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Motivation 
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Particle impingement uniformity  Rigby et al. (Aviation 2014) 
Temperature profile along wire   Thermal model (this paper) 

Video in IWC cloud 

• Further understand behavior of hot-wire measurements in icing conditions 
• Newer applications in ice crystals and mixed phase  
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Outline 

• Describe Thermal Model 
– Governing equations 
– Model parameters 

 

• Results (model vs. experiment) 
– Dry (air flow only, no water) 
– Wet (i.e. cloud on with LWC or IWC) 

 

• Conclusions 
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Thermal Model Based on Energy Balance 
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solder fillet 
(not modeled) 
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Governing Equation 
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Conduction Convection Radiation Heat 
Generation 

Heat 
Sink 
(Water / Ice) 
 

2nd Order, Non-Linear ODE 
  solved using MATLAB routine bvp4c 
  
Boundary Value Problem 
  need two boundary conditions 
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Model Parameters 
• Boundary Conditions 

 
 
 
 

• Convection correlations 
– (1) Sparrow et. al - 2004 
– (2) Generated from CFD 

 
 

• Probe operation 
– Maintains const. avg. temp 

(e.g. resistance) ~140 C 
– Temp (Res) , Power  
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Results 

• Experimental results from 2012 NRC RATFac Tests 
 
 

• Dry Conditions (P0=13.5, 6.5 psia; U=85,100,135 m/s) 
– Temperature profiles 
– Total power (experiment vs. model) 

• Effect of heat-transfer coefficient 
 
 

• Wet results (P0 = 13.5 psia, U = 85 m/s) 
– LWC Sweep 0-3 g/m3 

– IWC  Sweep 0-10 g/m3 
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Results: Temperature Profiles – Dry 
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 along Wire - Dry 
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Integrated Values (Nu = Sparrow) 

Term Dry 
 (W) 12.743 

 (W) -11.945 

 (W) -0.766 

 (W) -0.032 

 (W) 0.000 

Sum 0.000 
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Experimental Data – Dry 
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Model vs. Experiment – Dry 
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Model vs. Experiment – Dry 
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Heating & Evaporation Model 

LWC 
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Total Collection Efficiency 

“Evaporation Efficiency” 
(next slide) 

Data from Rigby et al. (2014) 
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Temperature profiles from CFD 

Evaporation Efficiency 
• Needed a way to estimate fraction of 

water that does not evaporate 
 

• Defined a parameter called evaporation 
efficiency,  
 
 
 

• Use analogy of heat & mass transfer 
– Mass flux related to heat flux 

 

• Evaporation area: 
– For 083,021 entire circumference 
– For HP, forward face of element 

 
• Does not include bounce / splash 
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evaporation potential
incoming mass flux

 0    1 
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Effect of LWC on Temperature Profiles 
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85 m/s, 13.5 psia, CFD-based Nu 
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Wet Power - Effect of Conduction Losses 

• Traditional wet power calculation: 
 
 

However, energy needed to evaporate LWC was 7.41W (1.9% diff) 
 Under measurement is due to conduction loss differences  
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Term Dry Wet 
LWC (g/m3) 0 3 

6.34 13.61 

-6.05 -6.05 

-0.28 -0.14 

-0.01 -0.01 

0 -7.41 
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IWC 
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evaporation potential
incoming mass flux
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Wet Power vs. IWC 
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Conclusions (1 of 2) 
• Developed steady-state hot-wire thermal model 

– Includes resistive heating, convection, axial conduction, radiation, and 
water/ice evaporation 
 

• Examined: 
– Temperature & power variation along the wire 
– Steady-state power  

 
• Model compared to SEA multi-wire probe data 

 
• For dry conditions: 

– Matched experiment to within: 
• 5.5% for 021 
• 9.2% for 083 
• 14% for HP 

– Max. conduction loss ~ 4% of total power for  conditions examined 
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Conclusions (2 of 2) 
• Wet conditions: 

– Introduced “evaporation potential” to estimate % water evaporated 
• Needs validation 

 
– LWC: 

• Affected temperature profile of 021 most significantly;  
• In all cases, high evaporation potential, effect minimal 
• Conduction losses can be different dry vs. wet 

– For 021 at 3 g/m3  1.9% difference in Pwet measured vs. actual 
 

– IWC (HP only) 
• Model suggests a non-linear behavior of wet power and IWCt  

– Below 4 g/m3, linear relationship 
– Above 4 g/m3, non linear due to incomplete evaporation everywhere along wire 

• Limited  available experimental data to see if trend is correct 
• Bouncing or splashing-type loss present in experiment complicate interpretation 

 

• Further examination & development of model planned 
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