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Abstract

Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate 
Variables by the Global Climate Observing System. To contribute to climate research, the 
satellite ocean color data records resulting from successive missions need to be consistent and 
well characterized in terms of uncertainties. This chapter reviews various approaches that can be 
used for the assessment of satellite ocean color data. Good practices for validating satellite
products with in situ data and the current status of validation results are illustrated. Model-based 
approaches and inter-comparison techniques can also contribute to characterize some 
components of the uncertainty budget, while time series analysis can detect issues with the 
instrument radiometric characterization and calibration. Satellite data from different missions 
should also provide a consistent picture in scales of variability, including seasonal and inter-
annual signals. Eventually, the various assessment approaches should be combined to create a 
fully characterized climate data record from satellite ocean color.
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1. Introduction

Standardization of methods to assess and assign quality metrics to satellite ocean color 
radiometry and derived geophysical products has become paramount with the inclusion of the 
marine reflectance and chlorophyll-a concentration as Essential Climate Variables (ECV; [1])
and the recognition that optical remote sensing of the oceans can only contribute to climate 
research if and when a continuous succession of satellite missions can be shown to collectively 
provide a consistent, long-term record with known uncertainties. In 20 years, the community has 
made significant advancements toward that objective, but providing a complete uncertainty 
budget for all products and for all conditions remains a daunting task. In the retrieval of water-
leaving marine reflectance from observed top-of-atmosphere radiances, the sources of 
uncertainties include those associated with propagation of sensor noise and radiometric 
calibration and characterization errors, as well as a multitude of uncertainties associated with the
modeling and removal of effects from the atmosphere and sea surface. This chapter describes 
some common approaches used to assess quality and consistency of ocean color satellite 
products and reviews the current status of uncertainty quantification in the field. Its focus is on 
the primary ocean color product, the spectrum of marine reflectance Rrs, but uncertainties in 
some derived products such as the chlorophyll-a concentration (Chla) or inherent optical 
properties (IOPs) will also be considered.



2. Validation of satellite products

The primary method to assess satellite data is through direct comparison of a satellite product 
with near contemporaneous and co-located in situ measurements of the same quantity. Using the 
field data as a reference, such comparisons can provide estimates of the uncertainty associated 
with the satellite product. For derived products that rely on empirical algorithms, the in situ
validation dataset should be independent of any measurements used to define or tune the satellite 
retrieval algorithm. Unfortunately, the collection of high quality field measurements of optical
radiometry for validation is challenging due to difficult environmental conditions, cloud cover
and other factors that restrict remote observation, and logistical difficulties of ocean access, thus 
leading to a relatively limited geographic and temporal sampling of available in situ validation 
data. As an alternative, simulated data sets have been used for validation studies, since they can 
be considered error-free and can cover a large range of optical conditions [2]. They can also be 
produced at any desired wavelengths while validation of multi-spectral quantities with field data
may be hampered by differences in wavelengths between the quantities to be compared. These 
differences need to be considered and possibly corrected in the validation exercise and possibly 
corrected for (see Section 3.1). This Section focuses on assessment of satellite product 
uncertainties through comparisons with field observations, including a description of validation 
protocols and metrics and a discussion on validation results. Error propagation techniques and 
use of atmospheric correction and bio-optical models to assess confidence intervals are also 
briefly reviewed.

2.1 Validation protocol

The validation protocol needs to be well documented to ensure consistency of approach between 
missions and products and reproducibility between studies. The first step is the construction of 
the validation, or match-up, data set. A match-up refers to the meaningful association of a 
satellite value with its counterpart from field observations. This entails the extraction from the 
overall satellite record of a subset of pixels or grid points, usually a square of NsxNs elements 
centered on the location of the field value and separated in time by less than a small interval t. 
From the extracted values, one can derive three main statistics: i) the fraction fv of valid 
retrievals among the NsxNs potential values, ii) the average (or median) satellite value, and iii) 
the spatial coefficient of variation (CVs), which is the ratio of the standard deviation within the 
NsxNs valid satellite measurements and the average value. A high CVs means that the satellite 
retrievals show a large heterogeneity, which in turn suggests a reduced probability that the in situ
point measurement is representative of the region observed by the satellite. In the interval ± t, 
there might be Nt field observations collected, so that an average (or median) value and a 
temporal CVt can also be calculated. In that case, a high CV is indicative of changing conditions 
at the location of the measurements. Eventually, the match-up selection protocol defines the
allowed values for maximum t, minimum fv and maximum CVs, as well as minimum Nt and 



maximum CVt if applicable. Then, the satellite average (or median) value can be compared with 
the average field observation or its datum closest to the satellite overpass time.

The choice of the threshold values should allow for a sufficient number of match-ups to conduct 
a proper statistical analysis while maintaining the validity of the comparison. This compromise 
should take into account the expected environmental conditions. For instance Bailey and Werdell 
[3] have selected Ns=5, t=3-h, fv of 50% and CVs of 15% for a global validation analysis that 
relies on many points in open ocean where conditions are thought more stable. Zibordi et al. [4]
have used Ns=3, t=2-h, fv of 100% and CVs of 20% for validation at a coastal station, the 
Acqua Alta Oceanographic Tower (AAOT) located in the northern Adriatic Sea. Recommended 
values can be given, with Ns of 3 to 5, t of 1 to 4-h, fv larger than 50%, and CVs of less than 
20% for some of the products being validated (typically for Rrs at a selected wavelength). The 
choice of threshold values should be adapted to the conditions associated with the validation 
exercise, with dynamic coastal environments generally requiring more stringent criteria. It is 
good practice to test several thresholds to assess how validation statistics are affected. For 
instance, Feng et al. [5] showed how validation statistics improved with more stringent match-up 
selection criteria. Such an analysis can also provide insight into the degree of representativeness
of the comparison, quantifying the discrepancy in scale and time of observation between the two 
measurement systems. For Rrs validation, it is also recommended to operate the selection 
protocol on the spectrum as a whole and not independently on separate bands; indeed the 
selection of varying numbers of data points for the different channels hinders a consistent 
assessment over the spectral domain of interest.

Ideally, a validation analysis should be based onintegrate the knowledge of the uncertainties 
associated with the field observations. Comprehensive validation exercises often combine in situ
data collected by a variety of disparate systems and investigators using different instruments and 
measurement techniques. In such cases it is recommended to assess the dependence of the 
validation results on the different data sets gathered for the exercise. More generally, if enough 
in situ data are available, the sensitivity of the validation statistics to particular sets of match-ups 
can be quantified by bootstrapping techniques [6].

Figure 6.1 shows an example of match-ups obtained at the AAOT site for the sensor MODIS-
Aqua, both in terms of reflectance Rrs and aerosol optical thickness A. Over the period 2002-
2012, the number of match-ups found for Rrs is 549, with Ns s=20% for Rrs

between 488 and 547 nm. More match-ups are obtained for the aerosol products, with the added 
conditions of Nt=2 and CVt A at 488 nm.

2.2 Validation metrics

There are a host of statistical metrics that can be used to compare two data sets, but a minimum 
set for validation would include the number of match-ups (together with the number of potential 



match-ups) and estimates of the scatter and systematic difference (bias) between the two 
distributions. According to the range of values considered, these statistics can be expressed as 
absolute or relative values, with a prior log transformation typically applied for Chla or IOPs.
For radiometric products, it is important to document both a measure of uncertainty in 
radiometric units (sr-1 for Rrs) and a measure of relative uncertainty. Indeed, relative differences 
tend to increase when the values of Rrs are small, up to tens of percent if the in situ value is near 
zero. In that case, the difference in radiometric units is more meaningful. 

Relative differences between satellite products (yi)i=1,N and field observations (xi)i=1,N can be 
expressed in %, and computed in terms of mean absolute difference or mean difference (i.e., 
bias) with respect to the field observations:
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while the equivalent metrics in geophysical units can be computed as:
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where the overbar means average values. Root-mean-square differences between the satellite and 
in situ measurements can be written as:
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The total root-mean- to
unbiased (or centered) root-mean- u quantifying non-systematic effects. In the 
above equation, the summation operator has been used (which means that quantities are 
averages), but other operators can be used preferred like the median, or some form of inter-
quantile statistics. Other metrics can be included like the coefficient of determination, r2, slope 
and intercept of linear regression, average ratios, etc.s… For spectral quantities like Rrs input to 
bio-optical algorithms, quantifying how well the spectral shape is respected by the satellite 



products is also worthy information, that can be quanti 2 distribution measuring the 
goodness of fit between in situ and satellite Rrs normalized at one wavelength of reference [7].

To document differences (including their systematic component), it is recommended to compute 
u As illustration, Figure 6.2 shows spectral target diagrams that 

u various sensors and two validation sites, AAOT and the 
Marine Optical Buoy (MOBy) near Hawaii [8].
point and the origin (6). u) decreases with increasing wavelength for 
MODIS compared to MOBy data, with virtually no bias, which is expected considering the role 
of that site for vicarious calibration [9]. This is also true for the validation results obtained at 

e for MODIS, and 
positive for MERIS and SeaWiFS (validation results for MODIS are the same as shown on 
Figure 6.1).

2.3 Analysis of validation results

Performing accurate radiometric in situ oceanographic measurements to derive Rrs is difficult 
and expensive, with the implication that match-ups with satellite data are not abundant and are 
unevenly distributed in space and time [3]. More match-ups are available for Chla, although 
large expanses of ocean remain devoid of validation data [10]. Using the SeaWiFS Bio-optical 
Archive and Storage system (SeaBASS) [11], a global community field data repository for 
marine bio-optical measurements, and following the standard protocols in [3], one obtains less 
than 1000 match-ups for the 13-year SeaWiFS mission (numbers vary by wavelength). 

Figure 6
data. MODIS- 6.3a), SeaBASS, 
BiOMaP (representative of European waters [12]), and MOBy, as well as various AERONET-
OC sites [13] located in the northern Adriatic Sea (AAOT), Baltic Sea (Gustaf Dalen, GDLT, 
and Helsinki, HLT, lighthouseslight towers), Black Sea (Gloria, GLR), Chesapeake Bay entrance 
(COVE), coastal Gulf of Mexico (WAVE), coastal southern California (USC), and Persian Gulf 
(Abu al-Bukhoosh Platform, AABP). The number of match-ups varies from 15 (AABP) to 549 
(AAOT); the number of wavelengths represented is also variable (e.g., the SeaBASS validation 
results are shown at 412, 443, 488 and 667 nm only). Some spectra show a value at 547 and 555 
nm, the latter being a band not originally intended for ocean color applications by the MODIS 
mission -1 at 412 nm, down to between 
0.0002 to 0.0004 sr-1 at 667 nm (with the exception of MOBy is lower).
are partly conditioned by the actual Rrs

bands, whereas it is lowest at the Baltic sites in the blue part of the spectrum, where Rrs is often 
very low.



different missions processed with the same NASA-standard algorithms (Figure 6.3b at AAOT).
Results for standard ESA MERIS products are shown on Figure 6.3c, for the Bohai Sea (N=17)
[14], the northwest Mediterranean Sea (N=64 except at 412 nm) [15], South African coastal 
waters (N=14) [16], and AERONET-OC sites in the northern Adriatic Sea (AAOT, N=86), 
Baltic Sea (GDLT and HLT, N=39) and Black Sea (GLR, N=12) [17]. For completeness, Global 
Imager (GLI) results are also shown (N=435 at 443 nm) [18]
high, particularly in the blue. The case of the Bohai Sea is fairly unique and associated with 
highly scattering waters with Rrs maxima beyond 550 nm [14]
confirmed with more match-ups.

Finally, interesting studies have been done to compare atmospheric correction schemes with the 
same validation data set [7]. Two examples of such exercises are reported on Figure 6.3d, 
comparing SeaDAS results with other schemes [19,20]. Validation statistics appear fairly 

dard scheme often being 
the lowest. 6.3 could be presented for other statistical 
indicators. Relative differences, , would show more variations particularly between 

of percent.
inverted image of Rrs

that may exceed 100% at 412 nm in absorbing waters like in the Baltic Sea [4]. 

Other Rrs validation exercises have of course been conducted, applied to specific sensors like 
OCTS [21],VIIRS [22], or GOCI [23,24], specific coastal regions (e.g., coastal Chinese waters 
[25]), or to test alternative atmospheric corrections [26,27]. Many of these studies suffer from a
limited number of match-ups often collected in restricted geographical areas. More work is 
needed to extend, analyze and understand validation results across missions, atmospheric 
correction schemes, and field data sets or locations, with the goal to enable the extension of point 
validation results sparsely distributed in space to the global ocean. This issue will be further 
discussed in this and the following sections.

Validation analyses ideally should go beyond simply providing statistics for a given location 
and/or season by investigating possible dependences of the validation results on time or season, 
geometry of observation and illumination, atmospheric conditions, or marine properties. The 
benefit can be two-fold, as such studies can provide insights into the reasons for discrepancies 
between satellite and in situ values, and also inform on other locations and times where these 
validation statistics may be applicable. Such analyses require a significant number of match-ups, 
and are therefore few in number.

For the AAOT site, Mélin et al. [28] studied the dependence of validation results for Rrs on a 
Case-1 versus Case-2 water partition, water single scattering albedo, angles of observation and 
illumination, air mass and aerosol optical thickness, using approximately 80 SeaWiFS match-



A, with biases of Rrs significantly increasing 
A. At the same site, for an updated atmospheric 

correction applied to SeaWiFS and MODIS, Zibordi et al. [29] highlighted an increase in bias 
and RMS difference for Rrs in winter and for high solar zenith angles. The number of match-ups 
was much larger for this analysis based on field observations collected by autonomous 
instruments. For the same match-up data set, no significant multi-annual trends were found for 
Rrs validation statistics [30]. Using the large number of match-ups found at the AAOT site, 
D’Alimonte et al. [31] formulated a regional model of the differences between satellite and field 
data of Rrs that depended mainly on Rrs itself; another regional model has been defined for Baltic 
sites [4]. This work suggests that these differences could vary according to water optical 
properties.

Moore et al. [32] explored this hypothesis further in the context of optical classification applied 
to Chla uncertainty determination. Chla uncertainty statistics were first determined for a pre-
defined set of optical water types (or classes), allowing the extension of these statistics to any 
location on the basis of the class membership of the corresponding Rrs. Assuming that 
uncertainties are indeed specific to each water type, such an approach can be used to derive 
global maps of Chla uncertainties. Optical water types have also been used to analyze and 
discuss validation results for Rrs in coastal regions [20]. A similar exercise has been performed 
for the match-ups gathered at the AAOT site using a set of classes defined by Moore et al. [33]. 
Figure 6.4 shows Rrs associated with the considered water types (type 9 is actually an ensemble 
of 8 sub-types originally developed to represent coccolithophore blooms) as well as validation 
statistics for the optical types found in the validation data set. The RMS difference increases 
from types 3 and 4 to type 7, while that for types 6 and 9 are close to the overall average. 
Relative differences tend to be lower for clearer waters (type 3) in the blue part of the spectrum 

hile they are higher in the red part where the signal is lower (types 3, 4 or 6). Under 
the assumption that validation results obtained here are inherent to each optical water type, they 
could be tentatively extended to similar water types in other regions. A merit of such an 
approach is that its uncertainty estimates remain linked to field data. 

2.4 Model-based approaches to uncertainty analysis and error propagation 

Models themselves can be used to support the assessment of satellite products, a path explored 
mostly for bio-optical algorithms. The retrieval of bio-optical properties from ocean color 
radiometry often involves the spectral matching of a bio-optical model to the spectral shape of 
the retrieved Rrs, and this inversion process can provide valuable information on the 
uncertainties associated with the algorithm design or sensitivity to radiometric error. The 
uncertainties associated with Rrs, if known, are propagated through the bio-optical inversion and
compounded by two additional factors: i) the approximations of the bio-optical model in its 
description of the relationship between inherent and apparent optical properties, and its 



parameters describing the spectral shape of IOPs, and ii) the ambiguity of the bio-optical model, 
which means that the solution to the inversion is not necessarily unique [34,35].

Some studies have addressed uncertainties related to the parameters of the bio-optical model, 
such as the phytoplankton specific absorption, the spectral shape of the backscattering coefficient 
or of the absorption by chromophoric dissolved organic and detritus matter (CDM). Lee et al. 
[36] applied error propagation to an algebraic bio-optical model [37] to determine the 
uncertainties of the derived IOPs as a function of model parameters and the uncertainty of total 
absorption at a reference wavelength. The effect of the uncertainties associated with bio-optical 
parameters (e.g., defining the spectral shapes of phytoplankton and CDM absorption and 
backscattering coefficient) has been tested by running the inversion with different sets of 
parameters [38,39]. Wang et al. [38] studied the dispersion of the retrievals as a measure of 
output uncertainty. These approaches did not consider the other sources of uncertainties,
including those of the input Rrs. Non-linear inversion of a bio-optical model provides interesting 
information on the uncertainty of the output IOPs from the process of minimization of a cost 
function [40,41,42,43]. Additionally, cases with an unsatisfactory goodness-of-fit can be filtered 
out as out-of-scope conditions. The uncertainty information derived from the inversion process
can accompany the retrieved IOP maps and is sometimes referred to as uncertainty maps, though 
inversion confidence would be more appropriate terminology. The inversion confidence can 
account for the variance associated with the input Rrs, but it is only related to how the forward 
model fits the input Rrs data, depending on the shape of the selected minimum of the cost 
function, and does not cope with biases affecting Rrs or uncertainties on model formulation and 
parameters. Development of quality indicator maps together with derived products has also been 
performed using neural networks [e.g., 44].

Some atmospheric correction schemes are also based on the minimization of cost functions 
[45,46,47] and are amenable to the calculation of inversion confidence estimates as explored 
with bio-optical algorithms. Typically, these schemes have an embedded bio-optical model 
which constrains the distribution of retrieved Rrs. One study developed a stochastic approach to 
uncertainty decomposition and estimation while explicitly considering the atmospheric 
correction process [48]. Exercises of error propagation or accuracy analysis (e.g., [49,50]) can 
also provide valuable insight on atmospheric correction performance to support uncertainty 
assessments.

A model-based approach of a different kind has been proposed [51] making use of Chla 
algorithms applied to low-Chla waters. For these conditions, the assumption is that the difference 
in Chla computed with a standard band-ratio algorithm and with a three-band subtraction method 
[52] originates from uncertainties associated with Rrs. Using SeaWiFS and MODIS data, Rrs

uncertainty estimates have been expressed as a function of Chla (see Figure 6.7). Even though 
this approach does not apply to Chla values larger than 0.2 mg m-3, and does not specifically 
account for biases, this type of technique should be further investigated.



Different methods, like those mentioned above, can inform us on various aspects of the 
uncertainty associated with a given retrieval, and it is desirable that their specific contributions 
and limitations to quantifying the overall uncertainty budget be well understood. Restricting the 
discussion to bio-optical algorithms producing Chla or IOPs, Table 6.1 is an attempt at broadly
categorizing the type of uncertainty estimates obtained by various methods. The uncertainty on
the derived product is assumed to stem from the uncertainty on the input Rrs, the potential non-
uniqueness of the solution, uncertainties on the model formulation and parameters, and the 
uncertainties associated with the inversion process. Clearly, validation integrates all these 
contributions, but is affected by uncertainty in field data. Co-location techniques (see Section 
3.2) share this all-encompassing character but are limited in their temporal resolution and do not 
consider systematic effects. Uncertainty propagation techniques can potentially accommodate 
uncertainties on Rrs and model parameters, while using parameter ensembles (e.g., [38]) focuses 
on uncertainties on model parameters and issues of uniqueness without accounting for biases
affecting Rrs. Finally, non-linear inversions provide a diagnostic of product confidence given an 
uncertainty on Rrs but usually do not account for biases or parameter uncertainties. Complex 
approaches could combine the advantages of these various techniques.

3. Comparison of cross-mission data products

The distribution of field observations is very uneven, with a sparse coverage of the open ocean 
regions, particularly for optical properties. Comparison between satellite values can build upon a 
much larger statistical population and can support the characterization of their uncertainties. 
More generally, the comparison of products from different missions over their period of temporal 
overlap is a key element of the consistency check of the overall data record.

The comparison of two or more data products can be conducted at several levels. First, as for 
validation analyses, a variety of metrics may quantify the differences between a common set of 
data points (e.g., average difference), which is illustrated below. In the context of Earth science, 
it is also interesting to compare specific properties of each data record, like their spectral 
resolution, their spatial coverage, their inherent variability in space or time (do the data sets have 
the same variance, do they show the same gradients?), their seasonal cycles  (do they show the 
same phenology?) or inter-annual signals. For these properties, tTwo data series ideally should 
show the same behavior for these properties, but their relative importance depends on the
envisioned application. Obviously, for climate research, two data sets should provide a similar 
picture of seasonal to inter-annual variations.

Even if processed consistently, which means with the same principles guiding the calibration 
strategy and the data processing (same algorithms and binning schemes, identical ancillary data), 
and compared for the same day, two ocean color data sets will show differences. These result 
from various elements [54] including differences in sensor design and spectral characteristics as 
well as their implications in the specific processing codes (such as the sensitivity to polarization),



uncertainties associated with the calibration of the sensors, the sensitivity of the atmospheric 
correction to different aerosol types or to a different geometry of observation. Moreover, the 
different sensors view Earth at different times of the day, generating other sources of differences. 
Some might be real as associated with changes in the water properties that could be more readily 
studied with geostationary platforms [24]. But currently and in most cases, these differences 
cannot be reliably distinguished from others that are occasioned by the effect on the atmospheric 
correction of changes in the geometry of illumination and the atmospheric content (aerosols, 
clouds) or simply by noise. There is also a residual spatial mismatch as a result of the re-mapping 
process or of different sizes and shapes of the pixels across the satellite track. Still an additional 
source of differences is introduced as time composites are created since these might be built with 
a different temporal sampling. Finally, different products might differ because their processing 
chains are not consistent, e.g., with a different calibration strategy or different algorithms. With a 
view to create climate data records from different missions, this should be avoided as much as 
possible. Such a consistency is readily achieved if the different sensors share their main
characteristics, for instance being similar multispectral sensors with a wavelength range of 400-
900 nm as is the case for the recent global ocean color missions SeaWiFS, MODIS and MERIS. 
This consistency may be questioned as sensors are launched with new capabilities (channels in 
the ultra-violet or shortwave infrared, much higher spectral resolution, geostationary 
observations) that open up novel options for processing. A similar technical step took place from 
the Coastal Zone Color Scanner (CZCS) to the more recent sensors, prompting questions on how 
to process the data in a consistent manner [55].

This section reviews various approaches to compare satellite data sets. First, the issue of band 
shifting is addressed. Indeed, differences in center wavelengths need to be corrected for prior to
comparing spectral quantities.

3.1 Band Shift Correction

The various ocean color missions that have been in operation have a different set of bands, which 
is an obstacle to a straightforward comparison of their respective records of remote sensing 
reflectance, Rrs. For instance the green ocean color band, which is often used as a reference band 
for bio-optical algorithms, is centered respectively at 547, 555 and 560 nm for the missions
MODIS, SeaWiFS and MERIS, respectively. In practice it is hard to know how a MODIS Rrs

value at 547 nm compares relative to a SeaWiFS Rrs at 555 nm. It can be done in the framework 
of well-defined optical properties like a Case-1 water model [56] where a certain spectral shape 
for Rrs is expected for each value of the chlorophyll-a concentration (Chla) leading to the 
definition of a set of consistent empirical algorithms for the different sensors [57]. Such a 
framework could be extended to more complex optical conditions but covering the entire natural 
variability does not appear realistic. A similar issue arises in validation analyses when field data 
that are collected as multi-spectral measurements are compared with satellite Rrs. A few studies 
have relied on general or regional relationships to perform an action called band shift correction, 
whereby the Rrs value is expressed at a target w t 0.



The practice of band shift correction has been developed for use in validation analyses 
[58,4,12,15,59], comparison between satellite products [60], and as pre-processing before 
merging [61], with expressions linking inherent and apparent optical properties such as:
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where f relates apparent optical properties (AOPs, irradiance reflectance) to inherent optical 
properties (IOPs) [62], Q is the ratio of irradiance and radiance just below the surface, and a and 
bb are the total absorption and back-scattering coefficients, respectively. Equation (7) requires 
the value of Chla to calculate f/Q [63] through look-up tables computed in the framework of 
Case-1 water conditions.

A common requirement for these approaches is knowledge of inherent optical properties and/or 
concentrations of optically significant constituents sufficient to predict the spectral shape of Rrs

at least within small spectral intervals. An approach recently developed makes use of the Quasi-
Analytical Algorithm (QAA) [37] to compute the absorption of phytoplankton aph, that of 
colored detrital matter (CDM) acdm, and the back-scattering coefficient associated with particles 

t using the spectral shapes of IOPs 
defined in the model (with the addition of the parameterization by [64] for aph since QAA does 
not specify a spectral shape for that coefficientproperty). Finally this bio-optical model is run in 
forward mode to calculate Rrs t.

The results of this band shift correction are illustrated by Figure 6.5. The correction has been 
applied to a year (2003) of daily MODIS-Aqua Rrs data to express them at the SeaWiFS bands. 
A MODIS value is computed at 510 nm by running the conversion from 488 nm and from 531 
nm to 510 nm, and then taking a weighted average. All spectra common to both sensors for a 
given spatial bin (of a 12th-degree grid) and day have then been accumulated (49.8 million 
spectra). Figure 6.5a shows the overall average over that population of the SeaWiFS Rrs and the 
MODIS-Aqua original Rrs as well as the Rrs values obtained after band shift. There is a 
discernible improvement in the agreement between corresponding wavelengths, at 490 and 670 
nm and more clearly at 555 nm. Even the converted MODIS average value at 510 nm appears 
close to the SeaWiFS counterpart. Also noticeable is the fact that the use of a linear interpolation 
between 488 and 531 nm to compute a MODIS value at 510 nm would have resulted in a gross 
overestimate. Figure 6.5b is the frequency distribution of the ratio of Rrs at the green band before 
and after correction, i.e., Rrs,A(547)/Rrs,S(555) and Rrs,A(555)/Rrs,S(555) (where A and S denote 
MODIS-Aqua and SeaWiFS, respectively). The median ratio decreases from 1.10 to 0.98. Band 
shifting is an important tool to allow inter-mission comparison, but it also contributes its own 
uncertainties that should be properly estimated.

3.2 Point-by-point comparison
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The comparison between satellite products can be conducted for each grid point in a manner 
similar to validation with in situ data, including with the same metrics. Here again, statistics 
should at least provide a measure of scatter and bias, in relative terms as well as in radiometric 
units for Rrs. In Section 2, the quantity of reference in relative differences (i.e., the denominator) 
was the in situ value, even though in situ observations are not error free. In the case of a 
comparison between satellite products, the unbiased form of the relative difference can be 
preferred (in %):
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are referred to the average of the two products. The advantage is to avoid arbitrarily 
selecting one product as the value of reference, and numerically it prevents cases where only the 
denominator is close to zero. On the other hand, the difference cannot be easily interpreted in 
terms of a distance with respect to a clearly identified reference.

To compare SeaWiFS and MODIS products, the MODIS Rrs data were re-binned on the 
SeaWiFS 12th-degree grid, and then all daily values coincident on that grid were accumulated 
into 3rd-degree macro cells. Figure 6.6a shows the resulting number of match-ups for the period 
2003-2007. In general, the number of comparison data available for assessment decreases going 
poleward; on top of this, spatial patterns associated with persistent cloud or dust coverage are 
readily seen, e.g., along the inter-tropical convergence zones.

6.6b for Rrs at 443 nm. Most of 
the ocean is characterized by a relative bias not exceeding 5%, but larger differences can be 
noticed in specific coastal or tropical regions or in the northern Indian Ocean. Besides the spatial 
variations shown by inter-mission differences, comparison maps also show temporal variations, 
particularly changes associated with the seasonal cycle for apparent or inherent optical properties 
[60,65]. Examples of temporal analyses are provided in the next section.

If enough match-up data are available for a given grid point, more advanced statistics can be 
developed. Let us cConsidering two ensembles of N coincident satellite values (xi)i=1,N and 
(yi)i=1,N, each modeled as a function of a reference state r and zero-
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with additive and multiplicative biases, respectively, between x and y.
r, a mathematical development of 

the variance and covariance terms lead to [53]: 
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which is a system of two equations with three unknowns. It can be solved with an additional 
assumption, for instance considering that the two satellite products, on the basis of validation 
analyses, have the same level of random error [53]. Solving the system may also rely on the 
availability of a third independent data record using a triple co-location technique. This approach 
is very powerful since it provides part of the uncertainty budget with the same coverage of the 
satellite products. Depending on the number of match-ups available, it can also be applied to 
separate seasons to capture variations in time.

Assuming the same level of ) and using the 
match-up data base illustrated on Figure 6.6a
average shown on Figure 6.7. For comparison, the average over subtropical gyre waters is also 
given together with the uncertainty estimates for low-Chla waters given as a function of Chla by 
a model-based approach [51 u obtained by comparison 

and the results
obtained by the model-based approach are fairly comparable, even though the latter are higher 
for the case Chla=0.15 mg m-3 in South Pacific waters. u for 

bands where they are closer to 
the model-based estimate for the case Chla=0.15 mg m-3 in South Pacific waters. Considering the 
diversity of methods employed (co-location, model-based, point-wise validation), the relative 
agreement between these curves is interesting while the sources of differences should be further 
investigated.

3.3 Analysis of time series

A primary goal in development of ocean color ECVs is to enable the assessment of long-term 
trends to support global climate research. This leads to stringent requirements on radiometric 
stability, to ensure that systematic errors such as uncorrected degradation in instrument 
radiometric response are not misinterpreted as geophysical change. Comparative time-series 
analysis of Rrs and derived products, either between satellite missions or relative to an historical 
reference, can identify issues with instrument radiometric characterization and temporal 



calibration stability. Analysis of the seasonal trends observed in different latitudinal zones for
MODIS-Aqua Rrs time-series relative to SeaWiFS, for example, contributed to the discovery of 
an error in characterization of polarization sensitivity on MODIS [66]. Without the SeaWiFS 
time-series for comparison, this error may have never been identified, and seasonal cycles in the 
ocean color signal from MODIS in climate critical high-latitude regions would have been highly 
misleading. For products derived using common algorithms, relative agreement between 
missions also provides a measure of uncertainty for trend detection. Franz et al. [67], for 
example, used the average difference in regional monthly means between consistently processed 
SeaWiFS and MODIS data as a measure of uncertainty in the 15-year multi-mission time-series 
of Chla.

A typical time-series analysis starts with the data product of interest projected into a set of fixed 
geographic bins and averaged over specific temporal intervals. A widely used example is the 
SeaWiFS 9.2-km binned product: a globally-distributed set of quasi-equal-area bins where the 
value of each bin represents the local product average over 8-day or monthly time intervals [68].
The global dataset or a subset of the bins (e.g., based on geography or water-type classification) 
is then spatially averaged within each time interval, and the averages trended in time. The 
preferred time interval for compositing is a trade-off between minimizing the geophysical 
variability lost to the average and maximizing the number of observed (or filled) bins. When 
comparing time-series between missions, it is also useful to first reduce the selected bins within 
each time-interval to a set of common filled bins. This is critical for the identification of 
anomalous sensor-calibration artifacts, as some missions show systematic geographic gaps even 
after 8-days of compositing, and these geographic sampling biases induce additional variability 
in mission-to-mission differences.

As an example, Figure 6.8 shows Rrs trends from MODIS on Terra and MODIS on Aqua, based 
on common bins over the overlapping missions. The measurements were restricted to include 
only those bins where water-depth is greater than 1000 meters (to avoid the complexities and 
diurnal variability of the coastal regions), and an average was computed over this geographic 
subset for each month of the time-series. The comparison clearly demonstrates a degradation in 
the radiometric stability of MODIS-Terra relative to MODIS-Aqua that was traced to the 
MODIS-Terra instrument calibration and subsequently corrected.

For a radiometrically stable sensor, the dominant variability in the derived Rrs time-series for the 
deep oceans is a seasonal cycle associated with phytoplankton productivity. Subtraction of this
mean seasonal cycle from the Rrs trends yields an anomaly time-series. While anomaly trends 
provide a mechanism for investigating long-term geophysical changes in the ocean color record, 
they can also serve as a powerful tool to identify sensor radiometric instabilities. Figure 6.9a 
shows the anomaly in MODIS-Aqua Rrs(547) relative to the mean seasonal cycle for the deep 
ocean gyres. At this wavelength, the Rrs signal is relatively insensitive to small changes in Chla, 
and so we expect the time-series in these very low productivity regions to show little variability, 



as is the case for MODIS. For the 560-nm band of MERIS, however, the Rrs anomaly time-series 
shows a strong deviation in 2005-2006 suggesting a 5-10% bias that was traced to a change in 
the operating state of the instrument.   

3.4 Climate signal analysis

Ocean color products are being scrutinized across a whole range of space and time scales. The 
various satellite data records should show the same patterns of variability, seasonal cycle 
(phenology), and trends.s… The global distribution of phytoplankton is well known and 
reproduced by all satellite products, but the advent of high resolution modeling and remote 
sensing is shedding new light on how phytoplankton and physics are related across spatial scales, 
including planetary waves [69], mesoscale and submesoscale [70,71,72], or internal waves [73].
The seasonal cycle of phytoplankton is the most prominent signal in many ocean regions and 
phytoplankton phenology has recently been actively investigated [e.g., 74]. Variations in Chla 
distributions have been studied at other time scales, describing intra-seasonal signals such the 
Madden-Julian oscillation [75], tropical inter-annual variations like El Niño [76] or climate 
signals with longer time scales [77]. How the different characteristics of each satellite product, in 
terms of spatial resolution, levels and structure of variance, or noise, affect analyses of climate 
signals or model simulations relying on data assimilation has been largely unexplored. These 
differences will have to be properly integrated into the long-term analysis of the biogeochemical 
responses of marine ecosystems to climate forcing.

However, some studies have analyzed how different satellite missions represent the temporal 
evolution of a satellite derived product (Chla or optical properties) for specific regions [e.g., 
78,79,65]. Djavidnia et al. [80] have compared Chla time series averaged over the Longhurst 
[81] provinces, as obtained from SeaWiFS, MODIS and MERIS. Taylor plots are useful in that 
regard, illustrating on the same plot the correlation between two signals, their standard 
deviations, and their unbiased RMS difference. From the updated results for SeaWiFS and 
MODIS seen on Figure 6.10, it appears that the correlation coefficients between monthly series
are all higher than 0.8, while the variance of the MODIS time series can be lower or higher than 
that of SeaWiFS.

As soon as the SeaWiFS mission lifetime exceeded 5 years, investigations started studying 
possible trends associated with its Chla series [e.g., 82,83]. The validity of these analyses was
supported by the activities that ensured the characterization and stability of the instrument 
calibration [84]. Even if similar calibration strategies are followed for the main ocean color 
missions, it still appears worthwhile to compare long-term trends obtained from different 
missions to check that they provide the same view of inter-annual changes taking place in the 
oceans. Generally, this is unlikely to be an easy task since it requires overlaps between missions 
long enough for trend analysis. But the ocean color community has been fortunate to benefit 
from such cases with the long records of SeaWiFS, MODIS and MERIS. For instance, the latter 
two missions were contemporaneously in operation for a decade. A trend analysis was performed 



on the MODIS and MERIS Chla data over the period August 2002 to July 2011 using a non-
parametric seasonal Kendall test [77]. Figure 6.11 illustrates the agreement between the trend 
fields. The use of a contingency matrix allows the quantification of this agreement by computing 
the percentage of the ocean with similar or divergent behaviors (trend slopes of the 
same/opposite signs, significance levels, …). For instance, 20% of the ocean is found to have a 
statistically significant trend (p<0.05) of the same sign for both series (11% with a positive slope, 
9% with a negative slope), while there is virtually no area with a statistically significant trend of 
opposite sign (0.005%).

Analyses checking the consistency of ocean color time series in terms of spatial distributions, 
phenology or trends should be seen as integral parts of an assessment strategy applied to climate 
data records.

4. Conclusions

In the assessment of satellite products, a recurrent question is that of ranking: is a given product 
better than another, either because processed with different algorithms or associated with another 
sensor? A still larger question is: should it be deemed acceptable for climate research? Validation 
statistics might promote one mission for one specific product (e.g., Chla but not IOPs), using one 
field data set but not another, for some wavelengths only or for the spectral shape of Rrs. One 
product might also be preferred for its extensive data coverage. Ultimately, the choice of a 
particular product is intimately linked with the science question being addressed, and its
assessment needs to be commensurate with the intended application. The stringent requirements 
associated with climate research call for a comprehensive approach including validation with 
field data, uncertainty analyses, and consistency checks like comparison between mission-
specific products and time series analyses. In that regard, significant mission overlaps (at least 
one year) are an absolute prerequisite for such a strategy, besides the fact that gaps in the data 
records would seriously challenge our ability to use the ocean color record to detect climate 
signals [85].

In 1983, Gordon et al. [86] could use three spectra of water leaving radiance determined from 
ship-based observations to assess the atmospheric correction applied to CZCS data. Although 
this chapter illustrates the considerable progress made in data collection since then, the relative 
scarcity of high-quality Rrs measurements remains a limiting factor for assessing radiometric 
satellite ocean color products. The oceanographic community should invest in comprehensive 
measurement programs for validation purposes, and in the development of new technological or 
methodological approaches. The development of a network of automated above-water 
radiometers [13] represents a major progress for coastal waters. Placing bio-optical instruments 
onto floats [87] is also a promising avenue to increase frequency and coverage. Hyperspectral 
measurements are also desirable, both to fully accommodate the spectral characteristics specific 
to each satellite sensor, and in preparation for advanced spaceborne sensors with hyperspectral 
capabilities.



This chapter has also discussed approaches based on the use of models or inter-comparison 
techniques that can profitably complement the in situ validation statistics. Their major 
contribution should be to allow an extension of validation results to a wider range of geometric 
and environmental conditions. A complete framework for error propagation is needed, but it
requires a thorough and accurate characterization of the uncertainties associated with the 
radiance signal at top-of-atmosphere, as well as a detailed understanding of the propagation of 
errors through the atmospheric correction algorithm, the uncertainties associated with algorithm 
assumptions, and the contributions of all other ancillary inputs (e.g., meteorological conditions 
and atmospheric gas contributions) to the total uncertainty budget. The approaches mentioned 
here do not form an exhaustive list. More holistic modeling environments could be devised to 
support product assessment, for instance to exclude some conditions or ascertain their 
probability. For instance, high Chla concentrations close to river outlets are unlikely in winter, 
and their presence in satellite products is suspect. Ecosystem models can contribute to assess and 
improve satellite products, and vice-versa.

A maturity model has been proposed to assess the completeness of climate data records (CDR) 
[88]. This matrix model contemplates six levels of maturity for all aspects of a data set. We 
could argue that the ocean color products can pretend to the levels 5 or 6, synonymous of a “full 
operational capability”, for aspects like software, documentation, metadata, public access and 
utility. Understandably, product validation is lagging behind, qualifying for levels 3 or 4, 
“uncertainty estimated for select locations/times” or “uncertainty estimated over widely 
distributed times/locations by multiple investigators; differences understood”. Level 5 would 
entail the knowledge of “consistent uncertainties estimated over most environmental conditions 
by multiple investigators”. Progress has been made in that direction but needs to be consolidated 
into an operational context to allow a fully informed use of ocean color products in climate 
research.
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Tables

 Rrs Uniqueness Parameters Inversion 
Validation x,t 

Uncertainty propagation [36] X,T  X,T  
Parameters Ensemble [38]  X,T  
Non-Linear Inversion [42] X,T   X,T 

Co-location [53] X,t 

Table 6.1: Matrix relating error sources affecting products of bio-optical algorithms and different 
methods computing uncertainty terms. Small letters refer to results obtained at selected locations 

x and times t, while capital letters indicate estimates potentially obtained at each pixel. Blue 
color indicates that the approach can handle systematic effects (biases). References are only 

intended as general examples for a given approach.



Figures

Figure 6.1: Comparison between above-water radiometry and MODIS-Aqua products for Rrs at 
A

Validation statistics are introduced in Section 2.2.



Figure 6.2: Spectral target diagram for validation results for MODIS-Aqua a) at MOBy (N=229) 
and AAOT (N=549, except at 531 nm, N=176) and b) SeaWiFS (N=369) and MERIS (N=149) at 

AAOT (right). Axes are in units of sr-1. See text for definition of statistical quantities.



Figure 6.3: RMS differences between satellite and field data of Rrs (in sr-1): a) MODIS-Aqua 
compared to various data sets from AERONET-OC sites (see text) as well as SeaBASS,  

BiOMaP and MOBy; b) Results for MODIS-Aqua (N=549) and Terra (270), MERIS (N=149), 
SeaWiFS N=369) and VIIRS (N=70) at AAOT; c) Results for MERIS processed by ESA 
processor MEGS (version 7 as dotted line, 8 otherwise) given for the Bohai Sea [14], the 

northwest Mediterranean Sea [15], South African (SA) coastal waters [16], and AERONET-OC 
sites, AAOT (N=86), GDLT and HLT (Baltic Sea) and GLR (Black Sea) [17]. GLI results are 
represented by the black dashed line [18]. d) Results obtained in coastal waters for SeaWiFS 

(dotted line) [19] and MODIS-Aqua [20] with different atmospheric correction schemes, 
including the standard SeaDAS (STD, in blue). When appropriate the source reference is given.



Figure 6.4: Dependence of validation statistics on optical water types at AAOT. a) Mean Rrs for 
the optical water types defined in [33]; type 9 includes 8 sub-types. Validation results computed 

-ups combined are in black; results per optical type are shown 
with the same color code as for a) only if the members number at least 10 spectra.



Figure 6.5: a) Average of all daily Rrs coincident between MODIS-Aqua and SeaWiFS in 2003. 
Curve with grey circles represent MODIS values without band shifting, while black circles 
represent MODIS statistics computed after the band shifting correction has been applied. b) 
Histogram of the ratio between MODIS (with and without band shifting, in red and black, 

respectively) and SeaWiFS Rrs in the green band.



Figure 6.6: a) Total number of match-ups between MODIS and SeaWiFS (2003-2007) on a 3rd-
degree grid and b)



obtained by co-location between SeaWiFS and MODIS, with 
global average (red) with standard deviation, and average over the subtropical gyres (blue). In 

grey are overplotted estimates of the uncertainty term proposed in [51] for SeaWiFS and MODIS 
as a function of Chla for the North Atlantic (NA) and South Pacific (SP) subtropical gyres. 

u obtained with MOBy data are shown in light blue. Curves with circles are 
for SeaWiFS.



Figure 6.8: Comparative common-bin time-series of MODIS-Terra and MODIS-Aqua.



Figure 6.9: Rrs anomaly analysis for a global clear water region.



Figure 6.10: Taylor plots comparing SeaWiFS (taken as a reference) and MODIS-Aqua Chla 
time series averaged over biogeographic provinces associated with a) mid-latitudes, b) 

subtropical regions, c) marginal seas, and d) shelves and upwelling regions. See Longhurst [81] 
for province acronyms.



Figure 6.11: Linear trend for Chla (in % per annum) found over the period August 2002 to July 
2011 for a) MODIS-Aqua and b) MERIS.


