UAS Integration in the NAS Project
ICAO Visit

Laurie Grindle
Project Manager, UAS Integration in the NAS Project

December 11, 2014
Briefing Outline

• UAS Integration in the NAS Project Alignment within NASA
• Project Overview
• Project Technical Challenges and Technology Development Approach
• FY14 Technical Accomplishments
NASA Organizational Structure

Aeronautics Research Centers

Mission Directorates

- Aeronautics Research Mission Directorate
- Human Exploration and Operations Mission Directorate
- Science Mission Directorate
- Space Technology Mission Directorate

Administrative Offices
- Administrator
- Deputy Administrator
- Associate Administrator
- Chief of Staff
- Associate Deputy Administrator for Strategy and Policy
- Assistant Associate Administrator
- Chief Financial Officer
- Chief Information Officer
- Chief Scientist
- Chief Technologist
- Chief Engineer
- Chief Safety and Mission Assurance
- Chief Health and Medical Officer

Support Directorates
- Legislative and Intergovernmental Affairs
- Communications
- Small Business Programs
- General Counsel

Mission Support Directorates
- Human Capital Management
- Strategic Infrastructure
- Headquarters Operations
- NASA Shared Services Center
- Internal Controls and Management Systems
- Procurement
- Protective Services
- NASA Management Office

Regional Centers
- Ames Research Center
- Armstrong Flight Research Center
- Glenn Research Center
- Goddard Space Flight Center
- Jet Propulsion Laboratory
- Johnson Space Center
- Kennedy Space Center
- Langley Research Center
- Marshall Space Flight Center
- Stennis Space Center

Note: Center functional office directors report to Agency functional AA, Deputy and below report to Center leadership.
NASA Aeronautics Portfolio

Fundamental Aeronautics Program
Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to enable revolutionary changes for vehicles that fly in all speed regimes.

Integrated Systems Research Program
Conduct research at an integrated system-level on promising concepts and technologies and explore/assess/demonstrate the benefits in a relevant environment.

Airspace Systems Program
Directly address the fundamental ATM research needs for NextGen by developing revolutionary concepts, capabilities, and technologies that will enable significant increases in the capacity, efficiency and flexibility of the NAS.

Aviation Safety Program
Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to improve the intrinsic safety attributes of current and future aircraft.

Aeronautics Test Program
Preserve and promote the testing capabilities of one of the United States’ largest, most versatile and comprehensive set of flight and ground-based research facilities.
NASA Aeronautics Portfolio

Fundamental Aeronautics Program
- Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to enable revolutionary changes for vehicles that fly in all speed regimes.

Integrated Systems Research Program
- Conduct research at an integrated system-level on promising concepts and technologies and explore/assess/demonstrate the benefits in a relevant environment.

Airspace Systems Program
- Directly address the fundamental ATM research needs for NextGen by developing revolutionary concepts, capabilities, and technologies that will enable significant increases in the capacity, efficiency and flexibility of the NAS.

Aviation Safety Program
- Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to improve the intrinsic safety attributes of current and future aircraft.

Aeronautics Test Program
- Preserve and promote the testing capabilities of one of the United States’ largest, most versatile and comprehensive set of flight and ground-based research facilities.
UAS-NAS Project Lifecycle

Phase 1 (P1)
- Initial Modeling, Simulation, & Flight Testing

Phase 2 (P2)
- Integrated Modeling, Simulation, & Flight Testing

Key Decision Point (KDP)
- Flight Validated Research Findings to Inform/Assist Federal Aviation Administration (FAA) Decision Making

Prior Activities
- Formulation
- Early Investment Activities
- Sys Analysis: ConOps, Community Progress, etc.

Technical input from Project technical elements, NASA Research Announcements (NRA)s, Industry, Academia, Other Government Agencies, Project Annual Reviews
UAS-NAS Project Formulation
Key Stakeholders and Influencing Factors

Project Focus:
Unencumbered NAS Access for Civil / Commercial UAS

Key Stakeholders & Influencing Factors

The NASA UAS-NAS Project is influenced by several key stakeholders within the UAS Community which helped guide it’s formulation

Phase 1 only Influences
The FAA is using several domestic forums, in conjunction with several international forums to lay out the pathway for their priorities and investments.

- **FAA Pathway to UAS Access**
 - **Joint Planning & Development Office (JPDO):** Forum where collaboration for NextGen research occurs across gov’t agencies and industry
 - **World Radio Conference (WRC) and International Civil Aviation Organization (ICAO) UAS Study Group are addressing UAS access from an international perspective**
 - **UAS Executive Committee (ExCom):** Senior gov’t steering group focused on streamlining public UAS access
 - **UAS Aviation Rulemaking Committee (ARC):** Developed civil UAS Implementation Plan based on the FAA’s UAS Concept of Operations (CONOPs) & Roadmap
 - **Office of Secretary of Defense (OSD) Sense and Avoid (SAA) Science and Research Panel (SARP):** Chartered by OSD to identify SAA Research Gaps

NASA has a leadership role within the domestic forums and participates in the international forums
UAS-NAS International Collaboration

• Communications
 – International Telecommunications Union (ITU) – WRC-15 AI 1.5
 • 2015 World Radiocommunication Conference – Agenda Item 1.5
 – ICAO Aeronautical Communications Panel
 • Participating in Working Group F (Spectrum)
 • Participating in Working Group S (Surface Air-Ground Datalink Communication System)

• Human Factors
 – ICAO Remotely Piloted Aircraft Systems (RPAS) Panel Support
 – North Atlantic Treaty Organization (NATO)
 • Human Factors and Medicine (HFM) working group 247

• John Walker (Contractor)
 – ICAO
 • Supports RPAS Panel as member of the FAA Team as a Subject Matter Expert
 • Supports preparation for ICAO RPAS Symposium/March 2015
 • Supports ICAO Regional forums (as required)
 – As required
 • NATO Flight Into Non-Segregated Airspace (FINAS) Work Group
 • Joint Authorities for Rulemaking on Unmanned Systems (JARUS)
 • Single European Sky Research (SESAR)
 • EUROCAE Work Group 73 & 93: UAS Standards Development
 • Civil Air Navigation Service Organizations (CANSO)
 • Mid Air Collision Avoidance System (MIDCAS) Consortium
Project Goal, Research Themes, & Technical Challenges

Goal: Provide research findings to reduce technical barriers associated with integrating Unmanned Aircraft Systems into the National Airspace System utilizing integrated system level tests in a relevant environment

Research Theme 1: UAS Integration - Airspace integration procedures and performance standards to enable UAS integration in the air transportation system

Research Theme 2: Test Infrastructure - Test infrastructure to enable development and validation of airspace integration procedures and performance standards

TC-ITE: Integrated Test & Evaluation

TC-SAA: Sense and Avoid (SAA) Performance Standards

TC-HSI: Human Systems Integration

TC-C2: Command & Control (C2) Performance Standards

Non-TC: UAS Restricted Use Certification

Non-TC: Small UAS Mission Support Technologies

TC = Technical Challenge
UAS Integration in the NAS Project
Technical Challenge Value Proposition

NASA UAS-NAS TC Project Activities

SAA Performance Standards
- Develop SAA Performance Testbed
- Conduct SAA Flight Test and MS&A
 - Performance Trade-offs: CONOPs, Interoperability, Well Clear, Self Separation, Collision Avoidance
- Develop SAA Performance & Interoperability Requirements

C2 Performance Standards
- Develop C2 Prototype System
- Conduct C2 Flight Test and MS&A
 - Data Link, CNPC Spectrum, CNPC Security, LOS, BLOS, ATC Interoperability
- Develop C2 Requirements

Human Systems Integration
- Develop Prototype Ground Control Station (GCS)
- Conduct Human Factors (HF) Flight Test and MS&A
 - Contingency Management, Pilot Response, SAA, C2, Autonomy, Displays
- Develop HF Guidelines for SAA, C2 & GCS

Integrated Test & Evaluation
- Develop Live Virtual Constructive (LVC) Test Infrastructure
- Develop TC Specific Testing
- Conduct TC Specific Testing

Key Products
- SAA Performance Requirements to inform DAA MOPS
- C2 Performance Requirements to inform C2 MOPS
- HF Performance Requirements to inform DAA & C2 MOPS, HF Guidelines

Resultant Outcomes
- Re-usable Test Infrastructure

Products
- DAA MOPS
- C2 MOPS
- SAA Technical Standard Order (TSO)
- C2 Technical Standard Order (TSO)
FY14 Technical Accomplishments
Major Contributions to Stakeholders

- Office of the Secretary of Defense (OSD) Sense and Avoid (SAA) Science and Research Panel (SARP)
 - Provided one of three Well Clear Standards to SARP for assessment
 - Assisted SARP with
 - Definition of selection criteria: operational acceptability metrics
 - Data and analysis of three proposals against operational metrics

- SC-228 DAA and C2 Working Groups
 - Well Clear Definition
 - FAA provided recommended modification to SARP Well Clear criteria
 - FAA recommendation modified vertical dimension nearer to NASA proposal
 - DAA system requirements
 - DAA Verification and Validation requirements
 - GCS minimum display requirements
 - CNPC System performance requirements

- World Radio Conference
 - UAS Spectrum Analysis

Providing High Quality Products Meeting Stakeholders Needs
• **Research Activity Objective:**
 – Evaluate the impact of UAS SAA self separation maneuvers resulting for different SAA Well Clear volumes on controller perceptions of safety and efficiency

• **Interim Significant Results, Conclusions, and Recommendations:**
 – A horizontal miss distance of ~1.5 nmi appears to be optimal for ATC acceptability (away from the airport vicinity)
 – Horizontal miss distance of 1.5 nmi is 150% larger than the TCAS resolution advisory horizontal miss distance for all airspace below Class A, and 136% larger in Class A
 – 500’ IFR-VFR vertical separation (with no vertical closure rate) was universally acceptable during debrief sessions
 – Air traffic controllers thought the SAA integration concept as presented was viable

Results Contributed to Well Clear Separation Standard & ATC Interoperability for DAA MOPS
TC-C2
Gen2 Radio in Relevant Environment Flight Test

• **Research Activity Objectives:**
 – Analyze the performance of the Gen2 C-band CNPC System prototype in a relevant flight environment

• **Results and Conclusions:**
 – Demonstrated fluid transition “hand-off” of aircraft CNPC signal between two CNPC system ground stations
 – Demonstrated operation of remote CNPC system ground terminals through network
 – Measured data link transmission/reception times
 – Testing of the Gen2 CNPC system demonstrated the ability to meet the initial SC-203 performance goals
 – Results from the test were analyzed and delivered to SC-228, providing validation data and technical basis for the draft C2 MOPS

Results Contributed to CNPC Radio for Development and V&V of C2 MOPS
Research Activity Objective:
- Evaluate efficacy of minimum information SAA displays, potential improvements for advanced information features and pilot guidance, and integrated vs stand-alone GCS SAA displays

Interim Significant Results, Conclusions, and Recommendations:
- Consistent advantage seen for Advanced over Basic displays
- Overall, the Advanced displays had a faster Total Response Time compared to Basic
- There were no significant differences between the Standalone and Integrated condition
- Implications to Well Clear Violations and DAA Timeline need to be evaluated

Results Contributed to GCS Minimum Information Guidelines/Requirements for DAA MOPS
• **Research Activity Objective:**
 – Conduct a HITL simulation integrating the latest SSI algorithms, CNPC System model, and HSI displays using the Live, Virtual, Constructive test environment and document the performance of the simulation infrastructure in meeting the simulation requirements

• **Interim Significant Results, Conclusions, and Recommendations:**
 – IHITL successfully completed on July 25th
 • Data for each of the tests was successfully collected for all test subjects and archived at NASA Ames for researcher access
 • Distributed LVC test infrastructure thoroughly tested, though some software anomalies were noted, none significantly impacted data collection
 • Required data provided to researchers on schedule
 – The simulation report documenting performance of the simulation infrastructure is on schedule

Results Contributed to Test Environment for V&V of DAA and C2 MOPS
UAS-NAS Milestone Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[TC-SAA,TC-HSI] SC-228 DAA Draft MOPS Comments/Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-SAA,TC-HSI] SC-228 DAA Final MOPS Comments/Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-C2] SC-228 C2 Draft MOPS Comments/Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-C2] SC-228 C2 Final MOPS Comments/Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-ITE] IHITL Sim Complete / FY14 APG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-ITE] SAA Initial Flights Tests Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-ITE] Flight Test Series 3 Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TC-ITE] Flight Test Series 4 Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API FY 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API FY 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive Relevant Environment Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backup Slides
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance - Broadcast</td>
</tr>
<tr>
<td>APG</td>
<td>Annual Performance Goal</td>
</tr>
<tr>
<td>API</td>
<td>Annual Performance Indicator</td>
</tr>
<tr>
<td>ARC</td>
<td>Aviation Rulemaking Committee</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Controller</td>
</tr>
<tr>
<td>ARMD</td>
<td>Aeronautics Research Mission Directorate</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>BLOS</td>
<td>Beyond Line of Sight</td>
</tr>
<tr>
<td>C2</td>
<td>Command and Control</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CANSO</td>
<td>Civil Air Navigation Service Organizations</td>
</tr>
<tr>
<td>CONOPS</td>
<td>Concept of Operations</td>
</tr>
<tr>
<td>CNPC</td>
<td>Control and Non-Payload Communications</td>
</tr>
<tr>
<td>DAA</td>
<td>Detect and Avoid</td>
</tr>
<tr>
<td>ExCom</td>
<td>Executive Committee</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FINAS</td>
<td>Flight Into Non-Segregated Airspace</td>
</tr>
<tr>
<td>FRR</td>
<td>Flight Readiness Review</td>
</tr>
<tr>
<td>FT</td>
<td>Flight Test</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>HF</td>
<td>Human Factors</td>
</tr>
<tr>
<td>HFM</td>
<td>Human Factors and Medicine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>HITL</td>
<td>Human in the Loop</td>
</tr>
<tr>
<td>HSI</td>
<td>Human Systems Integration</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IHITL</td>
<td>Integrated Human in the Loop</td>
</tr>
<tr>
<td>ITE</td>
<td>Integrated Tests and Evaluation</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union (ITU)</td>
</tr>
<tr>
<td>JARUS</td>
<td>Joint Authorities for Rulemaking on Unmanned Systems</td>
</tr>
<tr>
<td>JPDO</td>
<td>Joint Planning and Development Office</td>
</tr>
<tr>
<td>KDP</td>
<td>Key Decision Point</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>LVC</td>
<td>Live Virtual Constructive</td>
</tr>
<tr>
<td>MOPS</td>
<td>Minimum Operational Performance Standards</td>
</tr>
<tr>
<td>MS&A</td>
<td>Modeling Simulation and Analysis</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organization (NATO)</td>
</tr>
<tr>
<td>NRA</td>
<td>NASA Research Announcements</td>
</tr>
<tr>
<td>OSD</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>P1</td>
<td>Phase 1</td>
</tr>
<tr>
<td>P2</td>
<td>Phase 2</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>RPAS</td>
<td>Remotely Piloted Aircraft Systems</td>
</tr>
<tr>
<td>SAA</td>
<td>Sense and Avoid</td>
</tr>
<tr>
<td>SARP</td>
<td>Science and Research Panel</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>Special Committee</td>
</tr>
<tr>
<td>SST</td>
<td>Self Separation Threshold</td>
</tr>
<tr>
<td>TC</td>
<td>Technical Challenge</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Alert and Collision Avoidance System</td>
</tr>
<tr>
<td>TRACON</td>
<td>Terminal Radar Approach Control Facilities</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Standard Order</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aircraft Systems</td>
</tr>
<tr>
<td>V&V</td>
<td>Verification and Validation</td>
</tr>
<tr>
<td>WRC</td>
<td>World Radio Conference</td>
</tr>
</tbody>
</table>