Design of a K/Q-band Beacon Receiver for the Alphasat Technology Demonstration Payload (TDP) #5 Experiment

Jacquelynne R. Morse
NASA Glenn Research Center
Cleveland, OH

2014 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting

Session: 126: Atmospheric and Ionospheric Propagation Characterization
Paper Number: 2331

July 6-11th, 2014
Memphis, TN

Keeping the universe connected.
Presentation Overview

1. Technical Motivation
2. Site Information
3. Receiver Design
4. Receiver Performance
5. Measurement Resolution
6. Initial Results
7. Conclusions & Future Work
Technical Motivation

Propagation studies at a given site are valuable in designing efficient, cost effective ground stations without sacrificing performance or availability.\cite{1}

Attenuation measurements characterize the attenuation of a link due to rain, clouds, and gases in the troposphere.\cite{1} The total attenuation can be measured on the ground via a beacon receiver.

The beacon transmits a signal, and the power is measured on the ground. This power measurement will fluctuate with atmospheric conditions, yielding a characterization of the total atmospheric attenuation.
This work was performed as part of the development of a beacon receiver terminal deployed to Milan, Italy in collaboration with the Politecnico di Milano.
System Specifications

- **Downconversion (Ka)**: 3-step down to 455 kHz
- **Downconversion (Q)**: 4-step down to 455 kHz
- **Sampling Rate**: 1.111 MHz
- **Number of Points**: 2^{27}
- **Integration Time**: 125 ms
- **Time Series Output Rate**: 8 Hz
- **Dynamic Range**: 35 dB

Diagram

- **Ka-Band RF**
 - LNA +35 dB
 - LO 20.129 GHz
 - BPF 70 MHz
 - 70 MHz to 455 kHz Downconverter

- **Q-Band RF**
 - LNA +35 dB
 - BPF 20.2 GHz
 - LO 20.129 GHz
 - IF Amp. +25 dB
 - BPF 70 MHz
 - 70 MHz to 455 kHz Downconverter

Output to ADC

Reference LO: 10 MHz

IF

Ka-Band RF

- **LO**: 20.129 GHz
- **BPF**: 70 MHz
- **LNA**: +35 dB
- **IF**
- **RF**

Q-Band RF

- **LO**: 19.203 GHz
- **BPF**: 20.2 GHz
- **LNA**: +35 dB
- **IF Amp.**: +25 dB
- **BPF**: 70 MHz
- **LO**: 20.129 GHz
- **IF**
- **RF**

455 kHz Output to ADC
In laboratory testing the system achieved a dynamic range of 58/48dB for the 1Hz and 8Hz measurements. This was based on the link budget calculations that estimated the power at the flange to be ~-115dB. The actual power is lower than expected reducing the dynamic range, additionally the phase stability of the satellite is worse than expected. The phase instability made the 1Hz measurements noisy due to the long integration time. The 1Hz measurements are now made by averaging the 8Hz measurements over the 1Hz integration time further reducing the dynamic range.
The above figure shows the system performance in clear sky conditions. The measurement resolution of the system during this condition is .009dB root-mean-square (RMS) at 10Hz and .005dB RMS at 1Hz.
Data collection officially began 6/1/2014. It is too soon for full statistical analysis but several major rain events have been recorded by the system. During a deep fade event the rain slope corresponds very well with theory at the low frequencies.
Initial Results – Clear Sky

During events such as atmospheric heating the scintillation slope corresponds very well with theory at the high frequencies.
The AlphaSat terminal was installed in Milan Italy in April of 2014 with the official data collection starting on June 1st, 2014. The goals of the campaign will be to study the atmospheric effects at Ka/Q band and to investigate site diversity at these frequencies using a second terminal located in Spino d'Adda, Italy approximately 30km away.

Current Plans:
- **Continued Data Collection**
 - ≥ 5 years per site

Long-Term Goals:
- Adaptive Compensation Techniques
- New Frequency Bands
 - Q/V/W Band
- Additional Sites

