BRIC 21: Global transcriptome profiling to identify cellular stress mechanisms responsible for spaceflight-induced antibiotic resistance

Wayne L. Nicholson (PI)  
Patricia Fajardo-Cavazos (Co-I)  
WLN@ufl.edu, pfajardo@ufl.edu

University of Florida / Kennedy Space Center, FL, USA
OVERVIEW

• Hypothesis
• Investigation
• Goals and objectives
• Measurement approach
• Importance and Reason for ISS
• Expected results
• How Results will advance the field
• Earth benefits/spin-off applications
CENTRAL HYPOTHESIS:

• Exposure to the human spaceflight environment causes stresses (i.e. “spaceflight syndrome”) which can lead to increased antibiotic resistance in bacterial opportunistic pathogens.
INVESTIGATION

• Two harmless surrogates of opportunistic pathogens (*Bacillus subtilis* and *Staphylococcus epidermidis*) will be cultured in microgravity on ISS for 24 +/- 4 hours, frozen, and returned to Earth.

• Global stress responses will be measured in comparison to ground controls using Whole Transcriptome Shotgun Sequencing (a.k.a. “RNA-Seq”).

• The spectrum of antibiotic resistance from flight samples and ground controls will be compared using the Omnilog phenotype microarray system containing a large collection of antibiotics.

• The rate of spontaneous mutation to resistance to the antibiotic Rifampicin (RFM) will be measured and compared to ground controls.
GOALS AND OBJECTIVES

• Characterize changes in the transcriptomes of bacteria exposed to human spaceflight stresses, esp. microgravity, focusing on global stress responses.

• Compare the extent and levels of resistance to various antibiotics resulting from spaceflight compared to ground controls.

• Compare the mutation rates of bacteria grown in space vs. ground controls.
MEASUREMENT APPROACH

• Total RNA will be isolated from flight and ground-control cultures and their global transcriptomes compared using RNA-Seq. Genes significantly up- or down-regulated will be identified and further investigated for their stress relevance.

• Upon return, cultures will be inoculated immediately into 96-well Omnilog antibiotic plates (PM-11C, 12B, 13B) and assayed for the level of resistance to a battery of antibiotics, relative to ground control cultures.

• Cells returned from ISS will be plated for (i) total viable cells and (ii) RFM-resistant mutants. Mutation frequencies will be computed and compared relative to ground controls. Mutations will be identified by nucleotide sequencing.
IMPORTANCE AND REASON FOR ISS

• Prior evidence that astronaut immune function deteriorates during prolonged spaceflight.

• Prior evidence suggesting virulence and antibiotic resistance of some (but not all) bacteria increases during spaceflight.

• Thus, development of multiple antibiotic resistance in opportunistic pathogens is of importance to astronaut health.

• Prior evidence that the bacterial “spaceflight syndrome” appears to be organism-specific, and no fundamental underlying mechanism has yet emerged.
EXPECTED RESULTS

• If the Central Hypothesis is supported:
  – Transcription of global stress response genes will be up-regulated significantly in ISS-grown samples compared to ground control samples.
  – ISS-grown cells will exhibit resistance to a greater number of antibiotics, and/or to higher concentrations, than ground-control cells.
  – Mutation frequencies to RFM resistance will be significantly higher in the ISS-grown cultures than the ground control cultures.
HOW RESULTS WILL ADVANCE THE FIELD

• Little is currently known at the molecular level about the global cellular stress responses of microbes in the human space flight environment and how they impact pathogenicity and antibiotic resistance.

• This project will enhance our knowledge of how potentially harmful microbes respond and adapt to the spaceflight environment.

• Knowledge gained from the project will ultimately benefit astronaut health during long-term missions.
EARTH BENEFITS / SPIN-OFF APPLICATIONS

• Development and dispersal of multiply-resistant pathogenic bacteria is a chronic problem in clinical settings.

• Clinical settings in some ways mirror the human spaceflight environment; several people with compromised immune systems are housed in confined quarters for extended periods of time.

• Understanding how antibiotic resistance develops in space could lead to better methods for combating hospital-acquired infections.