UAS Applications for Hurricane Science
Hurricane and Severe Storm Sentinel (HS3)

Dr. Scott Braun, NASA Goddard Space Flight Center

UAS Commercialization Industry Conference, November 18, 2014
General Overview for Today’s Talk

• NASA Global Hawk program, operations & challenges
• Improving science capabilities through UAS applications: Hurricane experiments
• Envisioning the future of high-altitude, long-duration Earth Science missions
NASA’s Airborne Science Program

- Responsible for providing aircraft systems that further science and advance the use of satellite data. Primary objectives:
 - Collect hi-res imagery for focused process studies
 - Test new sensor technologies in space-like environments
 - Calibrate/validate space-base measurements and retrieval algorithms
 - Demonstrate and exploit the capabilities of UAS for science investigations

- ASP supported aircraft include:
 - WB-57, ER-2, DC-8, G-III, P-3 Orion, C-130, Twin Otter, among other manned aircraft
 - Global Hawk, Ikhana, Sierra, Bat 4 UASs
NASA Global Hawk Capability

• NASA has been flying Global Hawk aircraft for airborne science research since 2010. Ten science campaigns have been completed.

• Operated from either NASA Armstrong Flight Research Center, NASA Wallops Flight Facility, or a portable Flight Control Station.

• A NASA/Northrop Grumman team is maintaining, modifying, and operating these 2 aircraft through a partnership that was established in 2008 and renewed in 2013.

<table>
<thead>
<tr>
<th></th>
<th>Endurance</th>
<th>Range</th>
<th>Service Ceiling</th>
<th>Airspeed (55,000+ ft)</th>
<th>Payload</th>
<th>Length</th>
<th>Wingspan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24-26 hours for Typical Missions</td>
<td>10,000 nmi</td>
<td>65,000 ft, < 50% available A/C payload power</td>
<td>335 KTAS</td>
<td>1,200 lb</td>
<td>44 ft</td>
<td>116 ft</td>
</tr>
</tbody>
</table>
NASA Global Hawk Asset Overview

Operational Aircraft

Global Hawk Operations Center (AFRC)

Global Hawk Operations Center – East (WFF)

Spares Aircraft

Portable Ground Systems
Challenges Along the Road to Hurricane Flights

Major modifications needed to make GH science operational

- Development of an Airborne Payload Command, Control, Communication (C3) System
- Development of instrument and data acquisition infrastructure
 - Data acquisition and transmission unit (NASDAT), Experimenter Interface Panels (EIPs), IT architecture
- Decoupling of aircraft and science instrument operations
 - Required separate pilot and payload portions of the Armstrong, Wallops and mobile operations centers
- Reinforcement of the fuselage to accommodate large sensors
 - More than 40 reinforcements to stiffen the fuselage
- Installation of hazard awareness equipment (low-light and HD cameras, Stormscope, accelerometers)
Challenges Along the Road to Hurricane Flights

• Instrument integration challenges
 – Cantilevered mount in tail zone, external mounts
 – Challenging aircraft for getting weight & balance correct
• Communications: Implementation of Ku, particularly joint use by pilots and instruments
• Turning the GH into a fast-turnaround and responsive science platform
• Working through the Certificate of Authorization (COA) process and getting approval for laser and dropsonde operations
Completed Science Campaigns

GloPac 2010 (2010)

Winter Storms & Pacific Atmospheric Rivers (2011)

GRIP (2010)

ATTREX (2011, 2013, 2014)

Instruments For The GRIP Campaign

Hurricane Imaging Radiometer (HIRAD)
- PI: Dr. Tim Miller
 NASA MSFC
- Measurements: Surface wind speed, rain rate

High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)
- PI: Dr. Gerry Heymsfield
 NASA GSFC
- Measurements: Radar reflectivity, wind profiles

High Altitude Monolithic Microwave integrated Circuit Sounding Radiometer (HAMSR)
- PI: Dr. Bjorn Lambigtsen
 Jet Propulsion Laboratory
- Measurements: Temperature, water profiles, cloud liquid water
GRIP Accomplishments

Earl: First hurricane overflight

Karl: 14 hrs on station, 20 eye crossings
Dramatic Improvement in Hindcasts of Hurricane Karl (2010)

Multi aircraft, multi instrument data assimilated into the Hurricane Weather Research and Forecasting model leads to significant improvements in track and intensity for Hurricane Karl.
Science Goal: To understand hurricane genesis and intensification.

Key Science Questions:
- What is the impact of the large-scale environment, particularly the Saharan Air Layer?
- What is the role of storm internal processes such as deep convective towers?
- To what extent are these processes predictable?

Deployment Details:
- Deployments in hurricane seasons of 2012-2014
- Based at NASA’s Wallops Flight Facility in Virginia
- 275 science flight hours (~10-11 26-hour flights) per deployment
Instruments on the Environmental Global Hawk

Airborne Vertical Atmospheric Profiling System (AVAPS)

PI: Dr. Gary Wick, NOAA, NCAR
Measurements: Temperature, Pressure, wind, humidity vertical profiles; 88 sondes per flight

Scanning High Resolution Infrared Sounder (S-HIS)

PI: Dr. Hank Revercomb
University of Wisconsin
Measurements: Upwelling thermal radiation at high spectral resolution between 3.3 and 18 microns, temperature, water vapor vertical profiles

Cloud Physics Lidar (CPL)

PI: Dr. Matt McGill
NASA Goddard Space Flight Center
Measurements: Cloud structure and depth
Unique Challenges to Operations At Wallops

- **WFF Special Use Airspace: R-6604, VACAPES**

 - R-6604 only partially covers airspace over WFF
 - Chase aircraft used for all takeoffs and landings
 - Close coordination with VACAPES to get out into the Atlantic
 - GH Ascent/descent in Test Track C
HS3 Operated Under Many Constraints

1. **Only one GH could fly at any one time.** The second aircraft could take off 2 hours after the first lands.
2. A flight plan will be filed with the FAA for all flights per the COA **2 business days** in advance.
3. Take off and landings had to be scheduled during **daylight hours** to allow chase.
4. GH flight durations were planned for **no more than 26 hours**.
5. No more than 3-4 flights per 7-day period.
6. Instruments not interchangeable between aircraft so each flight plan had to specify which aircraft was used.
7. Take off and landing handled in Wallops GHOC. First/last crew shifts from WFF, middle shifts from AFRC GHOC.
Go-No Go and Mission Rules

Ground Weather Limitations
- Winds < 15kts (cross), 30kts (head), 25kts (tail)
- Min. runway visual range (RVR) – 1 mile
- No standing water reported on the runways
- No within 25nm of the projected takeoff or landing flight path
- Visual Flight Rules (VFR) conditions at WFF

In-Flight Weather Limitations
- Do not approach thunderstorms within 25 nm during flight below FL500
- No flights into significant weather clouds
- When significant convection with frequent lightning present
 - CTH>50 kft, maintain 25 nmi separation
 - CTH<50 kft, maintain 10 kft vertical separation
- When significant overshooting top without frequent lightning present
 - CTH>50 kft, maintain 5 kft vertical separation
- No flight into forecasted or reported icing conditions
- No flight into forecasted or reported moderate or severe turbulence
Mission Tools Suite

Hurricane Edouard Flight, September 14-15, 2014
Cloud data from CPL showing cloud tops near the eye.
Measuring the Hurricane Environment and Structure

Hurricane Nadine (2012) and the Saharan Air Layer

Hurricane Edouard (2014) near maximum intensity

Relative Humidity at 700 hPa
Impact of HS3 Dropsondes on COAMPS-TC Forecasts of Hurricane Nadine (2012)

- **Goal:** To assess the impact of HS3 obs. on forecasts of Nadine

- Dropsonde impact experiments performed for 19-27 Sep. (3 flights)
 - Red, with HS3 drops
 - Blue, no drops with synthetics

- COAMPS-TC Intensity and track skill are improved greatly through assimilation of HS3 dropsondes.

(From J. Doyle, NRL)
Three Years of HS3 Science

<table>
<thead>
<tr>
<th>Year</th>
<th>Flights</th>
<th>Hours</th>
<th>Sondes</th>
<th>Named Storms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>8</td>
<td>174</td>
<td>343</td>
<td>2</td>
</tr>
<tr>
<td>2013</td>
<td>10</td>
<td>223</td>
<td>433</td>
<td>3</td>
</tr>
<tr>
<td>2014</td>
<td>13</td>
<td>252</td>
<td>649</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>649</td>
<td>1425</td>
<td>9</td>
</tr>
</tbody>
</table>

2012
- Leslie – 1 Flight
- Nadine – 5 Flights

2013
- Gabrielle – 4 Flights
- Ingrid – 1 Flight
- Humberto – 1 Flight
- A95L (non-developer) – 1 Flight
- Saharan Air Layer – 2 Flights

2014
- Cristobal – 2 Flights
- Dolly – 1 Flight
- SAL, tropical wave — 1 flight
- Edouard – 4 Flights
- Gonzalo – 3 WB-57 Flights

19 Flights Over 9 Named Storms

Yellow=2012, Red=2013, Green=2014
Stratospheric Water Vapor and Climate Change

The Airborne Tropical Tropopause Experiment (ATTREX)

Ongoing experiment to examine the processes that control water vapor in the Tropical Tropopause Layer and the stratosphere

Like HS3, funded under NASA’s EV-1 program
Winter Storms

Heavy rain events along the U.S. West Coast associated with moisture streams over the Pacific

- Plumes of high moisture known as Atmospheric Rivers move over coastal mountains, dumping large amounts of rain
- Can better upstream measurements improve forecasting of these flood-producing events?
Polar Climate

GOAL: To examine changes in sea ice, ice sheets, and glaciers in polar regions
Summary

• NASA overcame many hurdles in getting the GH capable of doing science
• There remain many challenges to integrating new instruments and conducting science operations, but things are improving
• A wide array of science can be enabled using the high-altitude, long-duration capabilities of the Global Hawk