of interest to
identify faults in the actuators alone or in combination with sensors.
Furthermore, let Γϕ(s) ⊂ Cn+mk denote the right nullspace of Σ(s),
where s ∈ C, and let Γϕmk(s) ⊂ Cmk denote the subspace spanned by the
last mk components of a basis for Γϕ(s). The elements of Γϕmk(s) may be

characterized similarly to those of Γξmk(s) in Section 4.2, where Gϕmk(s)
corresponds to the input-zero directions, and Gϕmk(s) corresponds to the
non-input-zero-directions.

Theorem 3. The pair (Cϕ, Aϕ) is detectable (observable) if and only if
all of the following are satisfied:

(i) The pair (Ckξ , A
k
ξ ) is detectable (observable),

(ii) The pair (Cη, Aη) is detectable (observable),

(iii) for λa,s ∈ Λu(Aa)∩Λu(As) (λa,s ∈ Λ(Aa)∩Λ(As)) not an invariant
zero of Σ(s) with v and ψ eigenvectors of Aa and As associated with
λa,s, respectively, when l < mk + q then either Cav /∈ G

ϕ
mk

(λa,s) or
C2ζ 6= αCsψ, for α ∈ C,

(iv) for λa,s ∈ Λu(Aa) ∩ Λu(As) (λa,s ∈ Λ(Aa) ∩ Λ(As)) an invariant
zero of Σ(s), with v and ψ are eigenvectors of Aa and As associated
with λa,s, respectively, either Cav /∈ Gϕmk(λa,s) or C2ζ 6= αCsψ, for
α ∈ C.

Proof. The pair (Cϕ, Aϕ) is detectable (observable) if and only if the
equation 

sI −A −Bk
Ca 0n×ns

0na×n sI −Aa 0na×ns
0ns×n 0ns×na sI −As
C1 0(l−q)×na 0(l−q)×ns
C2 0q×na Cs


 ζ
v
ψ

 = 0, (47)
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is satisfied only by the trivial solution for s ∈ Λu(A) ∪ Λu(Aa) ∪ Λu(As)
(for s ∈ Λ(A) ∪ Λ(Aa) ∪ Λ(As)). All of the possible solution cases to be
considered are enumerated in Table 1 and treated subsequently. Observe

Case ζ = 0 v = 0 ψ = 0

(a) T T T
(b) T T F
(c) T F T
(d) T F F
(e) F T T
(f) F T F
(g) F F T
(h) F F F

TABLE 1: General form of possible solutions to Equation (47).

that Case (a) represents the trivial solution, and so is always a solution
to Equation (47). Case (b) can be reduced to considering the equation[

sI −As
Cs

]
ψ = 0. (48)

A nontrivial solution to Equation (47) exists for Case (b) if and only if
Equation (48) is also nontrivially satisfied. That is, if the pair (Cs, As)
is not detectable (observable), which corresponds to Condition (i) of
Theorem 2.

Case (c) can be reduced to considering the equation[
sI −Aa
−Bk

Ca

]
v = 0. (49)

A nontrivial solution to Equation (47) exists for Case (c) if and only if
Equation (49) is also nontrivially satisfied. By Lemma 1, this is possible
only in the case when the pair (Ca, Aa) is not detectable (observable),
which corresponds to Condition (iii) of Theorem 1.

Case (d) can be reduced to considering the equation
−B̄kCa 0
sI −Aa 0

0 sI −As
0 Cs

[ v
ψ

]
= 0. (50)

However, Equation (50) can be further represented as two separate equa-
tions, which must be simultaneously satisfied (i.e., Equations (48) and
(49)), thus reestablishing the conditions covered under Cases (b) and (c),
respectively.
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Case (e) represents a nontrivial solution to Equation (47) if and only
if the equation [

sI −A
C

]
ξ = 0, (51)

has a nontrivial solution. Such a solution exists for Case (e) if and
only if the pair (C,A) is not detectable (observable). This condition is
addressed in Conditions (ii) and (i) of Theorems 1 and 2, respectively.

Case (f) can be reduced to considering the following equation.


sI −A 0

0 sI −As
C1 0
C2 Cs

[ ζ
ψ

]
= 0. (52)

By inspection of Equation (52), a nontrivial solution exists if either or
both of the pairs (C,A) and (Cs, As) are not detectable (observable).
These cases are covered through of Condition (ii) of Theorem 1 and
Conditions (i) and (ii) of Theorem 2. Furthermore, a nontrivial solution
to Equation (52) (where both ζ and ψ are nonzero) still exists if: 1) s =
λs ∈ Λ(As), where ψ is a corresponding a eigenvector, 2) λs corresponds
to an undetectable (unobservable) eigenvalue of the pair (C1, A), where
ζ is a corresponding eigenvector, and 3) C2ζ ∈ αCsψ, where α ∈ C. The
situation of 1) through 3) for Case (f) is addressed in Condition (iii) of
Theorem 2.

Case (g) can be reduced to considering the following equation. sI −A −B̄kCa
0 sI −Aa
C 0

[ ζ
v

]
= 0. (53)

Inspection of Equation (53) reveals a nontrivial solution if either pair or
both pairs, (C,A) and (Ca, Aa), are not detectable (observable). Condi-
tions (ii) and (iii) of Theorem 1 and Condition (i) of Theorem 2 together
address such a solution. Now, a nontrivial solution to Equation (53)
still exists if: 1) s = λa ∈ Λ(Aa) and 2) either Condition (i) or (iv) of
Theorem 1 are violated.

Cases (a)-(g) are addressed entirely by Theorems 1 and 2, where it
is furthermore the case that all conditions have been applied (i.e., no
conditions remain unused). Thus, Conditions (i) and (iii) of Theorem 3
are established.

The only remaining case to consider is the situation in Case (h),
where ζ, v, and ψ are all nonzero vectors. Considering a nontrivial so-
lution to Equation (47), it is necessary that s = λa,s ∈ Λ(Aa) ∩ Λ(As),
where v and ψ are corresponding eigenvectors. Under these assumptions,
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Equation (47) can be reduced and expressed as λa,sI −A −B
k

0

C1 0 0

C2 0 Iq


 ζ

Cav

Csψ

 = 0. (54)

Equation (54) has a nontrivial solution if and only if either:

(h.1) for λa,s ∈ Λu(Aa)∩Λu(As) (λa,s ∈ Λ(Aa)∩Λ(As)) not an invariant
zero of Σ

(C1,A,B
k
)
(s), when l < mk + q then both Cav ∈ G

ϕ
mk

(λa,s)

and C2ζ = αCsψ, where ζ ∈ Cn and α ∈ C, or

(h.2) for λa,s ∈ Λu(Aa) ∩ Λu(As) (λa,s ∈ Λ(Aa) ∩ Λ(As)) an invariant
zero of Σ

(C1,A,B
k
)
(s), both Cav ∈ Gϕmk(λa,s) and C2ζ = αCsψ,

where ζ ∈ Cn and α ∈ C.

Thus, Conditions (iii) and (iv) of Theorem 3 are established, and Con-
ditions (i)-(iv) are together a necessary and sufficient condition for de-
tectability (observability) of the pair (Cϕ, Aϕ).

Corollary 5. For the special case when all of the simultaneous faults
are constant biases, i.e., step faults, Conditions (i)-(iv) of Theorem 3
reduce as follows.

(i) the pair (C,A) is observable,

(ii) l ≥ mk + q, and

(iii) Σ(s) has no invariant zeros at the origin.

Proof. Observe that when all the actuator and sensor faults are step
faults, Equation (47) can be expressed as

sI −A −Bk
0

0 sImk 0
0 0 sIq
C1 0 0
C2 0 Iq


 ζ
v
ψ

 = 0. (55)

First, observe the requirement that the pair (C,A) be observable (since
s = 0 does not lie strictly in the open, left-half plane). This requirement
ensures that the first n columns are linearly independent. Letting s = 0,
Equation 55 can be expressed in three equations as

−Aζ −Bk
v = 0 (56)

C1ζ = 0 (57)

C2ζ + Iqψ = 0 (58)
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By inspection, Equation 58 is satisfied for any ζ. Thus, it is required
that the remaining two equations be satisfied only by the trivial solution.
The remaining two equations can be expressed as[

−A −Bk

C1 0

][
ζ
v

]
= 0. (59)

Now, by appeal to Corollary 2 and the symmetry of the problem, the
conditions that l ≥ mk + q and Σ(s) has no invariant zeros at the origin
follows.

Remark 2. Conditions (i)-(iii) of Corollary 5 are identical to those pre-
sented in Theorem 3 of [22] for the simultaneous actuator and sensor
step fault case.

Example 3. Consider the 4th-order, linearized vertical-plane dynamics
of a vertical takeoff and landing (VTOL) aircraft, flying in the airspeed
range of 60-170 knots, given in [21] and [30] given by

A =


−0.0336 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.2855 −0.7070 1.3229

0 0 1 0

 ;

B =


0.4422 0.1761
3.0447 −7.5922
−5.5200 4.9900

0 0

 ;

C =

[
1 0 0 0
0 1 0 0

]
.

The state vector is comprised of the horizontal velocity, vertical velocity,

pitch rate, and pitch angle, that is, x(t) =
[
v w q θ

]T
. The control

vector is comprised of the collective pitch angle and longitudinal cyclic
pitch angle. The collective pitch angle input controls the vertical mo-
tion, and the longitudinal cyclic pitch angle input controls the horizontal
velocity [21]. The output vector is comprised of the horizontal velocity

and vertical velocity, that is, y(t) =
[
v w

]T
. It can be verified that

Λ(A) = {2.8174 · 10−1 ± i9.7701 · 10−2,−3.3318 · 10−1,−1.9809}, and
that {A,B,C, 0} is a minimal realization, that is, both controllable and
observable.

For the case when the actuators are subject to ramp faults, and the
sensors are subject to step faults, there are a total of nine possible fault
configurations having simultaneous faults. A check of the conditions in
Theorem 3 show that

1. Conditions (i) and (ii) are satisfied,
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2. for λa,s ∈ Λ(Aa) ∩ Λ(As) = {0} (where λa,s is not an invariant

zero of (C1, A,B
k
)), there are five cases when l < mk + q, i.e., the

one case when all actuators and senors are faulty, the two cases
when both actuators are faulty and either of the sensors are faulty,
and the two cases when both sensors are faulty and either of the
actuators are faulty. In all five cases, Cav ∈ G

ϕ
mk

(0). For each of
these cases, since the geometric multiplicity of the zero eigenvalue
of As is ns = q, it is always the case that C2ζ = αCsψ, where
α ∈ C. Thus, Condition (iii) of Theorem 3 is not satisfied for these
five cases, and the faults are not identifiable,

3. l ≥ m, therefore Condition (iv) of Theorem 3 is satisfied, and

4. for the four cases when Σ(s) has invariant zeros, that is when only
one or the other measurement is biased in conjunction with only
one or the other input being faulty, none of the invariant zeros are
at the origin. Thus for all four such fault cases, Condition (iv) of
Theorem 3 is satisfied.

Thus, for the case when it is of interest to identify ramp faults in the
actuators together with constant bias in the sensors, there are five fault
configurations which are theoretically not possible to identify using state
augmentation. In such cases, other identification methods need to be
considered.

5 Conclusions and Future Research

The fundamental problem addressed in this paper was the determination
of a theoretical set of necessary and sufficient conditions for identifiability
of arbitrary combinations of a class of additive, time-varying actuator
and sensor faults using state augmentation. The provided theorems give
the conditions which must be satisfied in order for a practical state-
augmentation-based solution to exist. One recommendation for future
work on this topic is to investigate identifiability of multiplicative faults
in the actuators and sensors. Such faults may manifest themselves as a
loss-of-effectiveness in the actuators and sensors. One relevant example
of such faults is a reduction in thrust provided by a propulsion system.
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