Macropicule Jets in On-Disk Coronal Holes

M.L. Adams, A.C. Sterling, R.L. Moore1
(NASA/MSFC and UAH1)

Abstract
We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 171 Å, HMI line-of-sight magnetic field component, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, 13:48 UT (Adams et al. 2011, ApJ, 732:113). This jet is a previously unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by external reconnection of the loops of the erupting field. It is driven by the field of the magnetic cavity near the loop base.

Acknowledgements: We would like to acknowledge the work of Owen T. Gaillie, who found the jets featured in this poster during the University of Alabama’s Research Experience for Undergraduates program under the National Science Foundation Grant No. AGS-1137027.

All data were calibrated with standard SolarSoft routines and de-rotated to a common time (27-February 2011, 15:04:19 UT). Using a 1600 Å image (also calibrated and de-rotated), we determined an HMI offset of -2 arcsec.

Preliminary Results: All the jets in our study are caused by flux cancellation, with the possible exception of ROI 5. Note the ellipses on the images in the first column on the left. From left to right, these show changes in flux from approximately 30 minutes before the jet to approximately 30 minutes after the jet.

Movies are available for viewing when the first author is present.

Future Work: Do a quantitative study of the flux change in each field-of-view, perform the analysis for 30 Å data, and identify more jets in other equatorial coronal holes. Seek the opportunity to do an in-depth study to determine the dominant mechanism for these events.

AIA-193 with HMI line-of-sight contours, contour levels ±15, 20, 40, 100 Gauss

AIA-193 Å intensity images

HMI line-of-sight component of the magnetic field, intensity images, ±40 Gauss

Region of Interest 1

Region of Interest 2

Region of Interest 3

Region of Interest 4

Region of Interest 5

Region of Interest 6