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s u m m a r y

Monitoring groundwater drought using land surface models is a valuable alternative given the current
lack of systematic in situ measurements at continental and global scales and the low resolution of current
remote sensing based groundwater data. However, uncertainties inherent to land surface models may
impede drought detection, and thus should be assessed using independent data sources. In this study,
we evaluated a groundwater drought index (GWI) derived from monthly groundwater storage output
from the Catchment Land Surface Model (CLSM) using a GWI similarly derived from in situ groundwater
observations. Groundwater observations were obtained from unconfined or semi-confined aquifers in
eight regions of the central and northeastern U.S. Regional average GWI derived from CLSM exhibited
strong correlation with that from observation wells, with correlation coefficients between 0.43 and
0.92. GWI from both in situ data and CLSM was generally better correlated with the Standard Precipita-
tion Index (SPI) at 12 and 24 month timescales than at shorter timescales, but it varied depending on cli-
mate conditions. The correlation between CLSM derived GWI and SPI generally decreases with increasing
depth to the water table, which in turn depends on both bedrock depth (a CLSM parameter) and mean
annual precipitation. The persistence of CLSM derived GWI is spatially varied and again shows a strong
influence of depth to groundwater. CLSM derived GWI generally persists longer than GWI derived from
in situ data, due at least in part to the inability of coarse model inputs to capture high frequency mete-
orological variability at local scales. The study also showed that groundwater can have a significant
impact on soil moisture persistence where the water table is shallow. Soil moisture persistence was esti-
mated to be longer in the eastern U.S. than in the west, in contrast to previous findings that were based
on models that did not represent groundwater. Assimilation of terrestrial water storage data from the
Gravity Recovery and Climate Experiment (GRACE) satellite mission improved the correlation between
CLSM based regional average GWI and that based on in situ data in six of the eight regions. Practical
issues regarding the application of GRACE assimilated groundwater storage for drought detection are dis-
cussed. An important conclusion of this study is that model parameters that control the depth to the
water table, including bedrock depth, strongly influence the evolution and persistence of simulated
groundwater and require careful configuration for drought monitoring.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Drought is a natural hazard that has a broad range of social and
economic impacts, from decreased agricultural productivity to
restrictions on residential water use. Long lasting drought or fre-
quent severe drought events in arid and semi-arid regions can lead
to even more devastating consequences such as inadequate food

supply and desertification (Mishra and Singh, 2010). Monitoring
systems capable of detecting and mapping drought over large spa-
tial scales and with temporal continuity are essential for assessing
drought severity and extent, and for mitigating its impacts.

Droughts are generally initiated by below-normal precipitation
over a period of weeks or longer, and over time they can propagate
through different components of the hydrological cycle including
groundwater (Changnon, 1987). Groundwater drought, which is a
distinct class of drought, not a sub-class of meteorological, agricul-
tural, or hydrological drought (Mishra and Singh, 2010), has pro-
found impacts on ecosystems and on water supply for irrigation
and municipal use in regions where surface water stores are
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inadequate to meet demand. Groundwater’s response to hydro-
meteorological inputs is dampened by the processes of recharge
anddischarge,which act as a low-pass filter,with significant, persis-
tent events and seasonality retained (Eltahir and Yeh, 1999). The
unique temporal characteristics of groundwater storage directly
influence drought evolution in related processes. Peters et al.
(2005) modeled drought propagation from groundwater recharge
to groundwater discharge and found that the groundwater system
ignored the occurrence of less intensive drought events but exhib-
ited protracted periods of recovery from severe droughts. Improved
monitoring and understanding of groundwater drought and its rela-
tionship with other types of drought have the potential to improve
groundwater management as well as drought forecasting.

Due to a deficiency of in situ observations, operational drought
monitoring activities rely on subsurface wetness information from
land surface models (LSM) driven by observation based meteoro-
logical forcing fields (e.g., Mo, 2008), in some cases from assimilat-
ing satellite data (Houborg et al., 2012). Land surface models can
provide continuous and consistent fields of land surface states
(e.g., soil moisture) but they are limited by imperfect model phys-
ics and uncertainties in parameters and forcing fields. As a result,
modeled soil moisture and associated drought indices derived from
different combinations of LSMs and forcing fields can exhibit sig-
nificant variability, which complicates accurate drought quantifi-
cation (Mo, 2008; Sheffield et al., 2012; Xia et al., 2014a, 2014b).
Simplification of often complex hydrogeology and physics related
to parameterizations of groundwater, in those models that simu-
late groundwater at all (e.g., Niu et al., 2007; Koster et al., 2000),
leads to additional uncertainty in modeled groundwater and asso-
ciated drought indices.

Launched in 2002, the NASA/German Space Agency’s Gravity
Recovery and Climate Experiment (GRACE; Tapley et al., 2004)
maps Earth’s gravity field with enough accuracy to infer monthly
changes in terrestrial water storage (TWS), which includes soil
moisture, groundwater, snow, and surface waters, with a maxi-
mum spatial resolution of about 150,000 km2 at mid-latitudes
(Rowlands et al., 2005; Swenson et al., 2006). GRACE derived
TWS has been used to estimate declines of groundwater storage
(Rodell et al., 2009; Wada et al., 2010; Famiglietti et al., 2011;
Feng et al., 2013; Voss et al., 2013), and its lows are strongly corre-
lated with drought events (Andersen et al., 2005; Leblanc et al.,
2009; Li et al., 2012; Thomas et al., 2014). In recent years, assimi-
lation of GRACE TWS into land surface models has been demon-
strated as an effective means of disaggregating GRACE TWS
vertically, horizontally, and temporally while improving modeled
fluxes and states (Zaitchik et al., 2008; Su et al., 2010). This capa-
bility has enabled the application of GRACE observations for oper-
ational drought monitoring, which requires timeliness and high
spatial and temporal resolutions not achievable by GRACE alone
(Houborg et al., 2012; Rodell, 2012).

The objectives of this study were to evaluate a groundwater
drought index derived from groundwater storage simulated by
the Catchment Land Surface Model (CLSM; Koster et al., 2000)
using in situ groundwater observations, and to characterize the
temporal variability of the groundwater drought indicator includ-
ing its persistence and its relationship with precipitation anoma-
lies. In situ groundwater data records spanning 10–30 years were
gathered for eight semi-humid to humid regions in the continental
U.S. with varying hydrogeological properties. Groundwater
drought indices were created based on anomalies (relative to sea-
sonal mean) of monthly groundwater storage estimates from CLSM
and in situ measurements which were also standardized. The
groundwater drought indices were analyzed alongside the Stan-
dardized Precipitation Index and a soil moisture drought index in
order to examine the relationships among these indices and the
types of droughts they represent. GRACE TWS data (derived from

University of Texas, Center for Space Research, release 5 dataset;
Swenson and Wahr, 2006; Landerer and Swenson, 2012) was
assimilated into CLSM (as in Zaitchik et al., 2008) and the resulting
groundwater fields were evaluated using the in situ data. Implica-
tions for the application of GRACE assimilated groundwater storage
for drought monitoring are discussed.

2. In situ data and model estimates

Fig. 1 shows the locations of groundwater observation wells
located in Long Island (New York), New Jersey, Massachusetts,
Pennsylvania and four sub-basins of the Mississippi River basin:
the Upper-Mississippi, Ohio–Tennessee, Missouri and the com-
bined Red River and Lower Mississippi (hereafter referred to as
Red–LM). Depth-to-water measurements were obtained from the
USGS Office of Groundwater and the Illinois State Water Survey.
Criteria that were applied in selecting these observation wells for
this study included (1) they were determined to represent ground-
water levels in unconfined or semi-confined aquifers, (2) they were
not directly impacted by pumping or injections, and (3) the mea-
surements were frequent enough to capture the seasonal cycle
and generally were continuous over a period of ten or more years.
To produce a monthly time series, an average value was used when
multiple measurements were made in a given month. We con-
verted depth to water table measurements to water level anoma-
lies (deviations from the temporal mean) by taking the additive
inverse of the measurements and subtracting the long term mean
at each well. We then derived groundwater storage anomalies by
multiplying the water level anomalies by the specific yield. Follow-
ing Rodell et al. (2007), the specific yield was determined for each
location based on published studies in which it was estimated for
the same aquifer through field experimentation and/or numerical
modeling. When no aquifer-specific estimates could be found, a
specific yield value was assigned based on the range of values for
the geologic material as reported by Johnson (1967) and any other
available well-specific information, including the depth-to-water
variability itself. Missing monthly groundwater storage anomaly
values were filled using linear interpolation. Table 1 presents the
periods of the resulting data records (some wells may have shorter
records) for each region, the area, the number of wells, and the
averaged (over the well locations only) precipitation and well
properties.

CLSM simulates subsurface water storage changes within natu-
ral hydrological catchments instead of on regular grids (Koster
et al., 2000). Within each catchment three subsurface state vari-
ables, surface excess, root zone excess and catchment deficit, sim-
ulate water storage changes at different vertical depths based on
water and energy balance equations. CLSM does not explicitly sim-
ulate the groundwater table, but the catchment deficit variable,
which is defined as the amount of water, per unit area, needed to
fill a catchment to capacity, reflects changes in the shallow uncon-
fined aquifer. Groundwater storage can be derived from the catch-
ment deficit and the maximum capacity for water of each
catchment, which is determined by a bedrock depth parameter
and soil porosity. Following Houborg et al. (2012), CLSM bedrock
depths were increased by 2 m uniformly everywhere so that the
dynamic range of simulated TWS would be better aligned with that
of GRACE derived TWS, particularly during dry periods. More infor-
mation on calculating groundwater storage from CLSM catchment
deficit can be found in Zaitchik et al. (2008) and Li et al. (2012).

CLSM was forced using the Princeton meteorological dataset
(Sheffield et al., 2006), which provides more than 60 years
(1948–2010) of 3-hourly, 1� gridded fields of precipitation, solar
radiation, wind speed, surface pressure, surface air temperature,
and relative humidity. The precipitation data was derived from
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ground based observations which were then temporally and spa-
tially disaggregated using statistics derived from radar images.
Other fields were based on the National Centers for Environmental
Prediction–National Center for Atmospheric Research (NCEP–
NCAR) reanalysis. These were bias corrected using ground-based
observations. The 63 year CLSM simulation driven by the Princeton
forcing data was used to generate climatologies of the modeled
states.

Because the Princeton dataset ends in 2010, North American
Land Data Assimilation System (NLDAS-2) forcing fields (Xia
et al., 2012) were used to drive CLSM to present (they are also used
in producing near-real time drought indices). NLDAS-2 covers the
conterminous U.S. and part of Canada and Mexico, and the fields
are posted on a 0.125� grid with an hourly time step. NLDAS-2 pre-
cipitation is based on daily precipitation measurements at over
10,000 gauges which are then temporally disaggregated and gap
filled using radar images (Cosgrove et al., 2003). Other fields are
based on NCEP’s North American Regional Analysis. Bias between
different forcing data sets can cause discontinuities in model out-
put and impair drought detection. Therefore we bias-corrected
the NLDAS-2 forcing fields to the corresponding fields in the
Princeton data set before applying them for model simulation.

The assimilation of GRACE derived TWS anomalies into CLSM
was conducted using an ensemble Kalman smoother (Zaitchik
et al., 2008). Gridded GRACE TWS anomalies (Landerer and
Swenson, 2012) were first aggregated into larger natural river
basins or combined basins to construct basin-scale GRACE TWS
anomaly time series (see Houborg et al., 2012, for basin delinea-
tion). To convert the GRACE TWS anomalies to values compatible
with CLSM simulated TWS, the temporal mean of TWS

(see Zaitchik et al., 2008, for calculation of CLSM TWS) from an
open loop (no data assimilation) CLSM simulation was calculated
for each basin and added to the basin-scale GRACE TWS anomalies.
Further, the assimilation was conducted in two iterations because
GRACE provides monthly means as opposed to instantaneous
observations. First, the model was propagated forward from the
beginning of each month to the end of the month to obtain a
monthly TWS forecast, from which the innovation (the difference
between the modeled and assimilated estimates) was calculated.
In the second iteration, ensemble updates derived from ensemble
statistics and monthly innovations were applied to each daily state
for each ensemble member and fluxes were re-integrated based on
analysis and forcing fields. Both the open loop and GRACE
data assimilation simulations were driven by biased-corrected
NLDAS-2 forcing fields.

3. Drought indices

The Standardized Precipitation Index (SPI) was employed to
indicate precipitation anomalies over different timescales. SPI is
expressed as standard deviations from a long term mean of a nor-
mal distribution and is convenient for describing drought condi-
tions and for comparing drought severity across different regions
(McKee et al., 1993). In addition, SPI can be computed on different
timescales to examine drought temporal variability. All SPI values
used in this study were computed using Princeton precipitation
from 1948 to 2010.

Wetness percentiles based on subsurface state data are
frequently employed as indicators of drought and can be easily

Fig. 1. Locations of groundwater observation wells in Long Island (‘‘LI’’), New Jersey (‘‘NJ’’), Massachusetts (‘‘MA’’), Pennsylvania (‘‘PA’’) and the four sub-basins of the
Mississippi River basin, the Upper Mississippi (‘‘Up-Mis’’), the Ohio–Tennessee (‘‘Oh–Tn’’), the combined Red River and Lower Mississippi (‘‘Red–LM’’), and the Missouri.

Table 1
Data period of in situ groundwater observations, number of groundwater wells, area, average specific yield (Sy), average well depth (�dwell), average depth to water table (�dgw) and
average (over well locations only) annual precipitation (P) for 1948–2010.

ID Region Data period # of Wells Area (km2) Sy �dwell (m) �dgw (m) P (mm)

1 Long Island 1992–2011 17 2000 0.26 15 8 1147
2 New Jersey 2002–2011 27 14,200 0.17 27 6 1221
3 Massachusetts 1980–2011 48 28,400 0.20 9 4 1165
4 Pennsylvania 2002–2011 35 102,900 0.07 42 10 1045
5 Upper Mississippi 1980–2010 13 491,800 0.17 19 6 849
6 Ohio–Tennessee 1980–2010 10 528,100 0.09 38 7 1200
7 Red–LM 1980–2010 13 903,900 0.16 86 16 970
8 Missouri 1980–2010 19 1,324,000 0.14 30 10 576
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derived given a sufficiently long data record (Mo, 2008; Houborg
et al., 2012). The seasonality associated with subsurface states
may lead to non-Gaussian behaviors which may prevent accurate
identification of drought. This issue can be avoided by deriving a
separate climatology for each calendar month (Mo, 2008). Since
some of our in situ groundwater data records contain only 10 years
of data, which is too short to form a month-specific climatology,
the groundwater drought index (hereafter referred to as GWI) used
in this study was constructed using the following procedures.
Because shallow groundwater storage exhibits strong seasonality
(e.g., Eltahir and Yeh, 1999), we first removed the seasonal cycle
from themonthly time series of in situ and CLSM based groundwater
storage at each location. We then standardized the de-seasonalized
anomalies by subtracting the temporal mean and dividing by the
standard deviation to obtain GWI values for each data type.
Standardization, which is also used in calculating SPI, makes
average indices more representative of regional behaviors than
averaged groundwater storage anomalies, which can be skewed
by data at a few locations with larger dynamic ranges. Note that
the choice of specific yield affects in situ groundwater storage
estimates but has no impact on the associated GWI because of
the standardization procedure. A soil moisture drought index
(hereafter referred to as SMI) was also generated from CLSM
estimated monthly root zone moisture using the same procedure.

4. Results

Statistics for GWI derived from the Princeton forced CLSM sim-
ulation (1948–2010) are presented first to provide general charac-
teristics of groundwater drought. Results from NLDAS forced
simulations (2003-2011) are presented next with a focus on eval-
uating the impact of GRACE data assimilation on modeled ground-
water storage. In both cases the model simulations are evaluated
using in situ groundwater data. Finally, a method for reconciling
the Princeton-forced and NLDAS-forced simulations is presented.

4.1. GWI based on Princeton forced simulation

Fig. 2 shows region averaged (over well locations only) GWI
time series derived from in situ groundwater observations and
from the Princeton-forced CLSM simulation (among others), in
comparison with the 12 month SPI (SPI12). In general, both in situ
and Princeton-forced CLSM GWI represent major drought events
indicated by SPI12 with similar degrees of severity. For instance,
GWI and SPI12 identify the severe drought that occurred in the late
1980s in the Upper Mississippi and Ohio–Tennessee basins, with
index values near �2. SPI12 indicates that the same drought
affected the Missouri River basin until relief came in 1989, while
GWI, based on both the well data and CLSM, suggests that the
effects on groundwater lingered into the early 1990s. These lagged
effects likely reflect the requirement for surface and shallow sub-
surface water stores to be replenished before groundwater
recharge returns to normal, and the fact that the sustained
above-normal precipitation needed for recharge to accelerate in a
drier region (see Table 1 for mean annual precipitation) was not
seen until 1993. Note that GWI and SPI12 in large regions such
as the Mississippi sub-basins have smaller dynamic ranges than
those in smaller regions, due to the effect of spatial averaging.

On regional average, GWI derived from CLSM correlates well
with GWI from groundwater well data with the strongest correla-
tion observed in New Jersey and Upper-Mississippi and the lowest
in Long Island and Red–LM (Table 2). The deeper aquifers in Red–
LM (see well depths in Table 1) are not well represented by the
simple groundwater formulation in CLSM and respond differently
to atmospheric forcing than shallow aquifers do. The small size

of Long Island may have contributed to the low correlation because
discrepancies between the large scale Princeton forcing and what
occurred at individual well sites were not averaged out as much
as they would have been in a larger area. Table 2 also lists coeffi-
cients of correlation between GWI based on CLSM and that based
on in situ data computed at individual well locations and averaged
for each region. These correlation coefficients are significantly
lower, suggesting that model estimates and their associated
drought indices are more reliable at regional scales than at local
scales.

SPI is based on the accumulation of precipitation over a speci-
fied timescale. Thus, the correlations between GWI and SPI com-
puted for different timescales reflect the response rate of
groundwater storage to precipitation inputs. For instance, strong
correlation between GWI and 1-month SPI would suggest that
changes in groundwater levels are tightly coupled to short term
precipitation variability. Fig. 3 shows the correlation between
CLSM based GWI and SPI at scales of 6, 12 and 24 months. Mean
annual precipitation, CLSM bedrock depths and correlation
between CLSM derived SMI and SPI are also presented for compar-
ison. In general, GWI exhibits stronger correlation with SPI12 and
SPI24 than with SPI6, reflecting the slow or lagged response of
groundwater to surface wet and dry events. The GWI–SPI correla-
tions are strongly influenced by the depth to the water table. In
general, deeper water tables tend to be correlated with deeper bed-
rock and lower annual precipitation, as is the case for the area of
the Great Plains that stands out in the two top right panels of
Fig. 3. Deeper water tables in the Great Plains cause more attenu-
ation of high frequency atmospheric events and allow multi-year
cycles of groundwater variability to appear as seen in Fig. 2 for
Red–LM and Missouri. Not surprisingly, these are better correlated
with SPI of longer timescales. On the other hand, the shallower
groundwater in the Tennessee–Alabama area responds more
quickly to atmospheric conditions and is dominated by high fre-
quency variability (as seen in Fig. 2 for Ohio–Tenn) which is better
correlated with shorter timescale SPI.

Despite deep bedrock in the Pacific Northwest, GWI is better
correlated with SPI6 than with SPI12 and SPI24, because the high
rate of precipitation in the region sustains shallow water tables
in CLSM. Adjustments to model parameters such as those related
to runoff could cause changes in mean depth to groundwater in
CLSM, which would affect temporal variability of groundwater
(and GWI) and hence the detection of drought. Thus comparisons
such as this one between modeled and observed timescales of
groundwater response to various climatic conditions could be a
new useful form of model calibration for those models that simu-
late groundwater.

The SMI based on CLSM root zone soil moisture generally shows
stronger correlation with SPI in the eastern U.S. than in the west at
the scales examined here, reflecting stronger dependency of soil
moisture on precipitation in wetter environments. In addition,
the correlation (including spatial patterns and magnitudes)
becomes increasingly similar to the correlation between GWI and
SPI in the east as the timescale increases, suggesting that the long
term temporal variability of soil moisture is controlled in part by
shallow groundwater. In the west, SMI correlates more strongly
with SPI6 than with SPI12 and SPI24. In dry western regions, this
can be explained by soils that dry quickly between precipitation
events without regard to long term precipitation totals. In addition,
the influence of groundwater on soil moisture, which would have
provided longer scale temporal variability and thus stronger corre-
lation with longer term SPI, is also weak in dry climates due to dee-
per water tables. In the wet Pacific Northwest, the influence of a
shallow water table on the soil wetness profile and the lack of
drying between individual rainfall events made the correlation
of SMI–SPI similar to that of GWI–SPI. SMI exhibits the lowest
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correlation with SPI24 (compared to that with SPI6 and SPI12) in
the Great Plains and the southwestern U.S., in contrast to the
behavior of GWI, which reflects large inter-annual variability of
precipitation and the minimal influence of (deeper) groundwater
on soil moisture.

The correlation between CLSM-based GWI and SPI can be eval-
uated using the correlation between GWI derived from in situ data
and SPI. Fig. 4 compares regional average (over individual well
locations) correlation between SPI and GWI based on both in situ
observations and CLSM output (from three different simulations),
for each of the eight regions. GWI based on CLSM-Princeton exhib-
its the highest correlation with SPI, which is mainly due to the fact
that SPI was also derived from the Princeton precipitation data.
Simplified model physics may also cause model estimates to be
strongly correlated with the precipitation input. However, Fig. 4
shows that the timescale of maximum correlation for both mod-
eled and in situ GWI is similar in each region. In addition, the rela-
tionship between the correlation and scales takes similar form, in
particular, the quick peak followed by a gradual decline in the
wetter regions (the four northeastern regions and Ohio–Tennessee),

suggesting diminishing impact of precipitation variability on
groundwater after about a year; and a logarithmic function for
the two drier regions, the Upper-Mississippi and Missouri, suggest-
ing sustained impact of long term precipitation variability on
groundwater. These results suggest that the model, to a certain
degree, properly represented the correlation between in situ
groundwater and precipitation in the study regions.

The persistence of drought can be quantified using the charac-
teristic time, a weighted sum of autocorrelations, R, at different
lags (Mo and Schemm, 2008):

T0 ¼ 1þ 2
XN

i¼1

ð1� i=NÞRðiÞ ð1Þ

where i is the ith lag of the total number of lags (month), N, which is
30 for all results. Fig. 5 shows T0 of GWI based on CLSM versus T0 of
GWI based on groundwater observations at individual well loca-
tions. Since auto-correlation is sensitive to data lengths, locations
where the in situ data record is shorter than 120 months (4 times
the maximum lag) were excluded from this graph. CLSM derived

Fig. 2. Region-averaged GWI time series for in situ groundwater data (in black), the Princeton forced simulation (red), the NLDAS-2 forced open loop (in green), and the
NLDAS-2 forced GRACE data assimilation (in orange), in comparison with SPI12 (in blue).

Table 2
Correlation coefficients between region-averaged GWI from the Princeton forced CLSM simulation and from in situ groundwater observations. Numbers in parentheses represent
regional averages of correlation coefficients at individual well locations between the two sets of GWI. All correlations were calculated for the common period of in situ data (listed
in Table 1) and Princeton forced CLSM simulation (1948–2010).

Long Island New Jersey Massachusetts Pennsylvania Upper Mississippi Ohio–Tennessee Red–LM Missouri

0.58 (0.42) 0.87 (0.67) 0.71 (0.38) 0.75 (0.52) 0.90 (0.59) 0.69 (0.38) 0.43 (0.17) 0.74 (0.49)
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GWI generally exhibits longer characteristic time than observation
based GWI. The spatial and temporal interpolation required to gen-
erate forcing data and the use of climatology based data sets such as
vegetation greenness likely caused groundwater and soil moisture
to vary more smoothly, leading to stronger auto-correlation. Never-
theless, regional average characteristic time, represented by the x–y
coordinates of number symbols (representing region id; see Table 1),
based on CLSM agrees well with that based on observations. It can
be seen in Fig. 5 that groundwater in the wetter regions has shorter
characteristic times than that in drier regions. In situ groundwater
data in the Red–LM basin show stronger persistence than model-
based groundwater does, likely due to the deeper water table,
which, as previously noted, attenuates the high frequency events
and allows groundwater to develop stronger long term variability
and thus stronger auto-correlations at longer timescales. In

Pennsylvania, auto-correlation of observed groundwater declines
quickly with increasing time lags (not shown). This may be related
to more complex hydrogeology that is not represented in CLSM, as
many of the wells are sited in semi-confined aquifers.

Across the continental U.S., the characteristic time of CLSM
based GWI exhibits larger spatial variability than that of other
drought indices (Fig. 6). The spatial pattern of groundwater charac-
teristic time does not resemble that of SPI6 or SPI12. In fact, in the
Tennessee–Alabama and Northwest coastal areas where SPI6 and
SPI12 show the longest persistence, groundwater exhibits the
shortest persistence. The shallow groundwater tables in these
areas cause groundwater to respond quickly to precipitation. In
the Great Plains, where the water table is relatively deep and pre-
cipitation rates are lower, the shallow aquifers are mainly
recharged during infrequent episodes of significant precipitation,

Fig. 3. Mean annual precipitation (top left panel), CLSM bedrock depth (top right panel), correlations between the CLSM derived SMI and SPI at the 6, 12 and 24 month
timescale (lower left three panels) and correlations between the CLSM derived GWI and SPI (lower right three panels). SPI, SMI, and GWI were derived from Princeton
precipitation and the Princeton-forced CLSM simulation for 1948–2010.

6 B. Li, M. Rodell / Journal of Hydrology xxx (2014) xxx–xxx

Please cite this article in press as: Li, B., Rodell, M. Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J. Hydrol. (2014),
http://dx.doi.org/10.1016/j.jhydrol.2014.09.027



and natural discharge happens more slowly in response to
increased water levels, hence groundwater anomalies tend to per-
sist. These results suggest that depth to groundwater is a key factor
in determining groundwater persistence and its correlation with
SPI. Thus model parameters and physics that influence the water
table depth should be set with care if modeled groundwater is to
be used as an indicator of drought.

Persistence of SMI exhibits spatial patterns similar to those of
GWI in the eastern half of the U.S., reflecting the strong influence
of groundwater on soil moisture. Soil moisture generally shows
greater persistence in the east than in the west, which is opposite
to the findings by Sheffield et al. (2012) and Mo and Schemm
(2008), who relied on soil moisture estimates frommodels without
any groundwater component. This result suggests that shallow

groundwater can significantly affect soil moisture and thus its per-
sistence in wet climates. In the Mountain West, soil moisture
exhibits longer persistence than the surrounding areas, similar to
that of precipitation. Reduced evapotranspiration at high eleva-
tions and seasonal snow’s dominance of the water cycle result in
longer persistence of soil moisture. In the Great Plains, soil mois-
ture exhibits the lowest persistence due to high rates of evapo-
transpiration and the lack of groundwater influences.

4.2. GWI based on NLDAS-forced simulations

As indicated earlier, the NLDAS forcing fields, bias corrected to
match the Princeton dataset, were used for the open loop and
GRACE data assimilation simulations which are also plotted in
Fig. 2. GWI from these two simulations fluctuates more than
Princeton based GWI, due to the higher spatial and temporal reso-
lutions of NLDAS. As shown in Table 3 (2nd and 3rd rows), these
higher quality forcing fields improved the correlation between
CLSM based GWI and observation based GWI in the four northeast
regions, but they had little impact on the four Mississippi sub-
basins. It is possible that the benefits of higher resolution forcing
fields would have been more apparent had the in situ observations
been more densely spaced.

More importantly, Table 3 (3rd and 4th rows) shows that
GRACE data assimilation improved the correlation between regio-
nal average model-based GWI and GWI based on in situ data in all
regions except Upper Mississippi and Long Island. Long Island is
too small, narrow, and close to the ocean for GRACE to measure
effectively. Similarly, due to the coarse resolution of GRACE obser-
vations, GRACE data assimilation did not consistently improve the
correlation between CLSM estimates and in situ data at individual
well locations (not shown).

Fig. 4 shows that the timescale of maximum correlation
between the GWI of NLDAS-forced simulations and SPI is similar
to what has been discussed earlier. In general, GRACE data assim-
ilation lowered the correlation with SPI of longer scales while
exerting minimal impacts on the correlation with SPI of shorter

Fig. 4. Regional average (over well locations) correlation coefficients between SPI and GWI of in situ groundwater (‘‘gw well’’), Princeton forced CLSM estimates, the open
loop (‘‘OL’’), and GRACE data assimilation (‘‘GRACE DA’’).

Fig. 5. The characteristic time (T0) of GWI based on Princeton-forced CLSM output
versus that based on in situ groundwater data at individual wells. Regional average
characteristic time is represented by the x and y coordinates of number symbols
(representing region id). CLSM estimates from the same period of in situ
groundwater were used in calculating auto-correlation, and locations with less
than 120 months of in situ data were excluded.
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scales. This is due to the fact that GRACE data assimilation often
exerts the largest impact on maxima and minima of groundwater
storage and thus has a stronger influence on inter-annual variabil-
ity. This effect can be seen in Fig. 7 which shows regional average
(over well locations only) groundwater storage anomalies (relative
to temporal means of each data set) from the open loop and the
GRACE data assimilation simulations and in situ groundwater data.
The open loop exhibits larger dynamic ranges than in situ ground-
water in all regions except in Red–LM and Missouri. In all cases,
GRACE data assimilation nudged model estimates towards in situ
observations, demonstrating the value of GRACE TWS in conjunc-
tion with data assimilation for improving regional scale groundwa-
ter storage estimates and for drought monitoring.

GRACE data assimilation reduced groundwater persistence
slightly in all regions (not shown), which may be a side effect of
data assimilation, in general. When assimilation increments are
applied, the continuity of estimated states is disrupted and thus
the auto-correlation and characteristic time are reduced. The per-
iod of GRACE data assimilation (2003–2011) may also be too short
to derive reliable auto-correlation values at larger lags where
GRACE data assimilation has the most impact. This issue should
be revisited when more GRACE data (and in situ data for compar-
ison) become available.

4.3. Reconciliation of model estimates from different forcing data sets

To produce the weekly, GRACE data assimilation based drought
indicators that are distributed by the National Drought Mitigation

Center (NDMC; see http://drought.unl.edu/MonitoringTools/NASA-
GRACEDataAssimilation.aspx), a climatology was derived from
Princeton forced CLSM output, while the NLDAS forced GRACE data
assimilation is used for near-real time model simulation and for
generating drought indices. As indicated earlier, differences
between the two forcing data sets can lead to discrepancies in esti-
mated states and affect the accuracy of wetness rankings. This can
be seen in Fig. 8, where groundwater storage from CLSM forced by
unaltered NLDAS meteorology is biased low relative to groundwa-
ter from the Princeton climatology run (only data from 1990 to
2010 are shown). Bias correction of the NLDAS forcing fields to
Princeton reduced the output groundwater bias (as shown by the
open loop simulation) but left intact a dynamic range that was sig-
nificantly larger than that of the Princeton forced output. GRACE
data assimilation created additional biases, which would have led
to wetter drought indices. The solution is to scale the statistics of
the GRACE data assimilation output fields to be consistent with
those of the Princeton forced climatology simulation:

gscaled ¼ ðgN � �gNÞrP=rN þ �gP ð2Þ

where g represents groundwater storage at any given location; sub-
scripts P and N represent Princeton and NLDAS-forced (in our case,
with GRACE data assimilation) estimates; the upper bar and r rep-
resent the temporal mean and standard deviation of groundwater
storage, respectively. Eq. (2) ensures that the mean and standard
deviation of GRACE data assimilation based groundwater storage
matches those of the Princeton forced simulation during the
overlapping period (2003–2010). Fig. 8 shows that applying this

Fig. 6. The characteristic times (month) of SPI6, SPI12, SMI, and GWI derived from the Princeton-forced CLSM simulation mapped over the conterminous U.S. All calculations
were based on data from 1948 to 2010.

Table 3
Correlation coefficients between region-averaged GWI derived from Princeton forced simulation (2nd row), the open loop (3rd row), the GRACE data assimilation (4th row) and
the average GWI based on in situ groundwater. The correlation was calculated for 2003–2010, the common period of all data sets.

Long Island New Jersey Massachusetts Pennsylvania Upper Mississippi Ohio–Tennessee Red–LM Missouri

Princeton 0.43 0.77 0.69 0.72 0.72 0.92 0.69 0.77
NLDAS OL 0.60 0.85 0.72 0.78 0.73 0.89 0.55 0.73
GRACE DA 0.56 0.88 0.76 0.80 0.73 0.92 0.67 0.84
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scaling method reduced the dynamic range of estimates from
GRACE data assimilation but did not change their temporal
variability. Alternatively, estimates from the Princeton forced
simulation and GRACE data assimilation can be standardized,
separately, before a climatology and the indices are created.

5. Summary and discussions

We evaluated a groundwater drought index that is based on
groundwater storage simulated by the Catchment Land Surface
Model. We found that the model based GWI was strongly corre-
lated with GWI derived from in situ groundwater storage estimates
averaged over most of the study regions. Averaged over individual
well locations, the correlations between the two GWIs were signif-
icantly lower, probably because of the coarseness of the model
input forcing and parameter fields. We conclude that the CLSM
based GWI is more reliable at regional scales than at local scales.

The CLSM based GWI generally exhibits stronger correlation
with SPI at longer timescales such as SPI12 and SPI24, reflecting
the significantly lagged response of groundwater to precipitation
anomalies. The correlation is influenced by the bedrock depth,
which controls, along with mean annual precipitation, the depth

to the water table. In the Great Plains, where the bedrock is deep,
GWI is less correlated with SPI6 than in other regions. In the east-
ern U.S. (especially the wetter Tennessee–Alabama area), GWI is
more strongly correlated with shorter timescale SPI where the
water table is shallow, which in turn tends to occur where annual
precipitation is greater and bedrock depths are shallow. Model
based GWI was found to be best correlated with SPI on roughly
the same timescales as in situ based GWI correlating with SPI,
which provides some confidence in that CLSM represents ground-
water variability with enough accuracy to be useful for drought
monitoring.

Similarly, the characteristic time of CLSM based groundwater is
largely controlled by the depth to water, which itself is related to
bedrock depth, porosity and annual precipitation. The longest
characteristic times were found in the Great Plains, which indicates
that groundwater drought tends to persist there longer than in
other regions. Further examination revealed that CLSM groundwa-
ter storage estimates in the Great Plains are often dominated by
multi-year or decades-long cycles (not shown). Although similarly
long cycles were also observed in some in situ groundwater obser-
vations in the region, the co-incidence of long characteristic times
with deep bedrock in the model suggests that further study is war-
ranted to ensure that the bedrock depth is appropriately set in
CLSM and that the resulting characteristic times are realistic. Sim-
ilarly, a model that does not generate enough baseflow may accu-
mulate too much groundwater storage during wet years (Li et al.,
2012), leading to longer term variability and thus amplified persis-
tence in groundwater. Lo et al. (2010) showed that water table
dynamics can be better simulated by calibrating model parameters
using a combination of gauged stream flows and GRACE TWS.
Recalling that the CLSM bedrock depth was increased by 2 m to
better match the dynamic range of modeled TWS to that of GRACE
TWS, it is possible that modeled groundwater variations and per-
sistence would be further improved by adjusting the parameters
that control base flow generation.

In any case, when the persistence of groundwater is very long, it
raises the question of groundwater’s value as a drought indicator.
What is the value of an indicator that lags years behind the onset

Fig. 7. Regional average (over well locations only) monthly groundwater storage anomalies (relative to temporal mean) from the NLDAS-forced open loop, GRACE data
assimilation simulation, and groundwater observation wells.

Fig. 8. Daily groundwater storage estimates at a northwestern Colorado catchment
from Princeton and NLDAS forced simulations, the open loop (forced by NLDAS bias
corrected to Princeton), GRACE data assimilation (forced by NLDAS bias corrected to
Princeton), and scaled GRACE data assimilation output, for 1990–2010.
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and conclusion of a drought or pluvial event? It is possible that the
percentile based groundwater index is not a useful indicator in
regions, such as the Great Plains, where groundwater’s response
to meteorological factors is particularly slow.

This study also showed that groundwater affects soil moisture
in wet regions where the water table is shallow. In those situations,
the soil moisture drought index (SMI) derived from CLSM often
correlates strongly with longer timescale SPI, and soil moisture
persistence exhibits spatial patterns similar to those of groundwa-
ter persistence. It was also found that CLSM soil moisture persists
longer in the eastern U.S. than in the west, which is the opposite of
the conclusion of Mo and Schemm (2008) and Sheffield et al.
(2012), both of whom used models that lacked a groundwater
scheme. Establishing with certainty whether soil moisture persists
longer in the eastern or western U.S. would require an analysis of
in situ soil moisture, which is beyond the scope of this study.

In most regions, GRACE data assimilation improved the tempo-
ral correlation between regional average CLSM based GWI and GWI
derived from in situ data. With coefficients of correlation ranging
from 0.56 to 0.92, it provides some justification for the use of
GRACE data assimilation within CLSM for large scale drought mon-
itoring. While the improvements due to GRACE data assimilation
were small in several cases, it should be considered that the open
loop simulation was forced by high quality NLDAS-2 data, resulting
in correlation coefficients that were already high. Larger improve-
ments would be expected in areas where the forcing data were not
as good (while the quality of the GRACE observations is fairly uni-
form within a given latitude band). Further, we anticipate that
direct assimilation of gridded GRACE TWS data fields (as opposed
to averaging and assimilation over river basins) would preserve
more information in the data and thus improve the model esti-
mates more.

A shortcoming of this study is that the CLSM based GWI was not
evaluated in an arid climate, owing to the scarcity of groundwater
observations that meet our criteria (see Section 2) in the south-
western U.S. That would have been a good test, considering that
uncertainties in forcing fields and sensitivities of modeled states
to forcing errors are generally higher in dry regions (Gottschalck
et al., 2005). Further, the importance of groundwater as a resource,
particularly during droughts, is heightened in arid and semi-arid
environments where other sources of water (rainfall and surface
waters) are strained by the needs of people and agriculture (e.g.,
Castle et al., 2014). Groundwater abstractions are not simulated
by CLSM, which can be problematic where the rates of abstraction
are high. GRACE detects groundwater depletion caused by abstrac-
tions, thus GRACE data assimilation helps to mitigate related
model errors to some extent. However, when abstractions cause
massive groundwater depletion over an extended period of time,
the dynamic range of modeled groundwater maybe insufficient
to accommodate the assimilated values (Zaitchik et al., 2008). In
those cases, percentile based groundwater drought indices would
lose their meaning even if the impacts of abstractions were repre-
sented by the model, and it may in fact be preferable to ignore
them and instead isolate the groundwater variability effected by
meteorological conditions. For example, in the groundwater
drought indicator maps distributed by the NDMC, the southern
High Plains aquifer in the Texas panhandle would be always red
(exceptional drought) if the model simulated human-induced
depletion of that aquifer, which would be worthless for drought
monitoring.

In conclusion, groundwater simulation through CLSM in con-
junction with GRACE data assimilation is capable of providing
information for groundwater drought monitoring that is much
needed for various water management, agricultural, economic,
and social applications. The value of a distributed model like CLSM
lies in its ability to simulate groundwater variability with sufficient

realism, as shown in this study, by driving a set of physical equa-
tions that represent water and energy cycle processes including
evaporation and infiltration with high quality meteorological
fields. Groundwater variability is controlled by a combination of
meteorology, topography, hydrogeology, land cover, and in some
cases water management. Hence groundwater drought is not a
sub-class of meteorological or hydrological drought and it should
be monitored independently and used to augment drought severity
and impact assessments. Model based groundwater variations are
imperfect, but in most of the world such information is unavailable
at resolutions finer than what is provided by GRACE. We believe
that combining the higher resolution of a model such as CLSMwith
the realism of GRACE through data assimilation is currently the
best solution for global groundwater monitoring. Finally, we
emphasize the importance of evaluating model estimates using
in situ data including soil moisture, groundwater, and runoff, and
applying the results to perform regional refinement of the model
and the data assimilation approach, which will lead to improved
groundwater drought quantification.
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