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Introduction

When dealing with imperfect data and general models of dynamic systems, the best es-

timate is always sought in the presence of uncertainty or unknown parameters. In many

cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions

to handling issues arising from nonlinear and non-Gaussian estimation problems. But these

issues may lead unacceptable performance and even divergence. In order to accurately cap-

ture the nonlinearities of most real-world dynamic systems, advanced filtering methods have

been created to reduce filter divergence while enhancing performance. Approaches, such

as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known
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examples of advanced methods used to represent and recursively reproduce an approxima-

tion to the state probability density function (pdf). Some of these filtering methods were

conceptually developed years before their widespread uses were realized. Advanced nonlin-

ear filtering methods currently benefit from the computing advancements in computational

speeds, memory, and parallel processing.

Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical

solutions that take advantage of different state coordinates or multiple-model methods that

reduced the amount of approximations used. Choosing an efficient grid is very difficult for

multi-dimensional state spaces, and oftentimes expensive computations must be done at each

point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions

approximates the pdf but suffers at the update step for the individual component weight

selections [1]. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces

a weight update approach at the filter propagation stage instead of the measurement update

stage. This weight update is performed by minimizing the integral square difference between

the true forecast pdf and its Gaussian sum approximation [2]. By adaptively updating each

component weight during the nonlinear propagation stage an approximation of the true pdf

can be successfully reconstructed.

Particle filtering (PF) methods have gained popularity recently for solving nonlinear

estimation problems due to their straightforward approach and the processing capabilities

mentioned above [3]. The basic concept behind PF is to represent any pdf as a set of

random samples. As the number of samples increases, they will theoretically converge to

the exact, equivalent representation of the desired pdf. When the estimated qth moment

is needed, the samples are used for its construction allowing further analysis of the pdf

characteristics [4]. However, filter performance deteriorates as the dimension of the state

vector increases. To overcome this problem Ref. [5] applies a marginalization technique for

PF methods, decreasing complexity of the system to one linear and another nonlinear state

estimation problem.

The marginalization theory was originally developed by Rao and Blackwell independently.

According to Ref. [6] it improves any given estimator under every convex loss function. The

improvement comes from calculating a conditional expected value, often involving integrat-

ing out a supportive statistic. In other words, Rao-Blackwellization allows for smaller but

separate computations to be carried out while reaching the main objective of the estimator.

In the case of improving an estimator’s variance, any supporting statistic can be removed

and its variance determined. Next, any other information that dependents on the supporting

statistic is found along with its respective variance [6].

A new approach is developed here by utilizing the strengths of the adaptive Gaussian

sum propagation in Ref. [2] and a marginalization approach used for PF methods found in
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Ref. [7]. In the following sections a modified filtering approach is presented based on a special

state-space model within nonlinear systems to reduce the dimensionality of the optimization

problem in Ref. [2]. First, the adaptive Gaussian sum propagation is explained and then

the new marginalized adaptive Gaussian sum propagation is derived. Finally, an example

simulation is presented.

Gaussian Sum Nonlinear Model Propagation

In this section, the approach from Ref. [2] is used to approximate the pdf for nonlinear

systems. The idea is to approximate the required posterior pdf by a Gaussian mixture, which

is a weighted sum of Gaussian density functions [8]. According to Refs. [2,9], with a sufficient

collection of Gaussian components, any pdf may be approximated as closely as desired. For

this section the notation found in Ref. [2] is followed with minor differences in symbols, in

order to present their new method. Given a pdf p(xk), the Gaussian approximation is

p(xk) ≈
q∑

i=1

wi
kN (xk|x̄i

k, P
i
k) (1)

where the ith mean and covariance are denoted by x̄i
k and P i

k, respectively. In order to have a

valid pdf, the following requirement must be satisfied: that for some q and positive weights,

wi,
∑q

i=1 w
i
k = 1. Each Gaussian distribution, N (xi

k|x̄i
k, P

i
k) is given by

N (xi
k|x̄i

k, P
i
k) =

1

‖2πP i
k‖1/2

exp

[
−1

2
(x− x̄i

k)(P
i
k)

−1(x− x̄i
k)

]
(2)

The pdf at time k+1 to be approximated as a Gaussian mixture is given by the Chapman-

Kolmogorov equation [8]:

p(xk+1) =

∫
p(xk+1|xk)p(xk) dxk (3)

where p(xk+1|xk) is the probabilistic model of the state evolution (also known as state tran-

sition pdf ). Consider the nonlinear model of the general form:

xk+1 = f(xk,uk, k) + ηk (4)

The state transition pdf depends on the pdf for the process noise variable ηk, usually modeled

as an additive zero-mean Gaussian noise processes with covariance Qk [2]. Thus, the state
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transition pdf can be written as

p(xk+1|xk) = N (xk+1|f(xk,uk, k), Qk) (5)

In the traditional Gaussian sum approximation, the forecast density function, p(xk+1), is

obtained by linearizing the nonlinear transformation and assuming that the weights of the

different components are constant, i.e.,

p̂(xk+1) =

q∑
i=1

wi
k+1N (xk+1|x̄i

k+1, P
i
k+1) (6)

where

wi
k+1 = wi

k (7a)

x̄i
k+1 = f(x̄i

k+1,u
i
k+1, k + 1) (7b)

P i
k+1 = Fk(x̄

i)P i
kF

T
k (x̄

i) +Qk (7c)

and

Fk(x̄
i) =

∂f(x̄i
k,u

i
k, k)

∂x̄i
k

(8)

One of the advantages of the Gaussian sum approximation is, in a low-noise environ-

ment, the resulting estimator can be very nearly optimal. Conversely, the problem is, how to

formulate an algorithmic procedure for on-line computation of updating the weights. This

computation is difficult due to the fact that the number of components q can grow ex-

ponentially with time [2, 8]. Therefore, to obtain a favorable posterior pdf approximation

developing better update laws for the future weights is necessary for enhancing performance.

Weight Update for Discrete-Time Dynamic Systems

While the traditional Gaussian sum approximation keeps the weights constant, Ref. [2]

introduces a weight update scheme that utilizes the Chapman-Kolmogorov equation. That

is, given the Gaussian sum approximation at some time k as

p̂(xk) =

q∑
i=1

wi
kN (xk|x̄i

k, P
i
k) (9)

the Gaussian approximation as time k + 1 may be written as

p̂(xk+1) =

q∑
i=1

wi
k+1N (xk+1|x̄i

k+1, P
i
k+1) (10)
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The approach in Ref. [2] finds the new weights of the Gaussian mixture such that the dif-

ference between the true pdf in Eq. (3) and the approximated pdf in Eq. (10) is minimized

over the domain, xk+1, i.e.,

min
wi

k+1

J =
1

2

∫
‖p(xk+1)− p̂(xk+1)‖2 dxk+1 (11a)

s.t.

q∑
i=1

wi
i+1 = 1 (11b)

wi
i+1 ≥ 0, i = 1, . . . , q (11c)

The terms in the above cost function can be expanded and rewritten as

J =
1

2

∫
|p2(xk+1)− 2 p(xk+1)p̂(xk+1) + p̂2(xk+1)| dxk+1 (12)

Substituting Eq. (10) and Eq. (3) gives

1

2

∫
p̂2(xk+1) dxk+1 =

1

2

∫ [ q∑
i=1

wi
k+1N (xk+1|x̄i

k+1, P
i
k+1)

]2
dxk+1 (13)

and

2p(xk+1)p̂(xk+1) = 2

∫ [ ∫
p(xk+1|xk)p(xk) dxk

][ q∑
i=1

wi
k+1N (xk+1|x̄i

k+1, P
i
k+1)

]
dxk+1

(14a)

= 2

q∑
i=1

wi
k+1

∫ [ ∫
p(xk+1|xk)N (xk+1|x̄i

k+1, P
i
k+1)dxk+1

]
p(xk)dxk (14b)

which are quadratic and linear terms, respectively. Each linear term from the summation is

denoted as yi. Substituting Eq. (5) yields

yi =

∫ [ ∫
N (xk+1|f(xk,uk, k), Qk)N (xk+1|x̄i

k+1, P
i
k+1) dxk+1

]
p(xk) dxk (15a)

=

∫ [
N (f(xk,uk, k)|x̄k+1, P

i
k+1 +Qk)

]
p(xk) dxk (15b)

The first term in the p2(xk+1) expression is an additive constant and excluded from the

optimization problem. Now the cost function can be written as

J =
1

2
wT

k+1Mwk+1 −wT
k+1 y (16)
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where wk+1 = [w1
k+1 w2

k+1 · · · wq
k+1]

T , y contains the components yi, and M ∈ R
q×q is

a symmetric matrix given by

M =

∫
M(xk+1)M

T (xk+1)dxk+1 (17)

where M is a q × 1 vector that contains all the Gaussian components at time k + 1:

M = [N (xk+1|x̄1
k+1, P

1
k+1) N (xk|x̄2

k+1, P
2
k+1) · · · N (xk+1|x̄q

k+1, P
q
k+1)]

T (18)

As a result the components of M are given by the product rule of two Gaussian density

functions which yield another Gaussian density function [10]. Integrating the product leaves

only the normalization constants performed. The off-diagonal elements of M are given by

mij =

∫
N (xk+1|x̄i

k+1, P
i
k+1)N (xk+1|x̄j

k+1, P
j
k+1) dxk+1 , i �= j (19a)

= N (x̄i
k+1

∣∣x̄j
k+1, P

i
k+1 + P j

k+1)

×
∫

N (xi
k+1

∣∣P ij
k+1[(P

i
k+1)

−1x̄i
k+1 + (P j

k+1)
−1x̄j

k+1], P
ij
k+1) dxk+1

= N (x̄i
k+1|x̄j

k+1, P
i
k+1 + P j

k+1) (19b)

= ‖2πP s
k+1‖−

1
2 exp

[
−1

2
(x̄i

k+1 − x̄j
k+1)

T (P s
k+1)

−1(x̄i
k+1 − x̄j

k+1)

]
(19c)

where P s
k+1 = P i

k+1 + P j
k+1 and P ij = [(P i

k+1)
−1 + (P j

k+1)
−1]−1. The diagonal elements of M

are given by

mii = N (x̄i
k+1|x̄i

k+1, P
i
k+1 + P i

k+1)

= ‖4πP i
k+1‖−1/2

(20)

Returning to the linear term wT
k+1 y , if the prior pdf is approximated by a Gaussian sum

then

yi =

∫ [
N (f(xk,uk, k)|x̄i

k+1, P
i
k+1 +Qk)

]
p(xk) dxk (21a)

≈
∫ [

N (f(xk,uk, k)|x̄i
k+1, P

i
k+1 +Qk)

]
p̂(xk) dxk (21b)

Therefore,

yi =

q∑
i=1

wi
k

∫
N (f(xk,uk, k)|x̄i

k+1, P
i
k+1 +Qk)N (xk|x̄j

k, P
j
k ) dxk (22a)
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=

q∑
i=1

wi
kNij (22b)

The vector wk = [w1
k w2

k · · · wq
k]

T is the prior weight vector and the matrix N ∈ R
q×q

contains the following components:

Nij =

∫
N (f(xk,uk, k)|x̄i

k+1, P
i
k+1 +Qk)N (xk|x̄j

k, P
j
k ) dxk (23a)

= EN (xk|x̄j
k,P

j
k )

[
N (f(xk,uk, k)|x̄i

k+1, P
i
k+1 +Qk)

]
(23b)

Note that an Unscented Transformationa (UT) can be used to compute the expectations of

Eq. (23b). The final optimization problem is presented in the quadratic programming form

as

min J(wi
k+1) =

1

2
wT

k+1Mwk+1 −wT
k+1Nwk (24a)

s.t. 1T
q×1w

i
i+1 = 1 (24b)

wi
i+1 ≥ 0q×1, i = 1, . . . , q (24c)

where 1q×1 is a vector of ones and 0q×1 is a vector of zeros.

Rao-Blackwellization Approach

A Gaussian sum filter approach allows an initial reduction of a computation complexity

versus the classical Sequential Monte Carlo (SMC) method using the sequential importance

sampling (SIS) algorithm. This is because a SMC method will approximate a continuous

distribution of interest by a finite (but large) number of weighted random samples or par-

ticles in the state space. In theory any SIS method can approximate the posterior pdf of

any form and solve any nonlinear system with any arbitrary distribution, i.e. the PF. Also,

incorporating the familiar Bayesian approach known as Rao-Blackwellization, the SMC com-

plexity can also be reduced by marginalizing out the conditional linear parts of the nonlinear

model [6]. This results in a Rao-Blackwellized Particle Filter (RBPF) where the linear por-

tion is estimated using a Kalman Fliter (KF), and the nonlinear portion using the original

PF as mentioned earlier [7, 8, 11, 12]. In a similar goal of computational effort reduction for

the RBPF, a Rao-Blackwellized Adaptive Gaussian Sum (RB-AGS) approach can allow a

reduction of the number of Gaussian components by propagating linear portions using the

KF and the nonlinear parts by the original EKF or Unscented Kalman Filter. Therefore, the

aSee Ref. [2] for caveats concerning the UT.
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Rao-Blackwellization and the new update laws will prove useful for some unique nonlinear

systems.

Assume that the nonlinear system from Eq. (4) can be decomposed into a general state

space model:

xl
k+1 = f lk(x

n
k ,uk) + ηl

k (25a)

xn
k+1 = fnk (x

n
k ,uk) + ηn

k (25b)

where the process noise ηk is

ηk =

⎡
⎣ηl

k

ηn
k

⎤
⎦ ∼ N (0, Qk), Qk =

⎡
⎣Ql

k 0

0 Qn
k

⎤
⎦ (26)

Here, obtaining the pdf p (xk) ≡ p
(
xl
k,x

n
k

)
is desired. The pdf p (xk) is calculated using

the following two steps. First it is assumed, at time k, the Gaussian sum approximation of

p (xn
k) is given by

p̂ (xn
k) =

q∑
i=1

wi
kN

(
xn
k |μi

k,Σ
i
k

)
(27)

for some chosen mean μi
k and covariance Σi

k. Now the forecast approximation, p̂
(
xn
k+1

)
, is

calculated using the Chapman-Kolmogorov equation:

p̂
(
xn
k+1

)
=

∫
p
(
xn
k+1|xn

k

)
p̂ (xn

k) dx
n
k (28)

Note that the precise expression for the conditional pdf, p
(
xn
k+1|xn

k

)
, can be written as

p
(
xn
k+1|xn

k

)
= N (

xn
k+1|fnk (xn

k ,uk), Q
n
k

)
(29)

Following the same approach previously shown, the weights corresponding to individual

Gaussian components can be obtained from solving the following optimization problem:

min
wi

k+1

J =
1

2

∫
‖p(xn

k+1)− p̂(xn
k+1)‖2 dxn

k+1 (30a)

s.t.

q∑
i=1

wi
i+1 = 1 (30b)

wi
i+1 ≥ 0, i = 1, . . . , q (30c)
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The above optimization problem can be written in vector format as

min
wi

k+1

J(wi
k+1) =

1

2
wT

k+1Mwk+1 −wT
k+1Nwk (31a)

s.t. 1T
q×1w

i
i+1 = 1 (31b)

wi
i+1 ≥ 0q×1, i = 1, . . . , q (31c)

where wk+1 = [w1
k+1 w2

k+1 · · · wq
k+1]

T , and wk = [w1
k w2

k · · · wq
k]

T is the prior

weight vector. As before the symmetric Gaussian components for time k + 1 are

M =

∫
M(xn

k+1)M
T (xn

k+1) dx
n
k+1 (32)

and M is a q × 1 vector that contains all the Gaussian components at time k + 1:

M = [N (xn
k+1|μ1

k+1,Σ
1
k+1) N (xn

k |μ2
k+1,Σ

2
k+1) · · · N (xn

k+1|μq
k+1,Σ

q
k+1)]

T (33)

Once again, for M the off-diagonal terms are

mij = ‖2πΣs
k+1‖−

1
2 exp

[
−1

2
(μi

k+1 − μj
k+1)

T (Σs
k+1)

−1(μi
k+1 − μj

k+1)

]
(34)

where Σs
k+1 = Σi

k+1 + Σj
k+1 and the diagonal terms reduce to

mii = N (μi
k+1|μi

k+1,Σ
i
k+1 + Σi

k+1)

= ‖4πΣi
k+1‖−1/2

(35)

Next the linear term wT
k+1y is made up of the individual components given by

yi =

q∑
i=1

wi
k

∫
N (fn

k (x
n
k ,uk, k)|μk+1,Σ

i
k+1 +Qn

k) N (xn
k |μj

k,Σ
j
k) dx

n
k (36a)

=

q∑
i=1

wi
kNij (36b)

Now with wT
k+1 y ≡ wT

k+1Nwk, each Nij component can be seen as

Nij =

∫
N (fn

k (x
n
k ,uk, k)|μk+1,Σ

i
k+1 +Qn

k) N (xn
k |μj

k,Σ
j
k) dx

n
k (37a)

= EN (xn
k |μj

k,Σ
j
k)

[
N (fn

k (x
n
k ,uk, k)|μk+1,Σ

i
k+1 +Qn

k)

]
(37b)

where the expectation above can be computed by the UT. Note that only the Gaussian
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sum approximation is used for the marginalized nonlinear portion of special case state-space

model.

The joint pdf p
(
xl
k,x

n
k

)
can be calculated as

p
(
xl
k+1,x

n
k+1

)
=

∫
p
(
xl
k+1,x

n
k+1|xn

k

)
p (xn

k) dx
n
k (38)

Note that since the conditional pdf p
(
xl
k+1,x

n
k+1|xn

k

)
is Gaussian and an analytical expres-

sion, it can be easily obtained as

p
(
xl
k+1,x

n
k+1|xn

k

)
= N

⎛
⎝
⎡
⎣f lk(xn

k ,u
n
k)

fnk (x
n
k ,u

n
k)

⎤
⎦ ,

⎡
⎣Ql

k 0

0 Qn
k

⎤
⎦
⎞
⎠ (39)

Substituting the Gaussian sum approximation for p (xn
k), an approximation for the joint pdf,

p̂ (xk), can be written as

p̂
(
xl
k+1,x

n
k+1

)
=

q∑
i=1

wi
k

∫
N

⎛
⎝
⎡
⎣f lk(xn

k ,u
n
k)

fnk (x
n
k ,u

n
k)

⎤
⎦ ,

⎡
⎣Ql

k 0

0 Qn
k

⎤
⎦
⎞
⎠N (

xn
k |μi

k,Σ
i
k

)
dxn

k (40)

The above integral can be considered as an expectation since

∫
N (fk(x

n
k ,u

n
k), Qk)N

(
xn
k |μi

k,Σ
i
k

)
dxn

k = EN(xn
k |μi

k,Σ
i
k)

[
N (fk(x

n
k ,u

n
k), Qk)

]
(41)

where

fk(x
n
k ,u

n
k) =

⎡
⎣f lk(xn

k ,u
n
k)

fnk (x
n
k ,u

n
k)

⎤
⎦

Thus, the marginalized Gaussian sum filter decreases the dimensionality of the opti-

mization problem in Ref. [2] but involves an extra expectation type integral in Eq. (41)

involving Gaussian pdfs, which can be evaluated using sigma points from the UT. How-

ever, the marginalized Gaussian sum approximation may yield more accurate results when

compared to the full-state Gaussian sum approximation using the same number of Gaussian

components for the nonlinear portion of the state-space model.b The increase in accuracy is

due to the fact that, in the marginalized approach, the same number of Gaussian components

are used to approximate a lower-dimensional pdf.

bBased on the assumption that increasing the number of Gaussian components will improve the approx-
imation.
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Simulation Results

As an example, consider a nonlinear free fall and parachute model. An 80-kg paratrooper

is dropped from an airplane at a height of 1200 m. After 5 seconds, the chute opens. The

paratrooper’s height as a function of time, y(t), is given by

ÿ(t) = −g + α(t)/m (42)

y(0) = 1200 m

ẏ(0) = 0 m/s

where g = 9.81 m/s2 is the acceleration due to gravity and m = 80 kg is the paratrooper’s

mass. The air resistance α(t) is proportional to the square of the velocity, with different

proportionality constants before and after the chute opens:

α(t) =

⎧⎨
⎩

K1 ẏ(t)
2, t < 5 s

K2 ẏ(t)
2, t ≥ 5 s

(43)

where K1 = 1/15 and K2 = 4/15.

A Monte Carlo simulation is run using 10,000 different initial conditions for a time du-

ration of 15 seconds, with a Δt = 0.1 seconds. The truth values are computed by taking

the average of the Monte Carlo (MC) data points at each time step for the nonlinear model

propagation. The simulations for the RB-AGS filter are run 1,000 times using random initial-

izations for the Gaussian components used. Next the average is computed for both methods

and used as the overall MC estimated state values and covariances. Lastly, the errors are

given by the difference between the MC truth and MC estimate.

In Figures 1(a) and 1(b), the evolution of the pdf of the RB-AGS is shown which clearly

indicates the non-Gaussian nature of the problem. In Figure 2 the propagated estimate

from the two filters are plotted for the last few iterations. The top plot shows the position

estimates, which are both close to the MC solution at each time step. However, the bottom

plot reveals the RB-AGS estimate follows the MC values closer than the standard AGS as

expected. The resulting estimates only differ by approximately a few tenths of a meter per

second between each other, but still obtains a positive improvement in accuracy.
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(a) PDF of RB-AGS Filter After 1 Second (b) PDF of RB-AGS Filter After 9 Seconds

Figure 1. PDF Evolution of RB-AGS Filter

Figure 2. Comparison of the MC Runs and the Propagation Estimates
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Conclusions

A marginalized adaptive Gaussian sum filter was presented here. With this new method

the linear portion of the state-space model is propagated using the linear Kalman filter and

the nonlinear portion using the Unscented Kalman Filter for each Gaussian component.

Reducing the linear portion of the state-space model to linear propagation equations places

the computational efforts on the nonlinear equations. Simulation results involving parachute

model indicates that more accurate results are obtained using the marginalized approach

versus the non-marginalized approach. The computational burden using the marginalized

approach may be higher or lower than the non-marginalized approach, which is problem

dependent.
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