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Abstract:

This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of
attenuated backscatter depend on cloud fraction. The results for a large region around the
Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from
scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by
samples from scenes with higher cloud fractions; (2) near-cloud enhancements of

attenuated backscatter occur for any cloud fraction but are most pronounced for higher
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cloud fractions; (3) the difference in the enhancements for different cloud fractions is
most significant within 5 km from clouds; (4) near-cloud enhancements can be well

approximated by logarithmic functions of cloud fraction and distance to clouds.

These findings demonstrate that if variability in cloud fraction across the scenes used to
composite aerosol statistics are not considered, a sampling artifact will affect these
statistics calculated as a function of distance to clouds. For the Azores-region dataset
examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the
near-cloud enhancements of lidar backscatter and color ratio by about 30%. This shows
that for accurate characterization of the changes in aerosol properties with distance to

clouds, it is important to account for the impact of changes in cloud fraction.
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1. Introduction

Aerosol-cloud interactions can induce significant changes in the optical and
microphysical properties of clouds and aerosols, and are therefore highly important for
understanding solar radiative forcing and climate change. In examining aerosol-cloud
interactions, many observational studies have found positive correlations between cloud
fraction and Aerosol Optical Depth (AOD), or solar reflectance, and/or lidar backscatter
[e.g., Ignatov et al., 2005; Loeb and Manalo-Smith, 2005; Matheson et al., 2005; Zhang
et al., 2005; Kaufman and Koren, 2006; Koren et al., 2007; Loeb and Schuster, 2008; Su
et al., 2008; Redemann et al., 2009, Chand et al. 2012]. Other studies found that clear
areas near clouds have higher lidar backscatter (or solar reflectance) values than areas far
from clouds do, thus forming areas called “twilight zone” or “transition zone” [e.g., Platt
et al 1971; Lu et al., 2003; Charlson et al., 2007; Koren et al., 2007]. Such zones are
characterized by a gradual increase in the reflected signal as the measurements approach
a cloud [Tackett and Di Girolamo, 2009; Varnai and Marshak, 2011 and 2012; Yang et
al., 2012; Varnai et al., 2013]. Physically, such zones are thought to contain aerosols
swollen in the humid air that surrounds clouds, aerosols generated or processed in the
clouds, and undetected small and/or thin cloud pieces [e.g., Hoppel et al., 1986; Clarke et

al., 2002; Su et al., 2008; Koren et al., 2008, 2009; Bar-Or et al., 2010, 2011 and 2012].

In addition, it was found that instrumental limitations [Qiu et al., 2000], cloud
contamination [e.g., Zhang et al., 2005] and three-dimensional (3D) solar radiative
processes [e.g., Wen et al., 2007; Marshak et al., 2008; Kassianov and Ovchinnikov,

2008] in cloudy environments can also contribute significantly to the apparent
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enhancements observed near clouds. Analysis of the contributing factors in the near-
cloud enhancements is needed to help better understand both cloud-aerosol interactions

and the direct radiative effect of aerosols [e.g. Varnai et al., 2013].

Studies of aerosol near-cloud behavior often involve statistics taken from large datasets
that cover large areas and a long time span. For example, in a global yearlong dataset,
Vérnai and Marshak (2012) found an anti-correlation between median distance to cloud
and cloud fraction, though they also noted that cloud structure also influences the
distribution of distance to cloud. One may argue that far-from-clouds clear-sky regions
can occur only in areas with low cloud fractions while the statistics of close-to-clouds
regions are likely to be strongly influenced by areas with higher cloud fractions.
Therefore, AOD (as well as reflectance or lidar backscatter) may be higher close to
clouds than far from clouds simply because of the well-documented positive correlations
between AOD and cloud fraction [e.g., Loeb and Manalo-Smith, 2005; Chand et al.,
2012]. As a result, the statistically increasing scattering enhancement as clouds are
approached could potentially merely be a consequence of these correlations, rather than

reflecting any physical changes near clouds.

The above argument can be illustrated through a simple example. We consider a dataset
in which aerosol samples are obtained in three regions with different cloud fractions A4,
A, and A3, and we assume that 43 > 4, > 4, (Fig. 1a). Let us further assume that clear
sky AODs in each region remain constant with respect to distance to clouds, and have

values of 11, 1, and 13 for each of the regions with 4, A», and As, respectively (Fig. 1b).
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The assumption that 13 > 1, > 1; while 43 > A4, > 4, is well consistent with the observed

correlation between AOD and cloud coverage.

Combining data from all regions together, the average AOD (symbol ;') at distance x

from clouds is the weighted sum of t(x, 4) over all cloud fraction (4) values, i.e.
_ 1
7(x) = jr(x, A)n(x, A)dA . (1)
0

Here the weight n(x, A) is the ratio of the number of samples with 4 at x to the total

number of all samples with all 4’s at x, and sojn(x, A)dA=1. As Varnai and Marshak
0

[2012] found some anti-correlation between distance to cloud and cloud fraction, we can

expect to find progressively more samples with high cloud fraction as we approach

clouds. Therefore in this simple example, it is plausible to assume that weights of given

cloud fractions vary as shown schematically in Fig. 1a. In Fig. la n(x, 4,) is an increasing

function of x while n(x, A3) is a decreasing one. Because low cloud fraction is associated

with low AOD, the changes in the sample weights lead to an apparent enhancement of 7
closer to clouds (black curve in Fig. 1b). This reveals that statistical results may behave
differently from our initial assumption of distance-independent, constant AOD for
individual scenes. In the following, we call the apparent enhancement described above as
sampling effect/sampling artifact for the reason that it is induced by variation of sampling

weights of cloud fractions, instead of the variation of near-cloud aerosol properties.
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This raises the questions: What is the true statistical near-cloud behavior? Do the
enhancements observed in earlier studies come entirely from this effect? To address
these questions, we first analyze the samples’ cloud fraction dependent features as a
function of distance to cloud using a CALIPSO data over the Atlantic Ocean. Next, we
examine the near-cloud behaviors of aerosols for various cloud fractions. Finally, we
introduce a method for studying near-cloud aerosol properties using satellite
observations, and estimate the fraction of enhancements due to the statistical cloud

fraction-sampling effect.

2. Data and methodology

In this study we analyze data from a large region over the Atlantic Ocean near the Azores
(25°-45°N, 20°-37°W). This region is well suited for this study because it is rich in low-
level marine boundary layer clouds types and cloud fractions and is ideal site for studying
interactions between cloud, aerosol and precipitation [e.g. Wood, 2009; Rémillard et al.

2012, Dong et al., 2014, Wood et al. 2014].

We examine this region using data from the CALIOP (Cloud-Aerosol Lidar with
Orthogonal Polarization) lidar on board the CALIPSO (Cloud Aerosol-Lidar and Infrared
Path finder Satellite Observations) satellite, which was launched in 2006 [e.g., Winker et
al., 2007]. CALIOP provides range-resolved cloud and aerosol data along its track,
including attenuated total lidar backscatter at 532 nm and 1064 nm, and perpendicularly

polarized lidar backscatter at 532 nm. CALIOP operational algorithms (currently in
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Version 3) use this data along with altitude and latitude information for feature

identification and classification [Liu et al., 2009; Omar et al., 2009].

Similarly to earlier studies [e.g. Varnai and Marshak, 2011 and 2012; Yang et al., 2012;],
we reduce the noise due to background illumination and sampling by using only
nighttime data and by combining observations from a three-year period (2006.6.21-

2009.6.21) over the entire study region.

In this study, we examine the 532 nm attenuated total lidar backscatter coefficient 3 (the
ratio of vertically integrated backscatter within an aerosol layer over layer thickness) and
the attenuated total color ratio ) (ratio of total backscatter at 1064 nm over that at 532
nm) at a horizontal resolution of 333 m. The backscatter coefficient is used for
examining variations in the optical density of aerosol layers, while the color ratio is
related to changes in the size of spherical particles [Liu et al., 2000, Liu et al., 2004,
Cattrall et al., 2005 and Omar et al., 2005]. To be consistent with earlier studies [Varnai
and Marshak, 2011 and 2012; Yang et al., 2012], we examine aerosol properties in cloud-
free columns as a function of distance to the nearest cloud edge—the closest point where
a cloud is detected in the 0.333 km or 1 km cloud mask. While the 5-km resolution cloud
mask is not used for defining the nearest cloud edge, aerosol data is used only when the

5 km cloud mask (most sensitive to thin clouds) also indicates a fully cloud-free column
at all altitudes. Also, we use aerosol data only if the nearest cloud is of liquid water
phase with a cloud top below 3 km, and if the top of the aerosol layer is below 5 km.

Moreover, we exclude data from clear-sky segments shorter than 3 km in order to reduce
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the amount of data possibly contaminated by undetected clouds. To further reduce the
influence from undetected clouds, aerosol data are used only if a particle layer is
identified as an aerosol layer with high confidence [Liu et al., 2009], with CAD (cloud-
aerosol discrimination) values larger than 70. (Additional tests showed that using higher

CAD thresholds does not change the basic observed behaviors and our conclusions).

In this paper, we define cloud fraction as the ratio of the number of 0.333 km cloudy
profiles (with clouds in either the 0.333 km or 1 km resolution cloud mask) to the total
number of 0.333 km profiles within 15 km from it. Since CALIOP can only detect
clouds and aerosols along the 1D track, clouds off the track are unknown and can cause
uncertainties in estimating the true distance to clouds and cloud fraction [e.g., Astin et al.
2001]. However, the cloud fractions estimated based on 1D tracks and 2D images should
be statistically similar; as a result, the cloud fraction dependent features found in 1D can
be a good approximation of the features in 2D. Finally, Varnai and Marshak (2012) found
that near-cloud behaviors are highly correlated when considering 1D or 2D distances to

clouds.

3. Results

The distribution of the total number of aerosol samples N(x, 4) as a function of distance
to clouds x and cloud fraction 4 is shown in Fig. 2. Figure 2a indicates that the sample
number distributions vary with cloud fraction in a way that depends on how close the

samples are to clouds: At farther distances, samples are distributed over a narrow range
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of small cloud fractions (see the purple curve); while at closer distances, samples are
from a much wider cloud fraction range and mostly from higher cloud fractions of 0.3-0.5
(e.g., the red curve). This behavior is consistent with the assumptions used in the
introduction (Fig. 1a). Figure 2b shows the way the sample fraction (n(x, 4) in Eq. (1))
changes with distance to cloud for various ranges of cloud fraction. The plot shows that
for low cloud fractions (red curve) sample fractions increase dramatically with distance,
while for high cloud fractions (e.g., black curve) sample fractions decrease with distance.
We note that this behavior is qualitatively similar to the one assumed in Fig. 1a. These
features arise from the fact that far-from-cloud samples are more easily found in areas of

smaller cloud fractions than larger ones.

The near-cloud properties observed at specific cloud fractions are shown in Fig. 3. The
most important findings are as follows. (1) The enhancements of near-cloud backscatter
and color ratio occur for a// cloud fractions and are most pronounced for higher cloud
fraction values, as shown in Figs. 3a and 3b. This feature indicates that the mechanisms
causing the near-cloud enhancements (such as aerosol humidification and cloud
contamination) are present in all clear sky conditions but are most prominent in high
cloud fraction cases. (2) At a given distance away from cloud, both the attenuated total
backscatter coefficient  and color ratio  are increasing functions of cloud fraction and
are more sensitive to cloud fraction at closer distances (Figs. 3¢ and 3d). In contrast, the
positive correlations of backscatter coefficient and color ratio with cloud fraction are not
significant at larger distances to clouds (> ~ 5 km). This indicates that clouds have a

strong influence on their surroundings, but the range of influence may be limited to about
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5 km, at least for this dataset. (3) As indicated by the high regression coefficients R, the
enhancements in near-cloud aerosol properties can be well approximated by the
logarithmic functions, i.e.:

P(x, 4) = ai(4)-bi(4)*log(x) 2)
and

x(x, A) = ay(A)-ba(4)*log(x) 3)
where, in this study, 4 ranges from 0.1 to 1 and x is the dimensionless distance to clouds
normalized by the resolution of 1 km, with x > 1. Let us analyze the trend in coefficients
a and b in the logarithmic approximation of the attenuated total backscatter coefficient
B(x, A) (see Eq. (2) and Figs. 3a and 3c¢). (The coefficients for the attenuated total color
ratio y(x, 4) behave similarly (Figs. 3b and 3d).) First, a;(4)=(x=1,4) describes the near-
cloud behavior while b;(4) is the degree of dependence on the distance to clouds; both
are functions of cloud fraction 4 (Fig. 3a). As expected, both a; and b, are increasing
functions of 4, i.e., the larger 4 the bigger 3 near clouds and the stronger changes in 3
with the distance from cloud. Note that for the smallest cloud fraction (red curve), a; and

by are both the smallest and show the weakest dependence on distance from cloud.

Figure 3c shows that the attenuated backscatter B(x, 4) as a function of 4 can be also well
approximated by a logarithmic function,

P(x, A) = a3(x)-bs(x)*[log(4)| (4)
forx>1and 4 > 0.1. Here coefficient a3(x), as a function of x, is equal to the asymptotic
value of B if A=1 and b;(x) describes the degree of cloud fraction dependence for each

distance from cloud. We can see that both functions a; and b; are decreasing; in other

10
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words, the bigger the distance from cloud the weaker dependence of aerosol properties on
cloud fraction (compare red and magenta curves in Fig. 3¢ or 3d). An approximation

similar to Eq. (4) is also valid for the attenuated total color ratio y (see Fig. 3d).

The presence of near-cloud enhancements for all cloud fractions in Fig. 3 confirm that the
enhancement in composite statistics comes, at least in part, from physical changes near
clouds. Meanwhile, the dependence of n(x, A4) on x in Fig. 2 indicates that a sampling

artifact is also likely to affect the composite statistics (see Fig. 1).

In order to estimate the impact of sampling effect on the composite statistics, we
resample our data to make the distribution of cloud fraction (n(x,4)) used in Eq. (1) the
same for any distance to clouds. We specify this distribution to be the one observed at
distance xo, a large distance beyond which aerosol properties vary little with cloud
fraction. In this study we use xo=10 km (Figure 3). This resampling will make the
distribution of cloud fraction to be n(x,4) = n(xp,4) for any x > 1, thus removing the

impacts on composite statistics combining data for all cloud fractions.

Figure 4 compares the B and y values with and without applying the proposed resampling
method. It shows that near-cloud enhancements become significantly smaller with the
resampling (black curves) than they were without the resampling (red curves), and that
the differences are mostly within 5 km from clouds. Here the near-cloud enhancement of
B and y is defined as the relative increase over the value at 20 km beyond which aerosols

are less affected by clouds (e.g. Twohy, et al., 2009). The inserts show that the fraction of

11
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enhancement by the sampling effect also vary with distance to clouds; for this dataset it

can reach 30% at the distance of 1 km.

It should be noted that the sampling effect depends on location and season. The example
technique of using a pre-selected cloud fraction distribution at a certain far-from-cloud
distance (xo) is not the only method for removing the artifacts caused by near-cloud
variations in cloud fraction distributions. The key here is to use identical cloud fraction
distributions at all distances, so that the sampling artifact caused by variations in cloud

fraction distributions in Eq. (1) can be removed.

4. Concluding remarks

Several studies [e.g., Tackett and Di Girolamo, 2009; Varnai and Marshak, 2011; Yang et
al., 2012; Vérnai et al., 2013] have found that aerosol properties vary systematically with
distance to the nearest cloud, pointing to the presence of a wide transition zone around
clouds. In this paper we examine whether the apparent enhancement of aerosol
backscatter and color ratio observed near clouds is indeed a sign of a such transition zone,
or it is just a manifestation of the well-documented correlation between aerosol properties
and cloud fraction [e.g., Loeb and Manalo-Smith, 2005; Chand et al., 2012]. This
question arises because clear-sky sample populations used in the statistical analysis can
be different near clouds and far from clouds: Near-cloud samples are more likely to come
from areas/times with higher cloud fractions, while far-from-cloud samples are more

likely to come from areas/times of lower cloud fractions.
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To answer this question, we analyzed the cloud fraction-dependence of near-cloud
sample numbers and aerosol optical properties using CALIOP nighttime data from a wide
region around the Azores. The results indicate that as expected, near-cloud aerosol
statistics are dominated by data for higher cloud fractions, while far-from-cloud statistics
are dominated by data for lower cloud fractions. At the same time, however, near-cloud
enhancements remain large even if we use samples only from a narrow cloud fraction
interval, especially if this cloud fraction is high. In addition, it is found that the cloud
fraction-dependence of near-cloud behaviors can be well approximated by logarithmic

functions (Egs. (2)-(4)).

These findings indicate that near-cloud aerosol statistics are affected by cloud fraction
distributions changing with distance to cloud. The effects can be removed if, for all
distances to cloud, we resample the data to the same cloud fraction distribution. When
resampling our entire dataset to the cloud fraction distribution observed at 10 km away
from clouds, the near-cloud enhancement of our original dataset was reduced by up to

30%, with most reduction occurring within 5 km from clouds.

This result suggests that systematic changes in the near-cloud transition zone are real but

somewhat weaker than previously reported, and that understanding the statistics of near-

cloud aerosol properties requires a consideration of changes in cloud fraction.
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Fig. 1. Schematic illustration of the potential effect of sampling on the averaged AOT as

a function of distance to cloud, x. (a) probability density function n(x,4) [J.n(x,A)dA =1]

for three cloud fractions A, < 4, < A3. (b) average AOT, [E‘(x):J.T(x,A)n(x,A)dA]

assuming AOT for each cloud fraction is constant: 1(x,4)=0.1, 1(x,4,)=0.2, ©(x,43)=0.3.
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Fig. 3. Medians of attenuated total backscatter coefficient  and total color ratio y as a
function of normalized distance to cloud x and cloud fraction A. (a) Median attenuated
total backscatter coefficient vs. normalized distance to cloud and a log fit: B(x,4) = a;(4)-
bi(4)*log(x) with x > 1, for four intervals of cloud fraction (0.0-0.1, 0.2-0.3, 0.4-0.5, and
0.6-0.7) and the average one (0.0-1.0). Note that the distance to cloud is normalized by
resolution of 1 km and both a;(4)=p(x=1,4) and b;(A4) are increasing functions of 4. (b)
The same as in panel (a) but for attenuated total color ratio. Log fits are y(x,4) = ax(A)-

ba(A4)*log(x) with x > 1; ax(4)=y(x=1,4). (c) Median attenuated total backscatter
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fractions because the sample numbers after the truncated point are either zero or

extremely low leading to large uncertainties.
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